diff --git a/2april.html b/2april.html deleted file mode 100644 index 4965af4..0000000 --- a/2april.html +++ /dev/null @@ -1,16447 +0,0 @@ - - - -TU_animation - - - - - - - - - - - - - - - - - - - -
-
- -
-
-
In [1]:
-
-
-
from pathlib import Path
-import numpy as np
-import os
-from matplotlib import pyplot as plt
-import matplotlib as mpl
-from time import time
-from munch import Munch
-import pickle
-from itertools import count
-
-from FKMC.general import shapes, smooth
-
-%matplotlib inline
-np.seterr(all='warn')
-textwidth = 6.268
-mpl.rcParams['figure.dpi'] = 70
-default_figargs = dict(figsize = (textwidth,textwidth))
-
-import logging
-mpl_logger = logging.getLogger('matplotlib')
-mpl_logger.setLevel(logging.WARNING) 
-
- -
-
-
- -
-
- - -
- -
- - -
-
DEBUG:matplotlib.pyplot:Loaded backend module://ipykernel.pylab.backend_inline version unknown.
-
-
-
- -
-
- -
-
-
-
In [2]:
-
-
-
with open('/data/users/tch14/pickled_data/TU_phase_data.pickle', 'rb') as file: 
-    TU_phase_obs = pickle.load(file)  
-
- -
-
-
- -
-
-
-
In [3]:
-
-
-
f, axes = plt.subplots(1,6, figsize = (25,5), gridspec_kw = dict(wspace = 0.25, hspace = 0.25))
-
-
-
-binder = 0
-norm = mpl.colors.Normalize(vmin=0, vmax=1)
-#TU_data.hints.Mf_moments == ('Ns', 'repeats', 'Us', 'Ts', 'moment', 'MCstep')
-M2 = TU_phase_obs.Mf_moments[-1, :, :, :, 2].mean(axis = 0).T
-M4 = TU_phase_obs.Mf_moments[-1, :, :, :, 4].mean(axis = 0).T
-Y = M2**2 / M4 if binder else M2
-
-pcol = axes[0].pcolormesh(TU_phase_obs.Us, TU_phase_obs.Ts, Y, cmap="RdBu_r", norm = norm, linewidth=0, rasterized = True)
-
-def get_nearby_index(sorted_list, value):
-    i = np.searchsorted(sorted_list, value)
-    return sorted_list[i], i
-
-T, T_i = get_nearby_index(TU_phase_obs.Ts, 1.8)
-U, U_i = get_nearby_index(TU_phase_obs.Us, 5)
-print(U, T)
-
-axes[0].plot([U,], [T], color = 'k', marker = 'o')
-axes[1].plot([U,], [T], color = 'k', marker = 'o')
-
-E_bins = TU_phase_obs.E_bins 
-e = 0.5
-
-for e in [0.001, 0.01, 0.1, 1]:
-
-    gap_indices = (-e < E_bins[:-1]) & (E_bins[:-1] < e)
-    gap_state_count = TU_phase_obs.DOS[-1, :, :, :, :].mean(axis=0)[:, :, gap_indices].sum(axis = -1)
-
-    pcol = axes[1].contour(TU_phase_obs.Us, TU_phase_obs.Ts, gap_state_count, cmap="RdBu_r", levels = [0.2,], label = 'e = {e}')
-
-axes[1].legend()
-    
-#pcol = axes[1].pcolormesh(TU_phase_obs.Us, TU_phase_obs.Ts, gap_state_count, cmap="RdBu_r", linewidth=0, rasterized = True)
-
-
-for i, N in zip(count(), TU_phase_obs.Ns):
-    if N < 16: continue
-    IPR = TU_phase_obs.IPR[i, :, U_i, T_i, :].mean(axis = 0)
-    DOS = TU_phase_obs.DOS[i, :, U_i, T_i, :].mean(axis = 0)
-    
-    axes[3].plot(E_bins[:-1], DOS, label = f'N = {N}')
-    axes[3].set(xlim = (-2*e, 2*e))
-    
-    #smooth by a value dependant on the size
-    IPR = smooth(IPR, scale = 32/N, axis = -1)
-    DOS = smooth(DOS, scale = 32/N, axis = -1)
-
-    axes[2].plot(E_bins[:-1], DOS, label = f'N = {N}')
-
-    
-    axes[4].plot(E_bins[:-1], IPR)
-    
-    
-energy_cuts = [0, 2, 3, 4]
-cut_colors = 'rgbky'
-energy_cuts_exact, energy_cuts_i = np.array([get_nearby_index(TU_phase_obs.E_bins, E) for E in energy_cuts]).T
-axes[4].vlines(energy_cuts_exact, colors = cut_colors, linestyle= 'dashed', ymin = 0, ymax = 0.1)
-    
-axes[2].legend()
-
- -
-
-
- -
-
- - -
- -
- - -
-
5.172413793103448 1.9586206896551726
-WARNING:matplotlib.legend:No handles with labels found to put in legend.
-
-
-
- -
- -
- - -
-
/home/tch14/conda-envs/intelpython3.5/lib/python3.6/site-packages/matplotlib/contour.py:1000: UserWarning: The following kwargs were not used by contour: 'label'
-  s)
-
-
-
- -
- -
Out[3]:
- - - - -
-
<matplotlib.legend.Legend at 0x7f4823e31ef0>
-
- -
- -
- -
- - - - -
- -
- -
- -
-
- -
-
-
-
In [28]:
-
-
-
from matplotlib.animation import FuncAnimation
-from IPython.display import HTML, display
-
-def lerp(start, end, lerp): return start * (1 - lerp) + lerp * end
-T_bot = 0.5
-T_top = 4
-U_left = 2
-U_right = 8
-
-##how wide to make the central energy interval
-e = 0.3
-
-##where to make cuts for the scaling lines
-energy_cuts = [0, 2, 3, 4]
-cut_colors = 'rgbky'
-energy_cuts_exact, energy_cuts_i = np.array([get_nearby_index(TU_phase_obs.E_bins, E) for E in energy_cuts]).T
-energy_cuts_i = energy_cuts_i.astype(int)
-
-def move_shape(i):
-    if i < 0.25:
-        j = i / 0.25
-        T = lerp(T_bot, T_top, j)
-        U = U_left
-        return T, U
-    if i < 0.5:
-        j = (i-0.25) / 0.25
-        T = T_top
-        U = lerp(U_left, U_right, j)
-        return T, U
-    if i < 0.75:
-        j = (i-0.5) / 0.25
-        T = lerp(T_top, T_bot, j)
-        U = U_right
-        return T, U
-    else:
-        j = (i-0.75) / 0.25
-        T = T_bot
-        U = lerp(U_right, U_left, j)
-        return T, U
-    
-f, axes = plt.subplots(3,2, figsize = (10,15), gridspec_kw = dict(wspace = 0.25, hspace = 0.25))
-axes = axes.flatten()
-axes[[0,1,2,3,4,5]] = axes[:]
-    
-###   plot the phase diagrams
-binder = 0
-norm = mpl.colors.Normalize(vmin=0, vmax=1)
-#TU_data.hints.Mf_moments == ('Ns', 'repeats', 'Us', 'Ts', 'moment', 'MCstep')
-M2 = TU_phase_obs.Mf_moments[-1, :, :, :, 2].mean(axis = 0).T
-M4 = TU_phase_obs.Mf_moments[-1, :, :, :, 4].mean(axis = 0).T
-Y = M2**2 / M4 if binder else M2
-
-pcol = axes[0].pcolormesh(TU_phase_obs.Us, TU_phase_obs.Ts, Y, cmap="RdBu_r", norm = norm, linewidth=0, rasterized = True)
-
-E_bins = TU_phase_obs.E_bins 
-axes[2].vlines((-e, e), ymin = 0, ymax = 900)
-axes[3].vlines((-e, e), ymin = 0, ymax = 800)
-
-axes[0].set(title = 'Order Parameter')
-axes[1].set(title = '# of states near E = 0')
-axes[2].set(title = 'DOS')
-axes[3].set(title = 'Zoom on DOS around E = 0')
-axes[4].set(title = 'IPR')
-
-axes[3].set(xlim = (-2*e, 2*e), ylim = (0, 500))
-axes[4].set(ylim = (0, 0.1))
-
-
-gap_indices = (-e < E_bins[:-1]) & (E_bins[:-1] < e)
-gap_state_count = TU_phase_obs.DOS[-1, :, :, :, :].mean(axis=0)[:, :, gap_indices].sum(axis = -1)
-
-pcol = axes[1].pcolormesh(TU_phase_obs.Us, TU_phase_obs.Ts, gap_state_count, cmap="RdBu_r", linewidth=0, rasterized = True)
-
-#axes[0,0].set(xlim = (-5,5), ylabel = 'DOS\nT')
-#axes[1,0].set(ylabel = 'IPR\nT', xlabel = '$\omega$')
-
-#axes[0,1].set(ylabel = 'DOS')
-#axes[1,1].set(ylabel = 'IPR', xlabel = '$\omega$')
-
-legends = [None, None]
-points = [None, None]
-IPR_vlines = [None for _ in energy_cuts_exact]
-E_lines = [None for _ in TU_phase_obs.Ns]
-E_lines2 = [None for _ in TU_phase_obs.Ns]
-IPR_lines = [None for _ in TU_phase_obs.Ns]
-E_cut_lines = [None for _ in energy_cuts]
-
-#plot all the stuff that needs to change and save references to them
-def init():
-    global legends
-    #text = ax.text(0,1.05, f' ', fontsize = 15, transform=ax.transAxes)    
-    
-    T, T_i = get_nearby_index(TU_phase_obs.Ts, 0)
-    U, U_i = get_nearby_index(TU_phase_obs.Us, 0)
-    
-    points[0], = axes[0].plot([U,], [T], color = 'k', marker = 'o')
-    points[1], = axes[1].plot([U,], [T], color = 'k', marker = 'o')
-    
-    for i, E_i, E, colour in zip(count(), energy_cuts_i, energy_cuts_exact, cut_colors):
-        print(U_i, T_i, E_i)
-        IPR_cut = TU_phase_obs.IPR[:, :, U_i, T_i, E_i].mean(axis = 1)
-        
-        E_cut_lines[i], = axes[5].plot(TU_phase_obs.Ns, IPR_cut, color = colour, label = f'E = {E}', marker = 'o', linestyle = 'None')
-        IPR_vlines[i], = axes[4].plot([E,E], [0,900], color = colour, linestyle= 'dashed')
-
-
-    #IPR_lines = []
-    #E_lines = []
-    #for i, N in enumerate(o.Ns):
-        #E_line, = axes[0, 1].plot(o.E_bins[1:], o.sE[i][T_select, :], label = f'N = {N}')
-        #IPR_line, = axes[1, 1].plot(o.E_bins[1: ], o.sI[i][T_select, :])
-        #E_lines.append(E_line)
-        #IPR_lines.append(IPR_line)
-        
-    for i, N in zip(count(), TU_phase_obs.Ns):
-        if N < 16: continue
-        IPR = TU_phase_obs.IPR[i, :, U_i, T_i, :].mean(axis = 0)
-        DOS = TU_phase_obs.DOS[i, :, U_i, T_i, :].mean(axis = 0)
-
-        #smooth by a value dependant on the size
-        IPR = smooth(IPR, scale = 32/N, axis = -1)
-        DOS = smooth(DOS, scale = 32/N, axis = -1)
-
-        E_lines[i], = axes[2].plot(E_bins[:-1], 0*DOS, label = f'N = {N}')
-        E_lines2[i], = axes[3].plot(E_bins[:-1], 0*DOS, label = f'N = {N}')
-        IPR_lines[i], = axes[4].plot(E_bins[:-1], 0*IPR)
-        
-
-    
-    if legends[0] == None: legends[0] = axes[2].legend(loc = 'upper left')
-    if legends[1] == None: legends[1] = axes[5].legend()
-    return np.concatenate([points, E_lines, IPR_lines, IPR_vlines, E_cut_lines, [legend,legend2]])
-    
-def update(frame):
-    T, U =  move_shape(frame)
-    
-    T, T_i = get_nearby_index(TU_phase_obs.Ts, T)
-    U, U_i = get_nearby_index(TU_phase_obs.Us, U)
-
-    for p in points: p.set_data((U, ), (T, ))
-
-    for i, N in zip(count(), TU_phase_obs.Ns):
-        if N < 16: continue
-        IPR = TU_phase_obs.IPR[i, :, U_i, T_i, :].mean(axis = 0)
-        DOS = TU_phase_obs.DOS[i, :, U_i, T_i, :].mean(axis = 0)
-        
-        #smooth by a value dependant on the size
-        sIPR = smooth(IPR, scale = 32/N, axis = -1)
-        sDOS = smooth(DOS, scale = 32/N, axis = -1)
-
-        E_lines[i].set_data(E_bins[:-1], sDOS)
-        E_lines2[i].set_data(E_bins[:-1], DOS) #not smoothed!
-        
-        IPR_lines[i].set_data(E_bins[:-1], sIPR)
-    
-    for i, E_i, E, colour in zip(count(), energy_cuts_i, energy_cuts_exact, cut_colors):
-        IPR_cut = TU_phase_obs.IPR[:, :, U_i, T_i, E_i].mean(axis = 1)
-        
-        E_cut_lines[i].set_data(TU_phase_obs.Ns, IPR_cut)
-        #IPR_vlines[i].set_data([E,E], [0,900])
-    
-    return np.concatenate([points, E_lines, E_lines2, IPR_lines, E_cut_lines])
-    
-frames = np.linspace(0,1,120)
-frames = np.linspace(0,1,12)
-
-interval = 40000 /len(frames)
-
-ani = FuncAnimation(f, update, 
-                    frames=frames,
-                    init_func=init, 
-                    blit=False,
-                    repeat_delay = 1000,
-                    interval = interval,
-        )
-        
-HTML(ani.to_html5_video())
-
- -
-
-
- -
-
- - -
- -
- - -
-
0 0 1000
-0 0 1200
-0 0 1300
-0 0 1400
-
-
-
- -
- -
Out[28]:
- - - -
- -
- -
- -
- -
- - -
-
0 0 1000
-0 0 1200
-0 0 1300
-0 0 1400
-
-
-
- -
- -
- - - - -
- -
- -
- -
-
- -
-
-
-
In [ ]:
-
-
-
%%time
-with open("TU_sweep.html", "w") as f:
-    print(ani.to_html5_video(), file=f)
-
- -
-
-
- -
-
-
-
In [24]:
-
-
-
ani.save('TU_sweep.mp4', dpi = 300)
-
- -
-
-
- -
-
- - -
- -
- - -
-
0 0 1000
-0 0 1200
-0 0 1300
-0 0 1400
-
-
-
- -
-
- -
-
-
-
In [ ]:
-
-
-
 
-
- -
-
-
- -
-
-
- - - - - - diff --git a/android-chrome-192x192.png b/android-chrome-192x192.png deleted file mode 100644 index 0dce6de..0000000 Binary files a/android-chrome-192x192.png and /dev/null differ diff --git a/android-chrome-512x512.png b/android-chrome-512x512.png deleted file mode 100644 index f965547..0000000 Binary files a/android-chrome-512x512.png and /dev/null differ diff --git a/apple-touch-icon.png b/apple-touch-icon.png deleted file mode 100644 index 38d17e8..0000000 Binary files a/apple-touch-icon.png and /dev/null differ diff --git a/favicon-16x16.png b/favicon-16x16.png deleted file mode 100644 index a50aa33..0000000 Binary files a/favicon-16x16.png and /dev/null differ diff --git a/favicon-32x32.png b/favicon-32x32.png deleted file mode 100644 index 75047d2..0000000 Binary files a/favicon-32x32.png and /dev/null differ diff --git a/robots.txt b/robots.txt deleted file mode 100644 index d23e46a..0000000 --- a/robots.txt +++ /dev/null @@ -1,2 +0,0 @@ -User-agent: * -Disallow: /CIVIC/ diff --git a/site.webmanifest b/site.webmanifest deleted file mode 100644 index 45dc8a2..0000000 --- a/site.webmanifest +++ /dev/null @@ -1 +0,0 @@ -{"name":"","short_name":"","icons":[{"src":"/android-chrome-192x192.png","sizes":"192x192","type":"image/png"},{"src":"/android-chrome-512x512.png","sizes":"512x512","type":"image/png"}],"theme_color":"#ffffff","background_color":"#ffffff","display":"standalone"} \ No newline at end of file