mirror of
https://github.com/ImperialCollegeLondon/ReCoDE_MCMCFF.git
synced 2025-06-26 08:51:16 +02:00
Reformat the docs and add myst-nb as a doc dep
This commit is contained in:
parent
b8392ed703
commit
d2258ae35c
14
code/docs/api_docs.rst
Normal file
14
code/docs/api_docs.rst
Normal file
@ -0,0 +1,14 @@
|
||||
API Docs
|
||||
========
|
||||
|
||||
MCMC : Markov Chain Monte Carlo Routines
|
||||
---------------------------------------------
|
||||
|
||||
.. automodule:: MCFF.mcmc
|
||||
:members:
|
||||
|
||||
Ising_Model : Ising Model Routines
|
||||
---------------------------------------------
|
||||
|
||||
.. automodule:: MCFF.ising_model
|
||||
:members:
|
@ -34,8 +34,12 @@ release = "1.0"
|
||||
extensions = [
|
||||
"sphinx.ext.autodoc",
|
||||
"sphinx.ext.napoleon",
|
||||
"myst_nb",
|
||||
]
|
||||
|
||||
# Tell myst_nb not to execute the notebooks
|
||||
nb_execution_mode = "off"
|
||||
|
||||
# Add any paths that contain templates here, relative to this directory.
|
||||
templates_path = ["_templates"]
|
||||
|
||||
|
@ -7,54 +7,14 @@ You can find the source code and main landing page for this project on `GitHub <
|
||||
|
||||
There is a `Jupyter notebook <https://github.com/TomHodson/ReCoDE_MCMCFF>`_ detailing how this page was generated in there.
|
||||
|
||||
|
||||
|
||||
Quickstart
|
||||
----------
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from MCFF.mcmc import mcmc_generator
|
||||
from MCFF.ising_model import show_state
|
||||
|
||||
### Simulation Inputs ###
|
||||
N = 500 # Use an NxN system
|
||||
|
||||
initial_state = np.random.choice(
|
||||
np.array([-1, 1], dtype=np.int8), size=(N, N)
|
||||
) # the intial state to use
|
||||
|
||||
### Simulation Code ###
|
||||
critical_states = [
|
||||
s for s in mcmc_generator(initial_state, steps=5, stepsize=5*N**2, T= 3.5)
|
||||
]
|
||||
|
||||
fig, axes = plt.subplots(
|
||||
ncols=len(critical_states), figsize=(5 * len(critical_states), 5)
|
||||
)
|
||||
|
||||
for s, ax in zip(critical_states, axes):
|
||||
show_state(s, ax=ax)
|
||||
|
||||
.. image:: _static/states.png
|
||||
:width: 100%
|
||||
:alt: 5 grids showing black and white Ising Model states
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
:caption: Contents:
|
||||
:maxdepth: 1
|
||||
:glob:
|
||||
:caption: Table of Contents:
|
||||
|
||||
mcmc : Markov Chain Monte Carlo Routines
|
||||
---------------------------------------------
|
||||
|
||||
.. automodule:: MCFF.mcmc
|
||||
:members:
|
||||
|
||||
ising_model : Ising Model Routines
|
||||
---------------------------------------------
|
||||
|
||||
.. automodule:: MCFF.ising_model
|
||||
:members:
|
||||
quickstart
|
||||
api_docs
|
||||
learning/*
|
||||
|
||||
|
||||
|
||||
|
30
code/docs/quickstart.rst
Normal file
30
code/docs/quickstart.rst
Normal file
@ -0,0 +1,30 @@
|
||||
Quickstart
|
||||
----------
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from MCFF.mcmc import mcmc_generator
|
||||
from MCFF.ising_model import show_state
|
||||
|
||||
### Simulation Inputs ###
|
||||
N = 500 # Use an NxN system
|
||||
|
||||
initial_state = np.random.choice(
|
||||
np.array([-1, 1], dtype=np.int8), size=(N, N)
|
||||
) # the intial state to use
|
||||
|
||||
### Simulation Code ###
|
||||
critical_states = [
|
||||
s for s in mcmc_generator(initial_state, steps=5, stepsize=5*N**2, T= 3.5)
|
||||
]
|
||||
|
||||
fig, axes = plt.subplots(
|
||||
ncols=len(critical_states), figsize=(5 * len(critical_states), 5)
|
||||
)
|
||||
|
||||
for s, ax in zip(critical_states, axes):
|
||||
show_state(s, ax=ax)
|
||||
|
||||
.. image:: _static/states.png
|
||||
:width: 100%
|
||||
:alt: 5 grids showing black and white Ising Model states
|
@ -0,0 +1,2 @@
|
||||
sphinx
|
||||
myst-nb
|
@ -23,5 +23,6 @@ sphinx:
|
||||
python:
|
||||
install:
|
||||
- requirements: requirements.txt
|
||||
- requirements: code/docs/requirements.txt
|
||||
- method: pip
|
||||
path: code/
|
||||
|
Loading…
x
Reference in New Issue
Block a user