import numpy as np from matplotlib.image import imread from pathlib import Path from MCFF.ising_model import all_up_state, all_down_state, random_state from MCFF.ising_model import energy, energy_numpy # create some test states all_up = np.ones([100,100]) all_down = -np.ones([100,100]) random = np.random.choice([-1, 1], size = (100,100)) custom = (1 - 2*imread(Path(__file__).parents[2]/'learning/data/test_state.png')[:, :, 0]) #load a 100x100 png, take the red channel, remap 0,1 to -1,1 states = [all_up, all_down, random, custom] def E_prediction_all_the_same(L): "The exact energy in for the case where all spins are up or down" return -(4*(L - 2)**2 + 12*(L-2) + 8) / L**2 def test_exact_energies(): for state in [all_up, all_down]: L = state.shape[0] assert energy(state) == E_prediction_all_the_same(L) def test_energy_implementations(): for state in states: assert np.allclose(energy(state), energy_numpy(state))