ReCoDE_MCMCFF/learning/02 Packaging it up.ipynb

70 lines
1.6 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "dcddb3be-940b-4416-aec5-7159354c7cc0",
"metadata": {},
"source": [
"<h1 align=\"center\">Markov Chain Monte Carlo for fun and profit</h1>\n",
"<h1 align=\"center\"> 🎲 ⛓️ 👉 🧪 </h1>"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "6e51fe6c-a8b8-48ed-9e7f-70e18945e597",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"# This loads some custom styles for matplotlib\n",
"import json, matplotlib\n",
"with open(\"assets/matplotlibrc.json\") as f: matplotlib.rcParams.update(json.load(f))"
]
},
{
"cell_type": "markdown",
"id": "6327bffe-5a27-4643-929e-a9d41672cd2c",
"metadata": {},
"source": [
"## Packaging\n",
"\n",
"Now that we have some code, we're going to factor it out into a little python package, this has a few benefits:\n",
" - foo\n",
" - bah"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "58bef986-9d69-4ef6-8a64-9eaf29c3424e",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python [conda env:jupyter3.9] *",
"language": "python",
"name": "conda-env-jupyter3.9-py"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}