fig updates

This commit is contained in:
Tom Hodson 2022-08-08 19:03:12 +01:00
parent e9d85bfa1e
commit 1053b97816
8 changed files with 2624 additions and 2091 deletions

View File

@ -415,15 +415,15 @@ composition rule extends to arbitrary numbers of vortices which gives a
discrete version of Stokes theorem.</figcaption>
</figure>
</div>
<p><strong>Wilson loops can always be decomposed into products of
plaquettes operators unless they are non-contractable</strong></p>
<p>Takeaway: Wilson loops can always be decomposed into products of
plaquettes operators unless they are non-contractable.</p>
<h3 id="gauge-degeneracy-and-the-euler-equation">Gauge Degeneracy and
the Euler Equation</h3>
<div id="fig:state_decomposition_animated" class="fignos">
<figure>
<img
src="/assets/thesis/figure_code/amk_chapter/state_decomposition_animated/state_decomposition_animated.gif"
style="width:114.0%"
style="width:100.0%"
alt="Figure 5: (Bond Sector) A state in the bond sector is specified by assigning \pm 1 to each edge of the lattice. However, this description has a substantial gauge degeneracy. We can simplify things by decomposing each state into the product of three kinds of objects: (Vortex Sector) Only a small number of bonds need to be flipped (compared to some arbitrary reference) to reconstruct the vortex sector. Here, the edges are chosen from a spanning tree of the dual lattice, so there are no loops. (Gauge Field) The loopiness of the bond sector can be factored out. This gives a network of loops that can always be written as a product of the gauge operators D_j. (Topological Sector) Finally, there are two loops that have no effect on the vortex sector, nor can they be constructed from gauge symmetries. These can be thought of as two fluxes \Phi_{x/y} that thread through the major and minor axes of the torus. Measuring \Phi_{x/y} amounts to constructing Wilson loops around the axes of the torus. We can flip the value of \Phi_{x} by transporting a vortex pair around the torus in the y direction, as shown here. In each of the three figures on the right, black bonds correspond to those that must be flipped. Composing the three together gives back the original bond sector on the left." />
<figcaption aria-hidden="true"><span>Figure 5:</span> (Bond Sector) A
state in the bond sector is specified by assigning <span
@ -543,9 +543,9 @@ by a highly non-local perturbations<span class="citation"
data-cites="kitaevFaulttolerantQuantumComputation2003"><sup><a
href="#ref-kitaevFaulttolerantQuantumComputation2003"
role="doc-biblioref">1</a></sup></span>.</p>
<p><strong>The Extended Hilbert Space decomposes into a direct product
<p>Takeaway: The Extended Hilbert Space decomposes into a direct product
of Flux Sectors, four Topological Sectors and a set of gauge
symmetries.</strong></p>
symmetries.</p>
<div id="fig:flood_fill" class="fignos">
<figure>
<img
@ -732,7 +732,7 @@ single fermion in the lowest level.</p>
<figure>
<img
src="/assets/thesis/figure_code/amk_chapter/loops_and_dual_loops/loops_and_dual_loops.svg"
style="width:114.0%"
style="width:100.0%"
alt="Figure 10: (Left) The two topological flux operators of the toroidal lattice. These do not correspond to any face of the lattice, but rather measure flux that threads through the major and minor axes of the torus. This shows a particular choice. Yet, any loop that crosses the boundary is gauge equivalent to one of or the sum of these two loop. (Right) The two ways to transport vortices around the diameters. These amount to creating a vortex pair, transporting one of them around the major or minor diameters of the torus and, then, annihilating them again." />
<figcaption aria-hidden="true"><span>Figure 10:</span> (Left) The two
topological flux operators of the toroidal lattice. These do not
@ -1043,8 +1043,11 @@ href="#fig:braiding">12</a>).</p>
<div id="fig:braiding" class="fignos">
<figure>
<img src="/assets/thesis/figure_code/amk_chapter/braiding.png"
style="width:71.0%" alt="Figure 12: " />
<figcaption aria-hidden="true"><span>Figure 12:</span> </figcaption>
style="width:71.0%"
alt="Figure 12: Worldlines of particles in two dimensions can become tangled or braided with one another." />
<figcaption aria-hidden="true"><span>Figure 12:</span> Worldlines of
particles in two dimensions can become tangled or <em>braided</em> with
one another.</figcaption>
</figure>
</div>
<p>From this fact flows a whole of behaviours. The quantum state can

View File

@ -522,7 +522,7 @@ i\)</span>.</p>
<div id="fig:regular_plaquettes" class="fignos">
<figure>
<img
src="/assets/thesis/figure_code/amk_chapter/regular_plaquettes/regular_plaquettes.svg"
src="/assets/thesis/figure_code/amk_chapter/intro/regular_plaquettes/regular_plaquettes.svg"
style="width:86.0%"
alt="Figure 2: The eigenvalues of a loop or plaquette operators depend on the number of bonds in its enclosing path." />
<figcaption aria-hidden="true"><span>Figure 2:</span> The eigenvalues of

View File

@ -335,7 +335,7 @@ the topology of our lattices.</p>
<div id="fig:bloch" class="fignos">
<figure>
<img src="/assets/thesis/figure_code/amk_chapter/methods/bloch.png"
style="width:57.0%"
style="width:100.0%"
alt="Figure 2: Blochs theorem can be thought of as transforming from a periodic Hamiltonian on the place to the unit cell defined an torus. In addition we get some phase factors e^{i\vec{k}\cdot\vec{r}} associated with bonds that cross unit cells that depend on the sense in which they do so \vec{r} = (\pm1, \pm1). Representing graphs on the torus turns out to require a similar idea, we unwrap the torus to one unit cell and keep track of which bonds cross the cell boundaries." />
<figcaption aria-hidden="true"><span>Figure 2:</span> Blochs theorem
can be thought of as transforming from a periodic Hamiltonian on the
@ -349,17 +349,6 @@ which bonds cross the cell boundaries.</figcaption>
</figure>
</div>
<h2 id="colouring-the-bonds">Colouring the Bonds</h2>
<div id="fig:multiple_colourings" class="fignos">
<figure>
<img
src="/assets/thesis/figure_code/amk_chapter/multiple_colourings/multiple_colourings.svg"
style="width:100.0%"
alt="Figure 3: Three different valid 3-edge-colourings of amorphous lattices. Colors that differ from the leftmost panel are highlighted." />
<figcaption aria-hidden="true"><span>Figure 3:</span> Three different
valid 3-edge-colourings of amorphous lattices. Colors that differ from
the leftmost panel are highlighted.</figcaption>
</figure>
</div>
<p>The Kitaev Model requires that each edge in the lattice be assigned a
label <span class="math inline">\(x\)</span>, <span
class="math inline">\(y\)</span> or <span
@ -416,6 +405,17 @@ role="doc-biblioref">12</a></sup></span>. An <span
class="math inline">\(\mathcal{O}(n^2)\)</span> algorithm
robertson1996efficiently exists here. However, it is not clear whether
this extends to cubic, <strong>toroidal</strong> bridgeless graphs.</p>
<div id="fig:multiple_colourings" class="fignos">
<figure>
<img
src="/assets/thesis/figure_code/amk_chapter/multiple_colourings/multiple_colourings.svg"
style="width:100.0%"
alt="Figure 3: Three different valid 3-edge-colourings of amorphous lattices. Colors that differ from the leftmost panel are highlighted." />
<figcaption aria-hidden="true"><span>Figure 3:</span> Three different
valid 3-edge-colourings of amorphous lattices. Colors that differ from
the leftmost panel are highlighted.</figcaption>
</figure>
</div>
<h3 id="four-colourings-and-three-colourings">Four-colourings and
three-colourings</h3>
<p>A four-face-colouring can be converted into a three-edge-colouring

View File

@ -572,7 +572,7 @@ href="#fig:fermion_gap_vs_L">4</a>.</p>
<figure>
<img
src="/assets/thesis/figure_code/amk_chapter/results/fermion_gap_vs_L/fermion_gap_vs_L.svg"
style="width:114.0%"
style="width:100.0%"
alt="Figure 4: Within a flux sector, the fermion gap \Delta_f measures the energy between the fermionic ground state and the first excited state. This graph shows the fermion gap as a function of system size for the ground state flux sector and for a configuration of random fluxes. We see that the disorder induced by an putting the Kitaev model on an amorphous lattice does not close the gap in the ground state. The gap closes in the flux disordered limit is good evidence that the system transitions to a gapless thermal metal state at high temperature. Each point shows an average over 100 lattice realisations. System size L is defined \sqrt{N} where N is the number of plaquettes in the system. Error bars shown are 3 times the standard error of the mean. The lines shown are fits of \tfrac{\Delta_f}{J} = aL ^ b with fit parameters: Ground State: a = 0.138 \pm 0.002, b = -0.0972 \pm 0.004 Random Flux Sector: a = 1.8 \pm 0.2, b = -2.21 \pm 0.03" />
<figcaption aria-hidden="true"><span>Figure 4:</span> Within a flux
sector, the fermion gap <span class="math inline">\(\Delta_f\)</span>

File diff suppressed because it is too large Load Diff

Before

Width:  |  Height:  |  Size: 245 KiB

After

Width:  |  Height:  |  Size: 245 KiB

View File

@ -0,0 +1,528 @@
<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns:xlink="http://www.w3.org/1999/xlink" width="486pt" height="97.2pt" viewBox="0 0 486 97.2" xmlns="http://www.w3.org/2000/svg" version="1.1">
<metadata>
<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:cc="http://creativecommons.org/ns#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<cc:Work>
<dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage"/>
<dc:date>2022-08-08T15:27:26.487778</dc:date>
<dc:format>image/svg+xml</dc:format>
<dc:creator>
<cc:Agent>
<dc:title>Matplotlib v3.5.1, https://matplotlib.org/</dc:title>
</cc:Agent>
</dc:creator>
</cc:Work>
</rdf:RDF>
</metadata>
<defs>
<style type="text/css">*{stroke-linejoin: round; stroke-linecap: butt}</style>
</defs>
<g id="figure_1">
<g id="patch_1">
<path d="M 0 97.2
L 486 97.2
L 486 0
L 0 0
L 0 97.2
z
" style="fill: none"/>
</g>
<g id="axes_1">
<g id="LineCollection_1">
<path d="M 54.216 14.04
L 19.422563 65.88
" clip-path="url(#pfde9e9061b)" style="fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: round"/>
<path d="M 19.422563 65.88
L 89.009437 65.88
" clip-path="url(#pfde9e9061b)" style="fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: round"/>
<path d="M 89.009437 65.88
L 54.216 14.04
" clip-path="url(#pfde9e9061b)" style="fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: round"/>
<g id="text_1">
<!-- $\pm i$ -->
<g transform="translate(45.354714 52.585056)scale(0.16 -0.16)">
<defs>
<path id="CMSY10-6" d="M 2618 1984
L 4397 1984
C 4506 1984 4621 1984 4621 2112
C 4621 2240 4506 2240 4397 2240
L 2618 2240
L 2618 4048
C 2618 4153 2618 4288 2490 4288
C 2362 4288 2362 4172 2362 4068
L 2362 2240
L 576 2240
C 467 2240 352 2240 352 2112
C 352 1984 467 1984 576 1984
L 2362 1984
L 2362 256
L 576 256
C 467 256 352 256 352 128
C 352 0 467 0 576 0
L 4397 0
C 4506 0 4621 0 4621 128
C 4621 256 4506 256 4397 256
L 2618 256
L 2618 1984
z
" transform="scale(0.015625)"/>
<path id="CMMI12-69" d="M 1811 913
C 1811 945 1786 970 1747 970
C 1690 970 1683 951 1651 842
C 1485 261 1222 64 1011 64
C 934 64 845 83 845 274
C 845 447 922 638 992 830
L 1440 2017
C 1459 2068 1504 2183 1504 2305
C 1504 2573 1312 2816 998 2816
C 410 2816 173 1890 173 1838
C 173 1813 198 1781 243 1781
C 301 1781 307 1807 333 1896
C 486 2432 730 2687 979 2687
C 1037 2687 1146 2681 1146 2477
C 1146 2311 1062 2100 1011 1960
L 563 772
C 525 670 486 568 486 453
C 486 166 685 -64 992 -64
C 1581 -64 1811 868 1811 913
z
M 1760 4012
C 1760 4108 1683 4224 1542 4224
C 1395 4224 1229 4083 1229 3916
C 1229 3756 1363 3705 1440 3705
C 1613 3705 1760 3871 1760 4012
z
" transform="scale(0.015625)"/>
</defs>
<use xlink:href="#CMSY10-6" transform="scale(0.996264)"/>
<use xlink:href="#CMMI12-69" transform="translate(77.487468 0)scale(0.996264)"/>
</g>
</g>
<g id="patch_2">
<path d="M 35.563782 41.830615
L 35.900192 37.009385
L 38.074782 38.089385
L 38.074782 38.089385
L 38.074782 38.089385
L 38.074782 38.089385
L 40.249371 39.169385
z
" clip-path="url(#pfde9e9061b)" style="stroke: #000000; stroke-linejoin: miter"/>
</g>
<g id="patch_3">
<path d="M 56.727 65.88
L 51.705 68.04
L 51.705 65.88
L 51.705 65.88
L 51.705 65.88
L 51.705 65.88
L 51.705 63.72
z
" clip-path="url(#pfde9e9061b)" style="stroke: #000000; stroke-linejoin: miter"/>
</g>
<g id="patch_4">
<path d="M 70.357218 38.089385
L 75.042808 40.750615
L 72.868218 41.830615
L 72.868218 41.830615
L 72.868218 41.830615
L 72.868218 41.830615
L 70.693629 42.910615
z
" clip-path="url(#pfde9e9061b)" style="stroke: #000000; stroke-linejoin: miter"/>
</g>
</g>
<g id="axes_2">
<g id="LineCollection_2">
<path d="M 148.608 14.04
L 108.432 48.6
" clip-path="url(#pa912303b84)" style="fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: round"/>
<path d="M 108.432 48.6
L 148.608 83.16
" clip-path="url(#pa912303b84)" style="fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: round"/>
<path d="M 148.608 83.16
L 188.784 48.6
" clip-path="url(#pa912303b84)" style="fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: round"/>
<path d="M 188.784 48.6
L 148.608 14.04
" clip-path="url(#pa912303b84)" style="fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: round"/>
<g id="text_2">
<!-- $\pm 1$ -->
<g transform="translate(138.507008 52.585056)scale(0.16 -0.16)">
<defs>
<path id="CMR17-31" d="M 1702 4083
C 1702 4217 1696 4224 1606 4224
C 1357 3927 979 3833 621 3820
C 602 3820 570 3820 563 3808
C 557 3795 557 3782 557 3648
C 755 3648 1088 3686 1344 3839
L 1344 467
C 1344 243 1331 166 781 166
L 589 166
L 589 0
C 896 6 1216 12 1523 12
C 1830 12 2150 6 2458 0
L 2458 166
L 2266 166
C 1715 166 1702 236 1702 467
L 1702 4083
z
" transform="scale(0.015625)"/>
</defs>
<use xlink:href="#CMSY10-6" transform="scale(0.996264)"/>
<use xlink:href="#CMR17-31" transform="translate(77.487468 0)scale(0.996264)"/>
</g>
</g>
<g id="patch_5">
<path d="M 126.744455 32.847351
L 128.52 28.265299
L 130.295545 29.792649
L 130.295545 29.792649
L 130.295545 29.792649
L 130.295545 29.792649
L 132.07109 31.32
z
" clip-path="url(#pa912303b84)" style="stroke: #000000; stroke-linejoin: miter"/>
</g>
<g id="patch_6">
<path d="M 130.295545 67.407351
L 124.96891 65.88
L 126.744455 64.352649
L 126.744455 64.352649
L 126.744455 64.352649
L 126.744455 64.352649
L 128.52 62.825299
z
" clip-path="url(#pa912303b84)" style="stroke: #000000; stroke-linejoin: miter"/>
</g>
<g id="patch_7">
<path d="M 170.471545 64.352649
L 168.696 68.934701
L 166.920455 67.407351
L 166.920455 67.407351
L 166.920455 67.407351
L 166.920455 67.407351
L 165.14491 65.88
z
" clip-path="url(#pa912303b84)" style="stroke: #000000; stroke-linejoin: miter"/>
</g>
<g id="patch_8">
<path d="M 166.920455 29.792649
L 172.24709 31.32
L 170.471545 32.847351
L 170.471545 32.847351
L 170.471545 32.847351
L 170.471545 32.847351
L 168.696 34.374701
z
" clip-path="url(#pa912303b84)" style="stroke: #000000; stroke-linejoin: miter"/>
</g>
</g>
<g id="axes_3">
<g id="LineCollection_3">
<path d="M 243 14.04
L 204.790353 37.920373
" clip-path="url(#p63ad195ad4)" style="fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: round"/>
<path d="M 204.790353 37.920373
L 219.38514 76.559627
" clip-path="url(#p63ad195ad4)" style="fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: round"/>
<path d="M 219.38514 76.559627
L 266.61486 76.559627
" clip-path="url(#p63ad195ad4)" style="fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: round"/>
<path d="M 266.61486 76.559627
L 281.209647 37.920373
" clip-path="url(#p63ad195ad4)" style="fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: round"/>
<path d="M 281.209647 37.920373
L 243 14.04
" clip-path="url(#p63ad195ad4)" style="fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: round"/>
<g id="text_3">
<!-- $\pm i$ -->
<g transform="translate(234.138714 52.585056)scale(0.16 -0.16)">
<use xlink:href="#CMSY10-6" transform="scale(0.996264)"/>
<use xlink:href="#CMMI12-69" transform="translate(77.487468 0)scale(0.996264)"/>
</g>
</g>
<g id="patch_9">
<path d="M 221.863735 27.249802
L 224.45069 22.963093
L 225.926618 24.71057
L 225.926618 24.71057
L 225.926618 24.71057
L 225.926618 24.71057
L 227.402547 26.458047
z
" clip-path="url(#p63ad195ad4)" style="stroke: #000000; stroke-linejoin: miter"/>
</g>
<g id="patch_10">
<path d="M 212.863688 59.294282
L 208.923702 55.853195
L 211.311805 55.185718
L 211.311805 55.185718
L 211.311805 55.185718
L 211.311805 55.185718
L 213.699908 54.518241
z
" clip-path="url(#p63ad195ad4)" style="stroke: #000000; stroke-linejoin: miter"/>
</g>
<g id="patch_11">
<path d="M 245.511 76.559627
L 240.489 78.719627
L 240.489 76.559627
L 240.489 76.559627
L 240.489 76.559627
L 240.489 76.559627
L 240.489 74.399627
z
" clip-path="url(#p63ad195ad4)" style="stroke: #000000; stroke-linejoin: miter"/>
</g>
<g id="patch_12">
<path d="M 274.688195 55.185718
L 275.524415 59.961759
L 273.136312 59.294282
L 273.136312 59.294282
L 273.136312 59.294282
L 273.136312 59.294282
L 270.748209 58.626805
z
" clip-path="url(#p63ad195ad4)" style="stroke: #000000; stroke-linejoin: miter"/>
</g>
<g id="patch_13">
<path d="M 260.073382 24.71057
L 265.612194 25.502326
L 264.136265 27.249802
L 264.136265 27.249802
L 264.136265 27.249802
L 264.136265 27.249802
L 262.660336 28.997279
z
" clip-path="url(#p63ad195ad4)" style="stroke: #000000; stroke-linejoin: miter"/>
</g>
</g>
<g id="axes_4">
<g id="LineCollection_4">
<path d="M 337.392 14.04
L 302.598563 31.32
" clip-path="url(#pc9f99306ba)" style="fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: round"/>
<path d="M 302.598563 31.32
L 302.598563 65.88
" clip-path="url(#pc9f99306ba)" style="fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: round"/>
<path d="M 302.598563 65.88
L 337.392 83.16
" clip-path="url(#pc9f99306ba)" style="fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: round"/>
<path d="M 337.392 83.16
L 372.185437 65.88
" clip-path="url(#pc9f99306ba)" style="fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: round"/>
<path d="M 372.185437 65.88
L 372.185437 31.32
" clip-path="url(#pc9f99306ba)" style="fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: round"/>
<path d="M 372.185437 31.32
L 337.392 14.04
" clip-path="url(#pc9f99306ba)" style="fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: round"/>
<g id="text_4">
<!-- $\pm 1$ -->
<g transform="translate(327.291008 52.585056)scale(0.16 -0.16)">
<use xlink:href="#CMSY10-6" transform="scale(0.996264)"/>
<use xlink:href="#CMR17-31" transform="translate(77.487468 0)scale(0.996264)"/>
</g>
</g>
<g id="patch_14">
<path d="M 317.820692 23.76
L 320.914371 19.729385
L 322.169871 21.6
L 322.169871 21.6
L 322.169871 21.6
L 322.169871 21.6
L 323.425371 23.470615
z
" clip-path="url(#pc9f99306ba)" style="stroke: #000000; stroke-linejoin: miter"/>
</g>
<g id="patch_15">
<path d="M 302.598563 50.76
L 300.087563 46.44
L 302.598563 46.44
L 302.598563 46.44
L 302.598563 46.44
L 302.598563 46.44
L 305.109563 46.44
z
" clip-path="url(#pc9f99306ba)" style="stroke: #000000; stroke-linejoin: miter"/>
</g>
<g id="patch_16">
<path d="M 322.169871 75.6
L 316.565192 75.310615
L 317.820692 73.44
L 317.820692 73.44
L 317.820692 73.44
L 317.820692 73.44
L 319.076192 71.569385
z
" clip-path="url(#pc9f99306ba)" style="stroke: #000000; stroke-linejoin: miter"/>
</g>
<g id="patch_17">
<path d="M 356.963308 73.44
L 353.869629 77.470615
L 352.614129 75.6
L 352.614129 75.6
L 352.614129 75.6
L 352.614129 75.6
L 351.358629 73.729385
z
" clip-path="url(#pc9f99306ba)" style="stroke: #000000; stroke-linejoin: miter"/>
</g>
<g id="patch_18">
<path d="M 372.185437 46.44
L 374.696437 50.76
L 372.185437 50.76
L 372.185437 50.76
L 372.185437 50.76
L 372.185437 50.76
L 369.674437 50.76
z
" clip-path="url(#pc9f99306ba)" style="stroke: #000000; stroke-linejoin: miter"/>
</g>
<g id="patch_19">
<path d="M 352.614129 21.6
L 358.218808 21.889385
L 356.963308 23.76
L 356.963308 23.76
L 356.963308 23.76
L 356.963308 23.76
L 355.707808 25.630615
z
" clip-path="url(#pc9f99306ba)" style="stroke: #000000; stroke-linejoin: miter"/>
</g>
</g>
<g id="axes_5">
<g id="LineCollection_5">
<path d="M 431.784 14.04
L 400.373138 27.052192
" clip-path="url(#p4d62786a90)" style="fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: round"/>
<path d="M 400.373138 27.052192
L 392.615296 56.290323
" clip-path="url(#p4d62786a90)" style="fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: round"/>
<path d="M 392.615296 56.290323
L 414.352287 79.737484
" clip-path="url(#p4d62786a90)" style="fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: round"/>
<path d="M 414.352287 79.737484
L 449.215713 79.737484
" clip-path="url(#p4d62786a90)" style="fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: round"/>
<path d="M 449.215713 79.737484
L 470.952704 56.290323
" clip-path="url(#p4d62786a90)" style="fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: round"/>
<path d="M 470.952704 56.290323
L 463.194862 27.052192
" clip-path="url(#p4d62786a90)" style="fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: round"/>
<path d="M 463.194862 27.052192
L 431.784 14.04
" clip-path="url(#p4d62786a90)" style="fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: round"/>
<g id="text_5">
<!-- $\pm i$ -->
<g transform="translate(422.922714 52.585056)scale(0.16 -0.16)">
<use xlink:href="#CMSY10-6" transform="scale(0.996264)"/>
<use xlink:href="#CMMI12-69" transform="translate(77.487468 0)scale(0.996264)"/>
</g>
</g>
<g id="patch_20">
<path d="M 413.816236 21.483285
L 417.25142 17.662815
L 418.340902 19.608907
L 418.340902 19.608907
L 418.340902 19.608907
L 418.340902 19.608907
L 419.430384 21.555
z
" clip-path="url(#p4d62786a90)" style="stroke: #000000; stroke-linejoin: miter"/>
</g>
<g id="patch_21">
<path d="M 395.935467 43.777102
L 394.604923 39.084768
L 397.052967 39.565414
L 397.052967 39.565414
L 397.052967 39.565414
L 397.052967 39.565414
L 399.501011 40.046059
z
" clip-path="url(#p4d62786a90)" style="stroke: #000000; stroke-linejoin: miter"/>
</g>
<g id="patch_22">
<path d="M 405.049374 69.70266
L 399.95503 67.671886
L 401.918209 66.325148
L 401.918209 66.325148
L 401.918209 66.325148
L 401.918209 66.325148
L 403.881388 64.97841
z
" clip-path="url(#p4d62786a90)" style="stroke: #000000; stroke-linejoin: miter"/>
</g>
<g id="patch_23">
<path d="M 434.295 79.737484
L 429.273 81.897484
L 429.273 79.737484
L 429.273 79.737484
L 429.273 79.737484
L 429.273 79.737484
L 429.273 77.577484
z
" clip-path="url(#p4d62786a90)" style="stroke: #000000; stroke-linejoin: miter"/>
</g>
<g id="patch_24">
<path d="M 461.649791 66.325148
L 460.481804 71.049398
L 458.518626 69.70266
L 458.518626 69.70266
L 458.518626 69.70266
L 458.518626 69.70266
L 456.555447 68.355922
z
" clip-path="url(#p4d62786a90)" style="stroke: #000000; stroke-linejoin: miter"/>
</g>
<g id="patch_25">
<path d="M 466.515033 39.565414
L 470.080577 43.296457
L 467.632533 43.777102
L 467.632533 43.777102
L 467.632533 43.777102
L 467.632533 43.777102
L 465.184489 44.257747
z
" clip-path="url(#p4d62786a90)" style="stroke: #000000; stroke-linejoin: miter"/>
</g>
<g id="patch_26">
<path d="M 445.227098 19.608907
L 450.841246 19.537192
L 449.751764 21.483285
L 449.751764 21.483285
L 449.751764 21.483285
L 449.751764 21.483285
L 448.662282 23.429378
z
" clip-path="url(#p4d62786a90)" style="stroke: #000000; stroke-linejoin: miter"/>
</g>
</g>
</g>
<defs>
<clipPath id="pfde9e9061b">
<rect x="14.04" y="14.04" width="80.352" height="69.12"/>
</clipPath>
<clipPath id="pa912303b84">
<rect x="108.432" y="14.04" width="80.352" height="69.12"/>
</clipPath>
<clipPath id="p63ad195ad4">
<rect x="202.824" y="14.04" width="80.352" height="69.12"/>
</clipPath>
<clipPath id="pc9f99306ba">
<rect x="297.216" y="14.04" width="80.352" height="69.12"/>
</clipPath>
<clipPath id="p4d62786a90">
<rect x="391.608" y="14.04" width="80.352" height="69.12"/>
</clipPath>
</defs>
</g>
</g>
</g>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 292 KiB

After

Width:  |  Height:  |  Size: 146 KiB

File diff suppressed because it is too large Load Diff

Before

Width:  |  Height:  |  Size: 124 KiB

After

Width:  |  Height:  |  Size: 124 KiB