mirror of
https://github.com/TomHodson/tomhodson.github.com.git
synced 2025-06-26 10:01:18 +02:00
updateo
This commit is contained in:
parent
1eea7745d4
commit
37d9ce1699
@ -35,13 +35,25 @@ main > ul > ul > li {
|
||||
margin-top: 0.5em;
|
||||
}
|
||||
|
||||
// Mess with the formatting of the citations
|
||||
// Pull the citations a little closer in to the previous word
|
||||
span.citation {
|
||||
margin-left: -1em;
|
||||
|
||||
a {
|
||||
text-decoration: none;
|
||||
color: darkblue;
|
||||
}
|
||||
}
|
||||
|
||||
// Mess with the formatting of the bibliography
|
||||
div.csl-entry {
|
||||
margin-bottom: 0.5em;
|
||||
}
|
||||
// div.csl-entry a {
|
||||
div.csl-entry a {
|
||||
// text-decoration: none;
|
||||
// }
|
||||
text-decoration: none;
|
||||
color: darkblue;
|
||||
}
|
||||
|
||||
div.csl-entry div {
|
||||
display: inline;
|
||||
|
@ -204,43 +204,35 @@ image:
|
||||
<main>
|
||||
<nav id="TOC" role="doc-toc">
|
||||
<ul>
|
||||
<li><a href="#interacting-quantum-many-body-systems"
|
||||
id="toc-interacting-quantum-many-body-systems">Interacting Quantum Many
|
||||
Body Systems</a></li>
|
||||
<li><a href="#mott-insulators-and-the-hubbard-model"
|
||||
id="toc-mott-insulators-and-the-hubbard-model">Mott Insulators and The
|
||||
Hubbard Model</a></li>
|
||||
<li><a href="#outline" id="toc-outline">Outline</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
<h1 id="interacting-quantum-many-body-systems">Interacting Quantum Many
|
||||
Body Systems</h1>
|
||||
<p><strong>Interacting Quantum Many Body Systems</strong></p>
|
||||
<p>When you take many objects and let them interact together, it is
|
||||
often simpler to describe the behaviour of the group differently than
|
||||
one would describe the individual objects. Consider a flock (technically
|
||||
called a <em>murmuration</em>) of starlings like fig. <a
|
||||
href="#fig:Studland_Starlings">1</a>. Watching the flock you’ll see that
|
||||
it has a distinct outline, that waves of density will sometimes
|
||||
propagate through the closely packed birds and that the flock seems to
|
||||
respond to predators as a distinct object. The natural description of
|
||||
this phenomena is couched in terms of the flock rather than the
|
||||
individual birds.</p>
|
||||
<p>The behaviours of the flock are an emergent phenomena. The starlings
|
||||
are only interacting with their immediate six or seven neighbours<span
|
||||
class="citation"
|
||||
data-cites="king2012murmurations balleriniInteractionRulingAnimal2008"><sup><a
|
||||
often simpler to describe the behaviour of the group differently from
|
||||
the way one would describe the individual objects. Consider a flock of
|
||||
starlings like that of fig. <a href="#fig:Studland_Starlings">1</a>.
|
||||
Watching the flock you’ll see that it has a distinct outline, that waves
|
||||
of density will sometimes propagate through the closely packed birds and
|
||||
that the flock seems to respond to predators as a distinct object. The
|
||||
natural description of this phenomena is couched in terms of the flock
|
||||
rather than of the individual birds.</p>
|
||||
<p>The behaviours of the flock are an <em>emergent phenomena</em>. The
|
||||
starlings are only interacting with their immediate six or seven
|
||||
neighbours <span class="citation"
|
||||
data-cites="king2012murmurations balleriniInteractionRulingAnimal2008"> [<a
|
||||
href="#ref-king2012murmurations" role="doc-biblioref">1</a>,<a
|
||||
href="#ref-balleriniInteractionRulingAnimal2008"
|
||||
role="doc-biblioref">2</a></sup></span>. This is what a physicist would
|
||||
call a <em>local interaction</em>. There is much philosophical debate
|
||||
about how exactly to define emergence<span class="citation"
|
||||
data-cites="andersonMoreDifferent1972 kivelsonDefiningEmergencePhysics2016"><sup><a
|
||||
role="doc-biblioref">2</a>]</span>, what a physicist would call a
|
||||
<em>local interaction</em>. There is much philosophical debate about how
|
||||
exactly to define emergence <span class="citation"
|
||||
data-cites="andersonMoreDifferent1972 kivelsonDefiningEmergencePhysics2016"> [<a
|
||||
href="#ref-andersonMoreDifferent1972" role="doc-biblioref">3</a>,<a
|
||||
href="#ref-kivelsonDefiningEmergencePhysics2016"
|
||||
role="doc-biblioref">4</a></sup></span> but for our purposes it enough
|
||||
to say that emergence is the fact that the aggregate behaviour of many
|
||||
interacting objects may be very different from the individual behaviour
|
||||
of those objects.</p>
|
||||
role="doc-biblioref">4</a>]</span> but for our purposes it enough to say
|
||||
that emergence is the fact that the aggregate behaviour of many
|
||||
interacting objects may necessitate a description very different from
|
||||
that of the individual objects.</p>
|
||||
<div id="fig:Studland_Starlings" class="fignos">
|
||||
<figure>
|
||||
<img src="/assets/thesis/intro_chapter/Studland_Starlings.jpeg"
|
||||
@ -253,17 +245,17 @@ href="creativecommons.org/licenses/by-sa/3.0/deed.en">CC BY-SA
|
||||
3.0</a></figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
<p>To give another example, our understanding of thermodynamics began
|
||||
with bulk properties like heat, energy, pressure and temperature<span
|
||||
class="citation"
|
||||
data-cites="saslowHistoryThermodynamicsMissing2020"><sup><a
|
||||
<p>To give an example closer to the topic at hand, our understanding of
|
||||
thermodynamics began with bulk properties like heat, energy, pressure
|
||||
and temperature <span class="citation"
|
||||
data-cites="saslowHistoryThermodynamicsMissing2020"> [<a
|
||||
href="#ref-saslowHistoryThermodynamicsMissing2020"
|
||||
role="doc-biblioref">5</a></sup></span>. It was only later that we
|
||||
gained an understanding of how these properties emerge from microscopic
|
||||
interactions between very large numbers of particles<span
|
||||
class="citation" data-cites="flammHistoryOutlookStatistical1998"><sup><a
|
||||
role="doc-biblioref">5</a>]</span>. It was only later that we gained an
|
||||
understanding of how these properties emerge from microscopic
|
||||
interactions between very large numbers of particles <span
|
||||
class="citation" data-cites="flammHistoryOutlookStatistical1998"> [<a
|
||||
href="#ref-flammHistoryOutlookStatistical1998"
|
||||
role="doc-biblioref">6</a></sup></span>.</p>
|
||||
role="doc-biblioref">6</a>]</span>.</p>
|
||||
<p>Condensed Matter is, at its heart, the study of what behaviours
|
||||
emerge from large numbers of interacting quantum objects at low energy.
|
||||
When these three properties are present together: a large number of
|
||||
@ -273,60 +265,65 @@ these three ingredients nature builds all manner of weird and wonderful
|
||||
materials.</p>
|
||||
<p>Historically, we made initial headway in the study of many-body
|
||||
systems, ignoring interactions and quantum properties. The ideal gas law
|
||||
and the Drude classical electron gas<span class="citation"
|
||||
data-cites="ashcroftSolidStatePhysics1976"><sup><a
|
||||
and the Drude classical electron gas <span class="citation"
|
||||
data-cites="ashcroftSolidStatePhysics1976"> [<a
|
||||
href="#ref-ashcroftSolidStatePhysics1976"
|
||||
role="doc-biblioref">7</a></sup></span> are good examples. Including
|
||||
interactions into many-body physics leads to the Ising model<span
|
||||
class="citation" data-cites="isingBeitragZurTheorie1925"><sup><a
|
||||
role="doc-biblioref">7</a>]</span> are good examples. Including
|
||||
interactions into many-body physics leads to the Ising model <span
|
||||
class="citation" data-cites="isingBeitragZurTheorie1925"> [<a
|
||||
href="#ref-isingBeitragZurTheorie1925"
|
||||
role="doc-biblioref">8</a></sup></span>, Landau theory<span
|
||||
class="citation" data-cites="landau2013fluid"><sup><a
|
||||
href="#ref-landau2013fluid" role="doc-biblioref">9</a></sup></span> and
|
||||
the classical theory of phase transitions<span class="citation"
|
||||
data-cites="jaegerEhrenfestClassificationPhase1998"><sup><a
|
||||
role="doc-biblioref">8</a>]</span>, Landau theory <span class="citation"
|
||||
data-cites="landau2013fluid"> [<a href="#ref-landau2013fluid"
|
||||
role="doc-biblioref">9</a>]</span> and the classical theory of phase
|
||||
transitions <span class="citation"
|
||||
data-cites="jaegerEhrenfestClassificationPhase1998"> [<a
|
||||
href="#ref-jaegerEhrenfestClassificationPhase1998"
|
||||
role="doc-biblioref">10</a></sup></span>. In contrast, condensed matter
|
||||
theory got it state in quantum many-body theory. Bloch’s theorem<span
|
||||
role="doc-biblioref">10</a>]</span>. In contrast, condensed matter
|
||||
theory got it state in quantum many-body theory. Bloch’s theorem <span
|
||||
class="citation"
|
||||
data-cites="blochÜberQuantenmechanikElektronen1929"><sup><a
|
||||
data-cites="blochÜberQuantenmechanikElektronen1929"> [<a
|
||||
href="#ref-blochÜberQuantenmechanikElektronen1929"
|
||||
role="doc-biblioref">11</a></sup></span> predicted the properties of
|
||||
role="doc-biblioref">11</a>]</span> predicted the properties of
|
||||
non-interacting electrons in crystal lattices, leading to band theory.
|
||||
In the same vein, advances were made in understanding the quantum
|
||||
origins of magnetism, including ferromagnetism and
|
||||
antiferromagnetism<span class="citation"
|
||||
data-cites="MagnetismCondensedMatter"><sup><a
|
||||
origins of magnetism, including ferromagnetism and antiferromagnetism
|
||||
<span class="citation" data-cites="MagnetismCondensedMatter"> [<a
|
||||
href="#ref-MagnetismCondensedMatter"
|
||||
role="doc-biblioref">12</a></sup></span>.</p>
|
||||
role="doc-biblioref">12</a>]</span>.</p>
|
||||
<p>However, at some point we had to start on the interacting quantum
|
||||
many body systems. Some phenomena cannot be understood without a taking
|
||||
into account all three effects. The canonical examples are
|
||||
superconductivity<span class="citation"
|
||||
data-cites="MicroscopicTheorySuperconductivity"><sup><a
|
||||
many body systems. The properties of some materials cannot be understood
|
||||
without a taking into account all three effects and these are
|
||||
collectively called strongly correlated materials. The canonical
|
||||
examples are superconductivity <span class="citation"
|
||||
data-cites="MicroscopicTheorySuperconductivity"> [<a
|
||||
href="#ref-MicroscopicTheorySuperconductivity"
|
||||
role="doc-biblioref">13</a></sup></span>, the fractional quantum hall
|
||||
effect<span class="citation"
|
||||
data-cites="feldmanFractionalChargeFractional2021"><sup><a
|
||||
role="doc-biblioref">13</a>]</span>, the fractional quantum hall effect
|
||||
<span class="citation"
|
||||
data-cites="feldmanFractionalChargeFractional2021"> [<a
|
||||
href="#ref-feldmanFractionalChargeFractional2021"
|
||||
role="doc-biblioref">14</a></sup></span> and the Mott insulators<span
|
||||
role="doc-biblioref">14</a>]</span> and the Mott insulators <span
|
||||
class="citation"
|
||||
data-cites="mottBasisElectronTheory1949 fisherMottInsulatorsSpin1999"><sup><a
|
||||
data-cites="mottBasisElectronTheory1949 fisherMottInsulatorsSpin1999"> [<a
|
||||
href="#ref-mottBasisElectronTheory1949" role="doc-biblioref">15</a>,<a
|
||||
href="#ref-fisherMottInsulatorsSpin1999"
|
||||
role="doc-biblioref">16</a></sup></span>. We will discuss the latter in
|
||||
more detail.</p>
|
||||
<p>Electrical conductivity, the bulk movement of electrons, requires
|
||||
both that there are electronic states very close in energy to the ground
|
||||
state and that those states are delocalised so that they can contribute
|
||||
to macroscopic transport. Band insulators are systems whose Fermi level
|
||||
falls within a gap in the density of states and thus fail the first
|
||||
criteria. Anderson Insulators have only localised electronic states near
|
||||
the fermi level and therefore fail the second criteria. We will discuss
|
||||
Anderson insulators and disorder in a later section.</p>
|
||||
role="doc-biblioref">16</a>]</span>. We’ll start by looking at the
|
||||
latter but shall see that there are many links between three topics.</p>
|
||||
<p><strong>Mott Insulators</strong></p>
|
||||
<p>Mott Insulators are remarkable because their electrical insulator
|
||||
properties come from electron-electron interactions. Electrical
|
||||
conductivity, the bulk movement of electrons, requires both that there
|
||||
are electronic states very close in energy to the ground state and that
|
||||
those states are delocalised so that they can contribute to macroscopic
|
||||
transport. Band insulators are systems whose Fermi level falls within a
|
||||
gap in the density of states and thus fail the first criteria. Band
|
||||
insulators derive their character from the characteristics of the
|
||||
underlying lattice. Anderson Insulators have only localised electronic
|
||||
states near the fermi level and therefore fail the second criteria. We
|
||||
will discuss Anderson insulators and disorder in a later section.</p>
|
||||
<p>Both band and Anderson insulators occur without electron-electron
|
||||
interactions. Mott insulators, by contrast, are by these interactions
|
||||
and hence elude band theory and single-particle methods.</p>
|
||||
interactions. Mott insulators, by contrast, require a many body picture
|
||||
to understand and thus elude band theory and single-particle
|
||||
methods.</p>
|
||||
<div id="fig:venn_diagram" class="fignos">
|
||||
<figure>
|
||||
<img src="/assets/thesis/intro_chapter/venn_diagram.svg"
|
||||
@ -342,146 +339,202 @@ or indirectly. When taken together, these three properties can give rise
|
||||
to what are called strongly correlated materials.</figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
<h1 id="mott-insulators-and-the-hubbard-model">Mott Insulators and The
|
||||
Hubbard Model</h1>
|
||||
<p>The theory of Mott insulators developed out of the observation that
|
||||
many transition metal oxides are erroneously predicted by band theory to
|
||||
be conductive<span class="citation"
|
||||
data-cites="boerSemiconductorsPartiallyCompletely1937"><sup><a
|
||||
be conductive <span class="citation"
|
||||
data-cites="boerSemiconductorsPartiallyCompletely1937"> [<a
|
||||
href="#ref-boerSemiconductorsPartiallyCompletely1937"
|
||||
role="doc-biblioref">17</a></sup></span> leading to the suggestion that
|
||||
electron-electron interactions were the cause of this effect<span
|
||||
class="citation" data-cites="mottDiscussionPaperBoer1937"><sup><a
|
||||
role="doc-biblioref">17</a>]</span> leading to the suggestion that
|
||||
electron-electron interactions were the cause of this effect <span
|
||||
class="citation" data-cites="mottDiscussionPaperBoer1937"> [<a
|
||||
href="#ref-mottDiscussionPaperBoer1937"
|
||||
role="doc-biblioref">18</a></sup></span>. Interest grew with the
|
||||
discovery of high temperature superconductivity in the cuprates in
|
||||
1986<span class="citation"
|
||||
data-cites="bednorzPossibleHighTcSuperconductivity1986"><sup><a
|
||||
role="doc-biblioref">18</a>]</span>. Interest grew with the discovery of
|
||||
high temperature superconductivity in the cuprates in 1986 <span
|
||||
class="citation"
|
||||
data-cites="bednorzPossibleHighTcSuperconductivity1986"> [<a
|
||||
href="#ref-bednorzPossibleHighTcSuperconductivity1986"
|
||||
role="doc-biblioref">19</a></sup></span> which is believed to arise as
|
||||
the result of doping a Mott insulator state<span class="citation"
|
||||
data-cites="leeDopingMottInsulator2006"><sup><a
|
||||
role="doc-biblioref">19</a>]</span> which is believed to arise as the
|
||||
result of a doped Mott insulator state <span class="citation"
|
||||
data-cites="leeDopingMottInsulator2006"> [<a
|
||||
href="#ref-leeDopingMottInsulator2006"
|
||||
role="doc-biblioref">20</a></sup></span>.</p>
|
||||
<p>The canonical toy model of the Mott insulator is the Hubbard
|
||||
model<span class="citation"
|
||||
data-cites="gutzwillerEffectCorrelationFerromagnetism1963 kanamoriElectronCorrelationFerromagnetism1963 hubbardj.ElectronCorrelationsNarrow1963"><sup><a
|
||||
role="doc-biblioref">20</a>]</span>.</p>
|
||||
<p>The canonical toy model of the Mott insulator is the Hubbard model
|
||||
<span class="citation"
|
||||
data-cites="gutzwillerEffectCorrelationFerromagnetism1963 kanamoriElectronCorrelationFerromagnetism1963 hubbardj.ElectronCorrelationsNarrow1963"> [<a
|
||||
href="#ref-gutzwillerEffectCorrelationFerromagnetism1963"
|
||||
role="doc-biblioref">21</a>–<a
|
||||
href="#ref-hubbardj.ElectronCorrelationsNarrow1963"
|
||||
role="doc-biblioref">23</a></sup></span> of <span
|
||||
role="doc-biblioref">23</a>]</span> of <span
|
||||
class="math inline">\(1/2\)</span> fermions hopping on the lattice with
|
||||
hopping parameter <span class="math inline">\(t\)</span> and
|
||||
electron-electron repulsion <span class="math inline">\(U\)</span></p>
|
||||
<p><span class="math display">\[ H = -t \sum_{\langle i,j \rangle
|
||||
\alpha} c^\dagger_{i\alpha} c_{j\alpha} + U \sum_i n_{i\uparrow}
|
||||
<p><span class="math display">\[ H_{\mathrm{H}} = -t \sum_{\langle i,j
|
||||
\rangle \alpha} c^\dagger_{i\alpha} c_{j\alpha} + U \sum_i n_{i\uparrow}
|
||||
n_{i\downarrow} - \mu \sum_{i,\alpha} n_{i\alpha}\]</span></p>
|
||||
<p>where <span class="math inline">\(c^\dagger_{i\alpha}\)</span>
|
||||
creates a spin <span class="math inline">\(\alpha\)</span> electron at
|
||||
site <span class="math inline">\(i\)</span> and the number operator
|
||||
<span class="math inline">\(n_{i\alpha}\)</span> measures the number of
|
||||
electrons with spin <span class="math inline">\(\alpha\)</span> at site
|
||||
<span class="math inline">\(i\)</span>. In the non-interacting limit
|
||||
<span class="math inline">\(U << t\)</span>, the model reduces to
|
||||
free fermions and the many-body ground state is a separable product of
|
||||
Bloch waves filled up to the Fermi level. In the interacting limit <span
|
||||
class="math inline">\(U >> t\)</span> on the other hand, the
|
||||
system breaks up into a product of local moments, each in one the four
|
||||
states <span class="math inline">\(|0\rangle, |\uparrow\rangle,
|
||||
|\downarrow\rangle, |\uparrow\downarrow\rangle\)</span> depending on the
|
||||
filing.</p>
|
||||
<span class="math inline">\(i\)</span>. The sum runs over lattice
|
||||
neighbours <span class="math inline">\(\langle i,j \rangle\)</span>
|
||||
including both <span class="math inline">\(\langle i,j \rangle\)</span>
|
||||
and <span class="math inline">\(\langle j,i \rangle\)</span> so that the
|
||||
model is Hermition.</p>
|
||||
<p>In the non-interacting limit <span class="math inline">\(U <<
|
||||
t\)</span>, the model reduces to free fermions and the many-body ground
|
||||
state is a separable product of Bloch waves filled up to the Fermi
|
||||
level. In the interacting limit <span class="math inline">\(U >>
|
||||
t\)</span> on the other hand, the system breaks up into a product of
|
||||
local moments, each in one the four states <span
|
||||
class="math inline">\(|0\rangle, |\uparrow\rangle, |\downarrow\rangle,
|
||||
|\uparrow\downarrow\rangle\)</span> depending on the filing.</p>
|
||||
<p>The Mott insulating phase occurs at half filling <span
|
||||
class="math inline">\(\mu = \tfrac{U}{2}\)</span> where there is one
|
||||
electron per lattice site<span class="citation"
|
||||
data-cites="hubbardElectronCorrelationsNarrow1964"><sup><a
|
||||
electron per lattice site <span class="citation"
|
||||
data-cites="hubbardElectronCorrelationsNarrow1964"> [<a
|
||||
href="#ref-hubbardElectronCorrelationsNarrow1964"
|
||||
role="doc-biblioref">24</a></sup></span>. Here the model can be
|
||||
rewritten in a symmetric form <span class="math display">\[ H = -t
|
||||
role="doc-biblioref">24</a>]</span>. Here the model can be rewritten in
|
||||
a symmetric form <span class="math display">\[ H_{\mathrm{H}} = -t
|
||||
\sum_{\langle i,j \rangle \alpha} c^\dagger_{i\alpha} c_{j\alpha} + U
|
||||
\sum_i (n_{i\uparrow} - \tfrac{1}{2})(n_{i\downarrow} -
|
||||
\tfrac{1}{2})\]</span></p>
|
||||
<p>The basic reason that the half filled state is insulating seems is
|
||||
trivial. Any excitation must include states of double occupancy that
|
||||
cost energy <span class="math inline">\(U\)</span>, hence the system has
|
||||
a finite bandgap and is an interaction driven Mott insulator. Originally
|
||||
it was proposed that antiferromagnetic order was a necessary condition
|
||||
for the Mott insulator transition<span class="citation"
|
||||
data-cites="mottMetalInsulatorTransitions1990"><sup><a
|
||||
a finite bandgap and is an interaction driven Mott insulator. Depending
|
||||
on the lattice, the local moments may then order antiferromagnetically.
|
||||
Originally it was proposed that this antiferromagnetic order was the
|
||||
cause of the gap opening <span class="citation"
|
||||
data-cites="mottMetalInsulatorTransitions1990"> [<a
|
||||
href="#ref-mottMetalInsulatorTransitions1990"
|
||||
role="doc-biblioref">25</a></sup></span> but later examples were found
|
||||
without magnetic order <strong>cite</strong>.</p>
|
||||
role="doc-biblioref">25</a>]</span>. However, Mott insulators have been
|
||||
found <span class="citation"
|
||||
data-cites="law1TTaS2QuantumSpin2017 ribakGaplessExcitationsGround2017"> [<a
|
||||
href="#ref-law1TTaS2QuantumSpin2017" role="doc-biblioref">26</a>,<a
|
||||
href="#ref-ribakGaplessExcitationsGround2017"
|
||||
role="doc-biblioref">27</a>]</span> without magnetic order. Instead the
|
||||
local moments may form a highly entangled state known as a quantum spin
|
||||
liquid, which will be discussed shortly.</p>
|
||||
<p>Various theoretical treatments of the Hubbard model have been made,
|
||||
including those based on Fermi liquid theory, mean field treatments, the
|
||||
local density approximation (LDA)<span class="citation"
|
||||
data-cites="slaterMagneticEffectsHartreeFock1951"><sup><a
|
||||
local density approximation (LDA) <span class="citation"
|
||||
data-cites="slaterMagneticEffectsHartreeFock1951"> [<a
|
||||
href="#ref-slaterMagneticEffectsHartreeFock1951"
|
||||
role="doc-biblioref">26</a></sup></span> and dynamical mean-field
|
||||
theory<span class="citation"
|
||||
data-cites="greinerQuantumPhaseTransition2002"><sup><a
|
||||
role="doc-biblioref">28</a>]</span> and dynamical mean-field theory
|
||||
<span class="citation"
|
||||
data-cites="greinerQuantumPhaseTransition2002"> [<a
|
||||
href="#ref-greinerQuantumPhaseTransition2002"
|
||||
role="doc-biblioref">27</a></sup></span>. None of these approaches is
|
||||
role="doc-biblioref">29</a>]</span>. None of these approaches are
|
||||
perfect. Strong correlations are poorly described by the Fermi liquid
|
||||
theory and the LDA approaches while mean field approximations do poorly
|
||||
in low dimensional systems. This theoretical difficulty has made the
|
||||
Hubbard model a target for cold atom simulations<span class="citation"
|
||||
data-cites="mazurenkoColdatomFermiHubbard2017"><sup><a
|
||||
Hubbard model a target for cold atom simulations <span class="citation"
|
||||
data-cites="mazurenkoColdatomFermiHubbard2017"> [<a
|
||||
href="#ref-mazurenkoColdatomFermiHubbard2017"
|
||||
role="doc-biblioref">28</a></sup></span>.</p>
|
||||
role="doc-biblioref">30</a>]</span>.</p>
|
||||
<p>From here the discussion will branch two directions. First, we will
|
||||
discuss a limit of the Hubbard model called the Falikov Kimball Model.
|
||||
Second, we will go down the rabbit hole of strongly correlated systems
|
||||
without magnetic order. This will lead us to Quantum spin liquids and
|
||||
the Kitaev honeycomb model.</p>
|
||||
<p><strong>An exactly solvable model of the Mott Insulator</strong> -
|
||||
demonstrate mott insulator in hubbard model, briefly tease the falikov
|
||||
kimball model in order to lay the ground work to talk about the falikov
|
||||
kimball model later</p>
|
||||
<ul>
|
||||
<li>FK model has extensively many conserved charges which makes it
|
||||
tractable</li>
|
||||
<li>Disorder free localisation</li>
|
||||
</ul>
|
||||
<p><strong>An exactly solvable Quantum Spin Liquid</strong> -
|
||||
relationship between mott insulators and spin liquids: the electrons in
|
||||
a mott insulator form local moments that normally form an AFM ground
|
||||
state but if they don’t, due to frustration or other reason, the local
|
||||
moments may form a QSL at T=0 instead.<span class="citation"
|
||||
data-cites="law1TTaS2QuantumSpin2017 ribakGaplessExcitationsGround2017"><sup><a
|
||||
href="#ref-law1TTaS2QuantumSpin2017" role="doc-biblioref">29</a>,<a
|
||||
discuss a limit of the Hubbard model called the Falikov-Kimball Model.
|
||||
Second, we will look at quantum spin liquids and the Kitaev honeycomb
|
||||
model.</p>
|
||||
<p><strong>The Falikov-Kimball Model</strong></p>
|
||||
<p>Though not the original reason for its introduction, the
|
||||
Falikov-Kimball (FK) model is the limit of the Hubbard model as the mass
|
||||
ratio of the spin up and spin down electron is taken to infinity. This
|
||||
gives a model with two fermion species, one itinerant and one entirely
|
||||
immobile. The number operators for the immobile fermions are therefore
|
||||
conserved quantities and can be be treated like classical degrees of
|
||||
freedom. For our purposes it will be useful to replace the immobile
|
||||
fermions with a classical Ising background field <span
|
||||
class="math inline">\(S_i = \pm1\)</span>.</p>
|
||||
<p><span class="math display">\[\begin{aligned}
|
||||
H_{\mathrm{FK}} = & -\;t \sum_{\langle i,j \rangle}
|
||||
c^\dagger_{i}c_{j} + \;U \sum_{i} S_i\;(c^\dagger_{i}c_{i} -
|
||||
\tfrac{1}{2}). \\
|
||||
\end{aligned}\]</span></p>
|
||||
<p>Given that the physics of states near the metal-insulator (MI)
|
||||
transition is still poorly understood <span class="citation"
|
||||
data-cites="belitzAndersonMottTransition1994 baskoMetalInsulatorTransition2006"> [<a
|
||||
href="#ref-belitzAndersonMottTransition1994"
|
||||
role="doc-biblioref">31</a>,<a
|
||||
href="#ref-baskoMetalInsulatorTransition2006"
|
||||
role="doc-biblioref">32</a>]</span> the FK model provides a rich test
|
||||
bed to explore interaction driven MI transition physics. Despite its
|
||||
simplicity, the model has a rich phase diagram in <span
|
||||
class="math inline">\(D \geq 2\)</span> dimensions. It shows an Mott
|
||||
insulator transition even at high temperature, similar to the
|
||||
corresponding Hubbard Model <span class="citation"
|
||||
data-cites="brandtThermodynamicsCorrelationFunctions1989"> [<a
|
||||
href="#ref-brandtThermodynamicsCorrelationFunctions1989"
|
||||
role="doc-biblioref">33</a>]</span>. In 1D, the ground state
|
||||
phenomenology as a function of filling can be rich <span
|
||||
class="citation" data-cites="gruberGroundStatesSpinless1990"> [<a
|
||||
href="#ref-gruberGroundStatesSpinless1990"
|
||||
role="doc-biblioref">34</a>]</span> but the system is disordered for all
|
||||
<span class="math inline">\(T > 0\)</span> <span class="citation"
|
||||
data-cites="kennedyItinerantElectronModel1986"> [<a
|
||||
href="#ref-kennedyItinerantElectronModel1986"
|
||||
role="doc-biblioref">35</a>]</span>. The model has also been a test-bed
|
||||
for many-body methods, interest took off when an exact dynamical
|
||||
mean-field theory solution in the infinite dimensional case was
|
||||
found <span class="citation"
|
||||
data-cites="antipovCriticalExponentsStrongly2014 ribicNonlocalCorrelationsSpectral2016 freericksExactDynamicalMeanfield2003 herrmannNonequilibriumDynamicalCluster2016"> [<a
|
||||
href="#ref-antipovCriticalExponentsStrongly2014"
|
||||
role="doc-biblioref">36</a>–<a
|
||||
href="#ref-herrmannNonequilibriumDynamicalCluster2016"
|
||||
role="doc-biblioref">39</a>]</span>.</p>
|
||||
<p>In Chapter 3 I will introduce a generalized FK model in one
|
||||
dimension. With the addition of long-range interactions in the
|
||||
background field, the model shows a similarly rich phase diagram. I use
|
||||
an exact Markov chain Monte Carlo method to map the phase diagram and
|
||||
compute the energy-resolved localization properties of the fermions. I
|
||||
then compare the behaviour of this transitionally invariant model to an
|
||||
Anderson model of uncorrelated binary disorder about a background charge
|
||||
density wave field which confirms that the fermionic sector only fully
|
||||
localizes for very large system sizes.</p>
|
||||
<p><strong>An exactly solvable Quantum Spin Liquid</strong></p>
|
||||
<p>To turn to the other key topic of this thesis, we have discussed the
|
||||
question of the magnetic ordering of local moments in the Mott
|
||||
insulating state. The local moments may form an AFM ground state.
|
||||
Alternatively they may fail to order even at zero temperature <span
|
||||
class="citation"
|
||||
data-cites="law1TTaS2QuantumSpin2017 ribakGaplessExcitationsGround2017"> [<a
|
||||
href="#ref-law1TTaS2QuantumSpin2017" role="doc-biblioref">26</a>,<a
|
||||
href="#ref-ribakGaplessExcitationsGround2017"
|
||||
role="doc-biblioref">30</a></sup></span></p>
|
||||
role="doc-biblioref">27</a>]</span>, giving rise to what is known as a
|
||||
quantum spin liquid (QSL) state.</p>
|
||||
<p>QSLs are a long range entangled ground state of a highly
|
||||
frustated</p>
|
||||
<ul>
|
||||
<li><p>QSLs introduced by anderson 1973<span class="citation"
|
||||
data-cites="andersonResonatingValenceBonds1973"><sup><a
|
||||
<li><p>QSLs introduced by anderson 1973 <span class="citation"
|
||||
data-cites="andersonResonatingValenceBonds1973"> [<a
|
||||
href="#ref-andersonResonatingValenceBonds1973"
|
||||
role="doc-biblioref">31</a></sup></span></p></li>
|
||||
role="doc-biblioref">40</a>]</span></p></li>
|
||||
<li><p>Geometric frustration that prevents magnetic ordering is an
|
||||
important part of getting a QSL, suggests exploring the lattice and
|
||||
avenue of interest.</p></li>
|
||||
<li><p>Spin orbit effect is a relativistic effect that couples electron
|
||||
spin to orbital angular moment. Very roughly, an electron sees the
|
||||
electric field of the nucleus as a magnetic field due to its movement
|
||||
and the electron spin couples to this.</p></li>
|
||||
<li><p>can be string in heavy elements</p></li>
|
||||
<li><p>The Kitaev Model</p></li>
|
||||
and the electron spin couples to this. Can be strong in heavy
|
||||
elements</p></li>
|
||||
<li><p>The Kitaev Model as a canonical QSL</p></li>
|
||||
<li><p>Kitaev model has extensively many conserved charges too</p></li>
|
||||
<li><p>Frustration</p></li>
|
||||
<li><p>anyons</p></li>
|
||||
<li><p>fractionalisation</p></li>
|
||||
<li><p>Topology -> GS degeneracy depends on the genus of the
|
||||
surface</p></li>
|
||||
<li><p>the chern number</p></li>
|
||||
<li><p>quasiparticles</p></li>
|
||||
<li><p>topological order</p></li>
|
||||
<li><p>protected edge states</p></li>
|
||||
<li><p>Abelian and non-Abelian anyons</p></li>
|
||||
</ul>
|
||||
<div id="fig:correlation_spin_orbit_PT" class="fignos">
|
||||
<figure>
|
||||
<img src="/assets/thesis/intro_chapter/correlation_spin_orbit_PT.png"
|
||||
data-short-caption="Phase Diagram" style="width:100.0%"
|
||||
alt="Figure 3: From32." />
|
||||
<figcaption aria-hidden="true"><span>Figure 3:</span> From<span
|
||||
class="citation" data-cites="TrebstPhysRep2022"><sup><a
|
||||
alt="Figure 3: From [41]." />
|
||||
<figcaption aria-hidden="true"><span>Figure 3:</span> From <span
|
||||
class="citation" data-cites="TrebstPhysRep2022"> [<a
|
||||
href="#ref-TrebstPhysRep2022"
|
||||
role="doc-biblioref">32</a></sup></span>.</figcaption>
|
||||
role="doc-biblioref">41</a>]</span>.</figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
<p>kinds of mott insulators: Mott-Heisenberg (AFM order below Néel
|
||||
@ -507,263 +560,327 @@ designed to fill this gap and present the results.</p>
|
||||
<p>Finally in chapter 4 I will summarise the results and discuss what
|
||||
implications they have for our understanding interacting many-body
|
||||
quantum systems.</p>
|
||||
<div id="refs" class="references csl-bib-body" data-line-spacing="2"
|
||||
role="doc-bibliography">
|
||||
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
|
||||
<div id="ref-king2012murmurations" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">1. </div><div
|
||||
class="csl-right-inline">King, A. J. & Sumpter, D. J. Murmurations.
|
||||
<em>Current Biology</em> <strong>22</strong>, R112–R114 (2012).</div>
|
||||
<div class="csl-left-margin">[1] </div><div class="csl-right-inline">A.
|
||||
J. King and D. J. Sumpter, <em>Murmurations</em>, Current Biology
|
||||
<strong>22</strong>, R112 (2012).</div>
|
||||
</div>
|
||||
<div id="ref-balleriniInteractionRulingAnimal2008" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">2. </div><div
|
||||
class="csl-right-inline">Ballerini, M. <em>et al.</em> <a
|
||||
href="https://doi.org/10.1073/pnas.0711437105">Interaction ruling animal
|
||||
collective behavior depends on topological rather than metric distance:
|
||||
Evidence from a field study</a>. <em>Proceedings of the National Academy
|
||||
of Sciences</em> <strong>105</strong>, 1232–1237 (2008).</div>
|
||||
<div class="csl-left-margin">[2] </div><div class="csl-right-inline">M.
|
||||
Ballerini et al., <em><a
|
||||
href="https://doi.org/10.1073/pnas.0711437105">Interaction Ruling Animal
|
||||
Collective Behavior Depends on Topological Rather Than Metric Distance:
|
||||
Evidence from a Field Study</a></em>, Proceedings of the National
|
||||
Academy of Sciences <strong>105</strong>, 1232 (2008).</div>
|
||||
</div>
|
||||
<div id="ref-andersonMoreDifferent1972" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">3. </div><div
|
||||
class="csl-right-inline">Anderson, P. W. <a
|
||||
<div class="csl-left-margin">[3] </div><div class="csl-right-inline">P.
|
||||
W. Anderson, <em><a
|
||||
href="https://doi.org/10.1126/science.177.4047.393">More Is
|
||||
Different</a>. <em>Science</em> <strong>177</strong>, 393–396
|
||||
(1972).</div>
|
||||
Different</a></em>, Science <strong>177</strong>, 393 (1972).</div>
|
||||
</div>
|
||||
<div id="ref-kivelsonDefiningEmergencePhysics2016" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">4. </div><div
|
||||
class="csl-right-inline">Kivelson, S. & Kivelson, S. A. <a
|
||||
href="https://doi.org/10.1038/npjquantmats.2016.24">Defining emergence
|
||||
in physics</a>. <em>npj Quant Mater</em> <strong>1</strong>, 1–2
|
||||
(2016).</div>
|
||||
<div class="csl-left-margin">[4] </div><div class="csl-right-inline">S.
|
||||
Kivelson and S. A. Kivelson, <em><a
|
||||
href="https://doi.org/10.1038/npjquantmats.2016.24">Defining Emergence
|
||||
in Physics</a></em>, Npj Quant Mater <strong>1</strong>, 1 (2016).</div>
|
||||
</div>
|
||||
<div id="ref-saslowHistoryThermodynamicsMissing2020" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">5. </div><div
|
||||
class="csl-right-inline">Saslow, W. M. <a
|
||||
href="https://doi.org/10.3390/e22010077">A History of Thermodynamics:
|
||||
The Missing Manual</a>. <em>Entropy (Basel)</em> <strong>22</strong>, 77
|
||||
(2020).</div>
|
||||
<div class="csl-left-margin">[5] </div><div class="csl-right-inline">W.
|
||||
M. Saslow, <em><a href="https://doi.org/10.3390/e22010077">A History of
|
||||
Thermodynamics: The Missing Manual</a></em>, Entropy (Basel)
|
||||
<strong>22</strong>, 77 (2020).</div>
|
||||
</div>
|
||||
<div id="ref-flammHistoryOutlookStatistical1998" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">6. </div><div
|
||||
class="csl-right-inline">Flamm, D. History and outlook of statistical
|
||||
physics. Preprint at <a
|
||||
href="https://doi.org/10.48550/arXiv.physics/9803005">https://doi.org/10.48550/arXiv.physics/9803005</a>
|
||||
(1998).</div>
|
||||
<div class="csl-left-margin">[6] </div><div class="csl-right-inline">D.
|
||||
Flamm, <em><a
|
||||
href="https://doi.org/10.48550/arXiv.physics/9803005">History and
|
||||
Outlook of Statistical Physics</a></em>, arXiv:physics/9803005.</div>
|
||||
</div>
|
||||
<div id="ref-ashcroftSolidStatePhysics1976" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">7. </div><div
|
||||
class="csl-right-inline">Ashcroft, N. W. & Mermin, N. D. <em>Solid
|
||||
State Physics</em>. (Holt, Rinehart and Winston, 1976).</div>
|
||||
<div class="csl-left-margin">[7] </div><div class="csl-right-inline">N.
|
||||
W. Ashcroft and N. D. Mermin, <em>Solid State Physics</em> (Holt,
|
||||
Rinehart and Winston, 1976).</div>
|
||||
</div>
|
||||
<div id="ref-isingBeitragZurTheorie1925" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">8. </div><div
|
||||
class="csl-right-inline">Ising, E. <a
|
||||
href="https://doi.org/10.1007/BF02980577">Beitrag zur Theorie des
|
||||
Ferromagnetismus</a>. <em>Z. Physik</em> <strong>31</strong>, 253–258
|
||||
(1925).</div>
|
||||
<div class="csl-left-margin">[8] </div><div class="csl-right-inline">E.
|
||||
Ising, <em><a href="https://doi.org/10.1007/BF02980577">Beitrag zur
|
||||
Theorie des Ferromagnetismus</a></em>, Z. Physik <strong>31</strong>,
|
||||
253 (1925).</div>
|
||||
</div>
|
||||
<div id="ref-landau2013fluid" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">9. </div><div
|
||||
class="csl-right-inline">Landau, L. D. & Lifshitz, E. M. <em>Fluid
|
||||
mechanics: Landau and lifshitz: Course of theoretical physics, volume
|
||||
6</em>. vol. 6 (Elsevier, 2013).</div>
|
||||
<div class="csl-left-margin">[9] </div><div class="csl-right-inline">L.
|
||||
D. Landau and E. M. Lifshitz, <em>Fluid Mechanics: Landau and Lifshitz:
|
||||
Course of Theoretical Physics, Volume 6</em>, Vol. 6 (Elsevier,
|
||||
2013).</div>
|
||||
</div>
|
||||
<div id="ref-jaegerEhrenfestClassificationPhase1998" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">10. </div><div
|
||||
class="csl-right-inline">Jaeger, G. <a
|
||||
href="https://doi.org/10.1007/s004070050021">The Ehrenfest
|
||||
Classification of Phase Transitions: Introduction and Evolution</a>.
|
||||
<em>Arch Hist Exact Sc.</em> <strong>53</strong>, 51–81 (1998).</div>
|
||||
<div class="csl-left-margin">[10] </div><div class="csl-right-inline">G.
|
||||
Jaeger, <em><a href="https://doi.org/10.1007/s004070050021">The
|
||||
Ehrenfest Classification of Phase Transitions: Introduction and
|
||||
Evolution</a></em>, Arch Hist Exact Sc. <strong>53</strong>, 51
|
||||
(1998).</div>
|
||||
</div>
|
||||
<div id="ref-blochÜberQuantenmechanikElektronen1929" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">11. </div><div
|
||||
class="csl-right-inline">Bloch, F. <a
|
||||
href="https://doi.org/10.1007/BF01339455">Über die Quantenmechanik der
|
||||
Elektronen in Kristallgittern</a>. <em>Z. Physik</em>
|
||||
<strong>52</strong>, 555–600 (1929).</div>
|
||||
<div class="csl-left-margin">[11] </div><div class="csl-right-inline">F.
|
||||
Bloch, <em><a href="https://doi.org/10.1007/BF01339455">Über die
|
||||
Quantenmechanik der Elektronen in Kristallgittern</a></em>, Z. Physik
|
||||
<strong>52</strong>, 555 (1929).</div>
|
||||
</div>
|
||||
<div id="ref-MagnetismCondensedMatter" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">12. </div><div
|
||||
class="csl-right-inline">Blundell, S. <em>Magnetism in Condensed
|
||||
Matter</em>. (OUP Oxford, 2001).</div>
|
||||
<div class="csl-left-margin">[12] </div><div class="csl-right-inline">S.
|
||||
Blundell, <em>Magnetism in Condensed Matter</em> (OUP Oxford,
|
||||
2001).</div>
|
||||
</div>
|
||||
<div id="ref-MicroscopicTheorySuperconductivity" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">13. </div><div
|
||||
class="csl-right-inline">Bardeen, J., Cooper, L. N. & Schrieffer, J.
|
||||
R. <a href="https://doi.org/10.1103/PhysRev.106.162">Microscopic Theory
|
||||
of Superconductivity</a>. <em>Phys. Rev.</em> <strong>106</strong>,
|
||||
162–164 (1957).</div>
|
||||
<div class="csl-left-margin">[13] </div><div class="csl-right-inline">J.
|
||||
Bardeen, L. N. Cooper, and J. R. Schrieffer, <em><a
|
||||
href="https://doi.org/10.1103/PhysRev.106.162">Microscopic Theory of
|
||||
Superconductivity</a></em>, Phys. Rev. <strong>106</strong>, 162
|
||||
(1957).</div>
|
||||
</div>
|
||||
<div id="ref-feldmanFractionalChargeFractional2021" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">14. </div><div
|
||||
class="csl-right-inline">Feldman, D. E. & Halperin, B. I. <a
|
||||
href="https://doi.org/10.1088/1361-6633/ac03aa">Fractional charge and
|
||||
fractional statistics in the quantum Hall effects</a>. <em>Rep. Prog.
|
||||
Phys.</em> <strong>84</strong>, 076501 (2021).</div>
|
||||
<div class="csl-left-margin">[14] </div><div class="csl-right-inline">D.
|
||||
E. Feldman and B. I. Halperin, <em><a
|
||||
href="https://doi.org/10.1088/1361-6633/ac03aa">Fractional Charge and
|
||||
Fractional Statistics in the Quantum Hall Effects</a></em>, Rep. Prog.
|
||||
Phys. <strong>84</strong>, 076501 (2021).</div>
|
||||
</div>
|
||||
<div id="ref-mottBasisElectronTheory1949" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">15. </div><div
|
||||
class="csl-right-inline">Mott, N. F. <a
|
||||
href="https://doi.org/10.1088/0370-1298/62/7/303">The Basis of the
|
||||
Electron Theory of Metals, with Special Reference to the Transition
|
||||
Metals</a>. <em>Proc. Phys. Soc. A</em> <strong>62</strong>, 416–422
|
||||
<div class="csl-left-margin">[15] </div><div class="csl-right-inline">N.
|
||||
F. Mott, <em><a href="https://doi.org/10.1088/0370-1298/62/7/303">The
|
||||
Basis of the Electron Theory of Metals, with Special Reference to the
|
||||
Transition Metals</a></em>, Proc. Phys. Soc. A <strong>62</strong>, 416
|
||||
(1949).</div>
|
||||
</div>
|
||||
<div id="ref-fisherMottInsulatorsSpin1999" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">16. </div><div
|
||||
class="csl-right-inline">Fisher, M. P. A. <a
|
||||
href="https://doi.org/10.1007/3-540-46637-1_8">Mott insulators, Spin
|
||||
liquids and Quantum Disordered Superconductivity</a>. in <em>Aspects
|
||||
topologiques de la physique en basse dimension. Topological aspects of
|
||||
low dimensional systems</em> (eds. Comtet, A., Jolicœur, T., Ouvry, S.
|
||||
& David, F.) vol. 69 575–641 (Springer Berlin Heidelberg,
|
||||
1999).</div>
|
||||
<div class="csl-left-margin">[16] </div><div class="csl-right-inline">M.
|
||||
P. A. Fisher, <em><a href="https://doi.org/10.1007/3-540-46637-1_8">Mott
|
||||
Insulators, Spin Liquids and Quantum Disordered
|
||||
Superconductivity</a></em>, in <em>Aspects Topologiques de La Physique
|
||||
En Basse Dimension. Topological Aspects of Low Dimensional Systems</em>,
|
||||
edited by A. Comtet, T. Jolicœur, S. Ouvry, and F. David, Vol. 69
|
||||
(Springer Berlin Heidelberg, Berlin, Heidelberg, 1999), pp.
|
||||
575–641.</div>
|
||||
</div>
|
||||
<div id="ref-boerSemiconductorsPartiallyCompletely1937"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">17. </div><div
|
||||
class="csl-right-inline">Boer, J. H. de & Verwey, E. J. W. <a
|
||||
href="https://doi.org/10.1088/0959-5309/49/4S/307">Semi-conductors with
|
||||
partially and with completely filled <script>3d-lattice
|
||||
bands</script></a>. <em>Proc. Phys. Soc.</em> <strong>49</strong>,
|
||||
59–71 (1937).</div>
|
||||
<div class="csl-left-margin">[17] </div><div class="csl-right-inline">J.
|
||||
H. de Boer and E. J. W. Verwey, <em><a
|
||||
href="https://doi.org/10.1088/0959-5309/49/4S/307">Semi-Conductors with
|
||||
Partially and with Completely Filled <Script>3d-Lattice
|
||||
Bands</Script></a></em>, Proc. Phys. Soc. <strong>49</strong>, 59
|
||||
(1937).</div>
|
||||
</div>
|
||||
<div id="ref-mottDiscussionPaperBoer1937" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">18. </div><div
|
||||
class="csl-right-inline">Mott, N. F. & Peierls, R. <a
|
||||
<div class="csl-left-margin">[18] </div><div class="csl-right-inline">N.
|
||||
F. Mott and R. Peierls, <em><a
|
||||
href="https://doi.org/10.1088/0959-5309/49/4S/308">Discussion of the
|
||||
paper by de Boer and Verwey</a>. <em>Proc. Phys. Soc.</em>
|
||||
<strong>49</strong>, 72–73 (1937).</div>
|
||||
Paper by de Boer and Verwey</a></em>, Proc. Phys. Soc.
|
||||
<strong>49</strong>, 72 (1937).</div>
|
||||
</div>
|
||||
<div id="ref-bednorzPossibleHighTcSuperconductivity1986"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">19. </div><div
|
||||
class="csl-right-inline">Bednorz, J. G. & Müller, K. A. <a
|
||||
<div class="csl-left-margin">[19] </div><div class="csl-right-inline">J.
|
||||
G. Bednorz and K. A. Müller, <em><a
|
||||
href="https://doi.org/10.1007/BF01303701">Possible highTc
|
||||
superconductivity in the Ba−La−Cu−O system</a>. <em>Z. Physik B -
|
||||
Condensed Matter</em> <strong>64</strong>, 189–193 (1986).</div>
|
||||
Superconductivity in the Ba−La−Cu−O System</a></em>, Z. Physik B -
|
||||
Condensed Matter <strong>64</strong>, 189 (1986).</div>
|
||||
</div>
|
||||
<div id="ref-leeDopingMottInsulator2006" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">20. </div><div
|
||||
class="csl-right-inline">Lee, P. A., Nagaosa, N. & Wen, X.-G. <a
|
||||
href="https://doi.org/10.1103/RevModPhys.78.17">Doping a Mott insulator:
|
||||
Physics of high-temperature superconductivity</a>. <em>Rev. Mod.
|
||||
Phys.</em> <strong>78</strong>, 17–85 (2006).</div>
|
||||
<div class="csl-left-margin">[20] </div><div class="csl-right-inline">P.
|
||||
A. Lee, N. Nagaosa, and X.-G. Wen, <em><a
|
||||
href="https://doi.org/10.1103/RevModPhys.78.17">Doping a Mott Insulator:
|
||||
Physics of High-Temperature Superconductivity</a></em>, Rev. Mod. Phys.
|
||||
<strong>78</strong>, 17 (2006).</div>
|
||||
</div>
|
||||
<div id="ref-gutzwillerEffectCorrelationFerromagnetism1963"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">21. </div><div
|
||||
class="csl-right-inline">Gutzwiller, M. C. <a
|
||||
<div class="csl-left-margin">[21] </div><div class="csl-right-inline">M.
|
||||
C. Gutzwiller, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.10.159">Effect of Correlation
|
||||
on the Ferromagnetism of Transition Metals</a>. <em>Phys. Rev.
|
||||
Lett.</em> <strong>10</strong>, 159–162 (1963).</div>
|
||||
on the Ferromagnetism of Transition Metals</a></em>, Phys. Rev. Lett.
|
||||
<strong>10</strong>, 159 (1963).</div>
|
||||
</div>
|
||||
<div id="ref-kanamoriElectronCorrelationFerromagnetism1963"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">22. </div><div
|
||||
class="csl-right-inline">Kanamori, J. <a
|
||||
href="https://doi.org/10.1143/PTP.30.275">Electron Correlation and
|
||||
Ferromagnetism of Transition Metals</a>. <em>Progress of Theoretical
|
||||
Physics</em> <strong>30</strong>, 275–289 (1963).</div>
|
||||
<div class="csl-left-margin">[22] </div><div class="csl-right-inline">J.
|
||||
Kanamori, <em><a href="https://doi.org/10.1143/PTP.30.275">Electron
|
||||
Correlation and Ferromagnetism of Transition Metals</a></em>, Progress
|
||||
of Theoretical Physics <strong>30</strong>, 275 (1963).</div>
|
||||
</div>
|
||||
<div id="ref-hubbardj.ElectronCorrelationsNarrow1963" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">23. </div><div
|
||||
class="csl-right-inline">Hubbard, J. <a
|
||||
href="https://doi.org/10.1098/rspa.1963.0204">Electron correlations in
|
||||
narrow energy bands</a>. <em>Proceedings of the Royal Society of London.
|
||||
Series A. Mathematical and Physical Sciences</em> <strong>276</strong>,
|
||||
238–257 (1963).</div>
|
||||
<div class="csl-left-margin">[23] </div><div
|
||||
class="csl-right-inline">Hubbard, J., <em><a
|
||||
href="https://doi.org/10.1098/rspa.1963.0204">Electron Correlations in
|
||||
Narrow Energy Bands</a></em>, Proceedings of the Royal Society of
|
||||
London. Series A. Mathematical and Physical Sciences
|
||||
<strong>276</strong>, 238 (1963).</div>
|
||||
</div>
|
||||
<div id="ref-hubbardElectronCorrelationsNarrow1964" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">24. </div><div
|
||||
class="csl-right-inline">Hubbard, J. & Flowers, B. H. <a
|
||||
href="https://doi.org/10.1098/rspa.1964.0190">Electron correlations in
|
||||
narrow energy bands III. An improved solution</a>. <em>Proceedings of
|
||||
<div class="csl-left-margin">[24] </div><div class="csl-right-inline">J.
|
||||
Hubbard and B. H. Flowers, <em><a
|
||||
href="https://doi.org/10.1098/rspa.1964.0190">Electron Correlations in
|
||||
Narrow Energy Bands III. An Improved Solution</a></em>, Proceedings of
|
||||
the Royal Society of London. Series A. Mathematical and Physical
|
||||
Sciences</em> <strong>281</strong>, 401–419 (1964).</div>
|
||||
Sciences <strong>281</strong>, 401 (1964).</div>
|
||||
</div>
|
||||
<div id="ref-mottMetalInsulatorTransitions1990" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">25. </div><div
|
||||
class="csl-right-inline">Mott, N. <em>Metal-Insulator Transitions</em>.
|
||||
(CRC Press, 1990). doi:<a
|
||||
href="https://doi.org/10.1201/b12795">10.1201/b12795</a>.</div>
|
||||
</div>
|
||||
<div id="ref-slaterMagneticEffectsHartreeFock1951" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">26. </div><div
|
||||
class="csl-right-inline">Slater, J. C. <a
|
||||
href="https://doi.org/10.1103/PhysRev.82.538">Magnetic Effects and the
|
||||
Hartree-Fock Equation</a>. <em>Phys. Rev.</em> <strong>82</strong>,
|
||||
538–541 (1951).</div>
|
||||
</div>
|
||||
<div id="ref-greinerQuantumPhaseTransition2002" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">27. </div><div
|
||||
class="csl-right-inline">Greiner, M., Mandel, O., Esslinger, T., Hänsch,
|
||||
T. W. & Bloch, I. <a href="https://doi.org/10.1038/415039a">Quantum
|
||||
phase transition from a superfluid to a Mott insulator in a gas of
|
||||
ultracold atoms</a>. <em>Nature</em> <strong>415</strong>, 39
|
||||
(2002).</div>
|
||||
</div>
|
||||
<div id="ref-mazurenkoColdatomFermiHubbard2017" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">28. </div><div
|
||||
class="csl-right-inline">Mazurenko, A. <em>et al.</em> <a
|
||||
href="https://doi.org/10.1038/nature22362">A cold-atom Fermi–Hubbard
|
||||
antiferromagnet</a>. <em>Nature</em> <strong>545</strong>, 462–466
|
||||
(2017).</div>
|
||||
<div class="csl-left-margin">[25] </div><div class="csl-right-inline">N.
|
||||
Mott, <em><a href="https://doi.org/10.1201/b12795">Metal-Insulator
|
||||
Transitions</a></em> (CRC Press, London, 1990).</div>
|
||||
</div>
|
||||
<div id="ref-law1TTaS2QuantumSpin2017" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">29. </div><div
|
||||
class="csl-right-inline">Law, K. T. & Lee, P. A. <a
|
||||
href="https://doi.org/10.1073/pnas.1706769114">1T-TaS2 as a quantum spin
|
||||
liquid</a>. <em>Proceedings of the National Academy of Sciences</em>
|
||||
<strong>114</strong>, 6996–7000 (2017).</div>
|
||||
<div class="csl-left-margin">[26] </div><div class="csl-right-inline">K.
|
||||
T. Law and P. A. Lee, <em><a
|
||||
href="https://doi.org/10.1073/pnas.1706769114">1t-TaS2 as a Quantum Spin
|
||||
Liquid</a></em>, Proceedings of the National Academy of Sciences
|
||||
<strong>114</strong>, 6996 (2017).</div>
|
||||
</div>
|
||||
<div id="ref-ribakGaplessExcitationsGround2017" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">30. </div><div
|
||||
class="csl-right-inline">Ribak, A. <em>et al.</em> <a
|
||||
href="https://doi.org/10.1103/PhysRevB.96.195131">Gapless excitations in
|
||||
the ground state of
|
||||
<script>$1T\text{\ensuremath{-}}{\mathrm{TaS}}_{2}$</script></a>.
|
||||
<em>Phys. Rev. B</em> <strong>96</strong>, 195131 (2017).</div>
|
||||
<div class="csl-left-margin">[27] </div><div class="csl-right-inline">A.
|
||||
Ribak, I. Silber, C. Baines, K. Chashka, Z. Salman, Y. Dagan, and A.
|
||||
Kanigel, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.96.195131">Gapless Excitations in
|
||||
the Ground State of
|
||||
<Script>$1T\text{\ensuremath{-}}{\Mathrm{TaS}}_{2}$</Script></a></em>,
|
||||
Phys. Rev. B <strong>96</strong>, 195131 (2017).</div>
|
||||
</div>
|
||||
<div id="ref-slaterMagneticEffectsHartreeFock1951" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[28] </div><div class="csl-right-inline">J.
|
||||
C. Slater, <em><a href="https://doi.org/10.1103/PhysRev.82.538">Magnetic
|
||||
Effects and the Hartree-Fock Equation</a></em>, Phys. Rev.
|
||||
<strong>82</strong>, 538 (1951).</div>
|
||||
</div>
|
||||
<div id="ref-greinerQuantumPhaseTransition2002" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[29] </div><div class="csl-right-inline">M.
|
||||
Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, <em><a
|
||||
href="https://doi.org/10.1038/415039a">Quantum Phase Transition from a
|
||||
Superfluid to a Mott Insulator in a Gas of Ultracold Atoms</a></em>,
|
||||
Nature <strong>415</strong>, 39 (2002).</div>
|
||||
</div>
|
||||
<div id="ref-mazurenkoColdatomFermiHubbard2017" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[30] </div><div class="csl-right-inline">A.
|
||||
Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanász-Nagy, R. Schmidt,
|
||||
F. Grusdt, E. Demler, D. Greif, and M. Greiner, <em><a
|
||||
href="https://doi.org/10.1038/nature22362">A Cold-Atom Fermi–Hubbard
|
||||
Antiferromagnet</a></em>, Nature <strong>545</strong>, 462 (2017).</div>
|
||||
</div>
|
||||
<div id="ref-belitzAndersonMottTransition1994" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[31] </div><div class="csl-right-inline">D.
|
||||
Belitz and T. R. Kirkpatrick, <em><a
|
||||
href="https://doi.org/10.1103/RevModPhys.66.261">The Anderson-Mott
|
||||
Transition</a></em>, Rev. Mod. Phys. <strong>66</strong>, 261
|
||||
(1994).</div>
|
||||
</div>
|
||||
<div id="ref-baskoMetalInsulatorTransition2006" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[32] </div><div class="csl-right-inline">D.
|
||||
M. Basko, I. L. Aleiner, and B. L. Altshuler, <em><a
|
||||
href="https://doi.org/10.1016/j.aop.2005.11.014">Metal–Insulator
|
||||
Transition in a Weakly Interacting Many-Electron System with Localized
|
||||
Single-Particle States</a></em>, Annals of Physics <strong>321</strong>,
|
||||
1126 (2006).</div>
|
||||
</div>
|
||||
<div id="ref-brandtThermodynamicsCorrelationFunctions1989"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[33] </div><div class="csl-right-inline">U.
|
||||
Brandt and C. Mielsch, <em><a
|
||||
href="https://doi.org/10.1007/BF01321824">Thermodynamics and Correlation
|
||||
Functions of the Falicov-Kimball Model in Large Dimensions</a></em>, Z.
|
||||
Physik B - Condensed Matter <strong>75</strong>, 365 (1989).</div>
|
||||
</div>
|
||||
<div id="ref-gruberGroundStatesSpinless1990" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[34] </div><div class="csl-right-inline">C.
|
||||
Gruber, J. Iwanski, J. Jedrzejewski, and P. Lemberger, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.41.2198">Ground States of the
|
||||
Spinless Falicov-Kimball Model</a></em>, Phys. Rev. B
|
||||
<strong>41</strong>, 2198 (1990).</div>
|
||||
</div>
|
||||
<div id="ref-kennedyItinerantElectronModel1986" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[35] </div><div class="csl-right-inline">T.
|
||||
Kennedy and E. H. Lieb, <em><a
|
||||
href="https://doi.org/10.1016/0378-4371(86)90188-3">An Itinerant
|
||||
Electron Model with Crystalline or Magnetic Long Range Order</a></em>,
|
||||
Physica A: Statistical Mechanics and Its Applications
|
||||
<strong>138</strong>, 320 (1986).</div>
|
||||
</div>
|
||||
<div id="ref-antipovCriticalExponentsStrongly2014" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[36] </div><div class="csl-right-inline">A.
|
||||
E. Antipov, E. Gull, and S. Kirchner, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.112.226401">Critical Exponents
|
||||
of Strongly Correlated Fermion Systems from Diagrammatic Multiscale
|
||||
Methods</a></em>, Phys. Rev. Lett. <strong>112</strong>, 226401
|
||||
(2014).</div>
|
||||
</div>
|
||||
<div id="ref-ribicNonlocalCorrelationsSpectral2016" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[37] </div><div class="csl-right-inline">T.
|
||||
Ribic, G. Rohringer, and K. Held, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.93.195105">Nonlocal Correlations
|
||||
and Spectral Properties of the Falicov-Kimball Model</a></em>, Phys.
|
||||
Rev. B <strong>93</strong>, 195105 (2016).</div>
|
||||
</div>
|
||||
<div id="ref-freericksExactDynamicalMeanfield2003" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[38] </div><div class="csl-right-inline">J.
|
||||
K. Freericks and V. Zlatić, <em><a
|
||||
href="https://doi.org/10.1103/RevModPhys.75.1333">Exact Dynamical
|
||||
Mean-Field Theory of the Falicov-Kimball Model</a></em>, Rev. Mod. Phys.
|
||||
<strong>75</strong>, 1333 (2003).</div>
|
||||
</div>
|
||||
<div id="ref-herrmannNonequilibriumDynamicalCluster2016"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[39] </div><div class="csl-right-inline">A.
|
||||
J. Herrmann, N. Tsuji, M. Eckstein, and P. Werner, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.94.245114">Nonequilibrium
|
||||
Dynamical Cluster Approximation Study of the Falicov-Kimball
|
||||
Model</a></em>, Phys. Rev. B <strong>94</strong>, 245114 (2016).</div>
|
||||
</div>
|
||||
<div id="ref-andersonResonatingValenceBonds1973" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">31. </div><div
|
||||
class="csl-right-inline">Anderson, P. W. <a
|
||||
href="https://doi.org/10.1016/0025-5408(73)90167-0">Resonating valence
|
||||
bonds: A new kind of insulator?</a> <em>Materials Research Bulletin</em>
|
||||
<strong>8</strong>, 153–160 (1973).</div>
|
||||
<div class="csl-left-margin">[40] </div><div class="csl-right-inline">P.
|
||||
W. Anderson, <em><a
|
||||
href="https://doi.org/10.1016/0025-5408(73)90167-0">Resonating Valence
|
||||
Bonds: A New Kind of Insulator?</a></em>, Materials Research Bulletin
|
||||
<strong>8</strong>, 153 (1973).</div>
|
||||
</div>
|
||||
<div id="ref-TrebstPhysRep2022" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">32. </div><div
|
||||
class="csl-right-inline">Trebst, S. & Hickey, C. <a
|
||||
<div class="csl-left-margin">[41] </div><div class="csl-right-inline">S.
|
||||
Trebst and C. Hickey, <em><a
|
||||
href="https://doi.org/10.1016/j.physrep.2021.11.003">Kitaev
|
||||
materials</a>. <em>Physics Reports</em> <strong>950</strong>, 1–37
|
||||
Materials</a></em>, Physics Reports <strong>950</strong>, 1
|
||||
(2022).</div>
|
||||
</div>
|
||||
</div>
|
||||
|
@ -319,10 +319,10 @@ Majorana <span class="math inline">\(c_i\)</span> per site.</figcaption>
|
||||
</div>
|
||||
<ul>
|
||||
<li>strong spin orbit coupling yields spatial anisotropic spin exchange
|
||||
leading to compass models<span class="citation"
|
||||
data-cites="kugelJahnTellerEffectMagnetism1982"><sup><a
|
||||
leading to compass models <span class="citation"
|
||||
data-cites="kugelJahnTellerEffectMagnetism1982"> [<a
|
||||
href="#ref-kugelJahnTellerEffectMagnetism1982"
|
||||
role="doc-biblioref">1</a></sup></span></li>
|
||||
role="doc-biblioref">1</a>]</span></li>
|
||||
<li>spin model of the Kitaev model is one</li>
|
||||
<li>has extensively many conserved fluxes</li>
|
||||
<li></li>
|
||||
@ -335,15 +335,14 @@ Chern number</h2>
|
||||
<h2 id="phase-diagram">Phase Diagram</h2>
|
||||
<div class="sourceCode" id="cb1"><pre
|
||||
class="sourceCode python"><code class="sourceCode python"></code></pre></div>
|
||||
<div id="refs" class="references csl-bib-body" data-line-spacing="2"
|
||||
role="doc-bibliography">
|
||||
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
|
||||
<div id="ref-kugelJahnTellerEffectMagnetism1982" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">1. </div><div
|
||||
class="csl-right-inline">Kugel’, K. I. & Khomskiĭ, D. I. <a
|
||||
<div class="csl-left-margin">[1] </div><div class="csl-right-inline">K.
|
||||
I. Kugel’ and D. I. Khomskiĭ, <em><a
|
||||
href="https://doi.org/10.1070/PU1982v025n04ABEH004537">The Jahn-Teller
|
||||
effect and magnetism: transition metal compounds</a>. <em>Sov. Phys.
|
||||
Usp.</em> <strong>25</strong>, 231 (1982).</div>
|
||||
Effect and Magnetism: Transition Metal Compounds</a></em>, Sov. Phys.
|
||||
Usp. <strong>25</strong>, 231 (1982).</div>
|
||||
</div>
|
||||
</div>
|
||||
</main>
|
||||
|
@ -360,10 +360,10 @@ The fact they’re uncorrelated is key as we’ll see later. Examples of
|
||||
direct sampling methods range from the trivial: take n random bits to
|
||||
generate integers uniformly between 0 and <span
|
||||
class="math inline">\(2^n\)</span> to more complex methods such as
|
||||
inverse transform sampling and rejection sampling<span class="citation"
|
||||
data-cites="devroyeRandomSampling1986"><sup><a
|
||||
inverse transform sampling and rejection sampling <span class="citation"
|
||||
data-cites="devroyeRandomSampling1986"> [<a
|
||||
href="#ref-devroyeRandomSampling1986"
|
||||
role="doc-biblioref">1</a></sup></span>.</p>
|
||||
role="doc-biblioref">1</a>]</span>.</p>
|
||||
<p>In physics the distribution we usually want to sample from is the
|
||||
Boltzmann probability over states of the system <span
|
||||
class="math inline">\(S\)</span>: <span class="math display">\[
|
||||
@ -383,9 +383,9 @@ with system size. Even if we could calculate <span
|
||||
class="math inline">\(\mathcal{Z}\)</span>, sampling from an
|
||||
exponentially large number of options quickly become tricky. This kind
|
||||
of problem happens in many other disciplines too, particularly when
|
||||
fitting statistical models using Bayesian inference<span
|
||||
class="citation" data-cites="BMCP2021"><sup><a href="#ref-BMCP2021"
|
||||
role="doc-biblioref">2</a></sup></span>.</p>
|
||||
fitting statistical models using Bayesian inference <span
|
||||
class="citation" data-cites="BMCP2021"> [<a href="#ref-BMCP2021"
|
||||
role="doc-biblioref">2</a>]</span>.</p>
|
||||
<h2 id="markov-chains">Markov Chains</h2>
|
||||
<p>So what can we do? Well it turns out that if we’re willing to give up
|
||||
in the requirement that the samples be uncorrelated then we can use MCMC
|
||||
@ -393,11 +393,11 @@ instead.</p>
|
||||
<p>MCMC defines a weighted random walk over the states <span
|
||||
class="math inline">\((S_0, S_1, S_2, ...)\)</span>, such that in the
|
||||
long time limit, states are visited according to their probability <span
|
||||
class="math inline">\(p(S)\)</span>.<span class="citation"
|
||||
data-cites="binderGuidePracticalWork1988 kerteszAdvancesComputerSimulation1998 wolffMonteCarloErrors2004"><sup><a
|
||||
class="math inline">\(p(S)\)</span>. <span class="citation"
|
||||
data-cites="binderGuidePracticalWork1988 kerteszAdvancesComputerSimulation1998 wolffMonteCarloErrors2004"> [<a
|
||||
href="#ref-binderGuidePracticalWork1988" role="doc-biblioref">3</a>–<a
|
||||
href="#ref-wolffMonteCarloErrors2004"
|
||||
role="doc-biblioref">5</a></sup></span>.</p>
|
||||
role="doc-biblioref">5</a>]</span>.</p>
|
||||
<p>In a physics context this lets us evaluate any observable with a mean
|
||||
over the states visited by the walk. <span
|
||||
class="math display">\[\begin{aligned}
|
||||
@ -407,9 +407,9 @@ class="math display">\[\begin{aligned}
|
||||
<p>The choice of the transition function for MCMC is under-determined as
|
||||
one only needs to satisfy a set of balance conditions for which there
|
||||
are many solutions <span class="citation"
|
||||
data-cites="kellyReversibilityStochasticNetworks1981"><sup><a
|
||||
data-cites="kellyReversibilityStochasticNetworks1981"> [<a
|
||||
href="#ref-kellyReversibilityStochasticNetworks1981"
|
||||
role="doc-biblioref">6</a></sup></span>.</p>
|
||||
role="doc-biblioref">6</a>]</span>.</p>
|
||||
<h2 id="application-to-the-fk-model">Application to the FK Model</h2>
|
||||
<p>We will work in the grand canonical ensemble of fixed temperature,
|
||||
chemical potential and volume.</p>
|
||||
@ -447,11 +447,11 @@ F_c[\vec{S}]} = \sum_{\vec{S}} e^{-\beta E[\vec{S}]}
|
||||
expectation values <span class="math inline">\(\expval{O}\)</span> with
|
||||
respect to some physical system defined by a set of states <span
|
||||
class="math inline">\(\{x: x \in S\}\)</span> and a free energy <span
|
||||
class="math inline">\(F(x)\)</span><span class="citation"
|
||||
data-cites="krauthIntroductionMonteCarlo1998"><sup><a
|
||||
class="math inline">\(F(x)\)</span> <span class="citation"
|
||||
data-cites="krauthIntroductionMonteCarlo1998"> [<a
|
||||
href="#ref-krauthIntroductionMonteCarlo1998"
|
||||
role="doc-biblioref">7</a></sup></span>. The thermal expectation value
|
||||
is defined via a Boltzmann weighted sum over the entire states: <span
|
||||
role="doc-biblioref">7</a>]</span>. The thermal expectation value is
|
||||
defined via a Boltzmann weighted sum over the entire states: <span
|
||||
class="math display">\[
|
||||
\begin{aligned}
|
||||
\expval{O} &= \frac{1}{\mathcal{Z}} \sum_{x \in S} O(x) P(x) \\
|
||||
@ -526,10 +526,10 @@ P(x) \mathcal{T}(x \rightarrow x') = P(x') \mathcal{T}(x'
|
||||
\rightarrow x)
|
||||
\]</span> % In practice most algorithms are constructed to satisfy
|
||||
detailed balance though there are arguments that relaxing the condition
|
||||
can lead to faster algorithms<span class="citation"
|
||||
data-cites="kapferSamplingPolytopeHarddisk2013"><sup><a
|
||||
can lead to faster algorithms <span class="citation"
|
||||
data-cites="kapferSamplingPolytopeHarddisk2013"> [<a
|
||||
href="#ref-kapferSamplingPolytopeHarddisk2013"
|
||||
role="doc-biblioref">8</a></sup></span>.</p>
|
||||
role="doc-biblioref">8</a>]</span>.</p>
|
||||
<p>The goal of MCMC is then to choose <span
|
||||
class="math inline">\(\mathcal{T}\)</span> so that it has the desired
|
||||
thermal distribution <span class="math inline">\(P(x)\)</span> as its
|
||||
@ -558,10 +558,10 @@ x_{i}\)</span>. Now <span class="math inline">\(\mathcal{T}(x\to x')
|
||||
<p>The Metropolis-Hasting algorithm is a slight extension of the
|
||||
original Metropolis algorithm that allows for non-symmetric proposal
|
||||
distributions $q(xx’) q(x’x) $. It can be derived starting from detailed
|
||||
balance<span class="citation"
|
||||
data-cites="krauthIntroductionMonteCarlo1998"><sup><a
|
||||
balance <span class="citation"
|
||||
data-cites="krauthIntroductionMonteCarlo1998"> [<a
|
||||
href="#ref-krauthIntroductionMonteCarlo1998"
|
||||
role="doc-biblioref">7</a></sup></span>: <span
|
||||
role="doc-biblioref">7</a>]</span>: <span
|
||||
class="math display">\[\begin{aligned}
|
||||
P(x)\mathcal{T}(x \to x') &= P(x')\mathcal{T}(x' \to x)
|
||||
\\
|
||||
@ -671,11 +671,11 @@ problematic because it means very few new samples will be generated. If
|
||||
it is too high it implies the steps are too small, a problem because
|
||||
then the walk will take longer to explore the state space and the
|
||||
samples will be highly correlated. Ideal values for the acceptance rate
|
||||
can be calculated under certain assumptions<span class="citation"
|
||||
data-cites="robertsWeakConvergenceOptimal1997"><sup><a
|
||||
can be calculated under certain assumptions <span class="citation"
|
||||
data-cites="robertsWeakConvergenceOptimal1997"> [<a
|
||||
href="#ref-robertsWeakConvergenceOptimal1997"
|
||||
role="doc-biblioref">9</a></sup></span>. Here we monitor the acceptance
|
||||
rate and if it is too high we re-run the MCMC with a modified proposal
|
||||
role="doc-biblioref">9</a>]</span>. Here we monitor the acceptance rate
|
||||
and if it is too high we re-run the MCMC with a modified proposal
|
||||
distribution that has a chance to propose moves that flip multiple sites
|
||||
at a time.</p>
|
||||
<p>In addition we exploit the particle-hole symmetry of the problem by
|
||||
@ -686,10 +686,10 @@ produce a state at or near the energy of the current one.</p>
|
||||
<p>The matrix diagonalisation is the most computationally expensive step
|
||||
of the process, a speed up can be obtained by modifying the proposal
|
||||
distribution to depend on the classical part of the energy, a trick
|
||||
gleaned from Ref.<span class="citation"
|
||||
data-cites="krauthIntroductionMonteCarlo1998"><sup><a
|
||||
gleaned from Ref. <span class="citation"
|
||||
data-cites="krauthIntroductionMonteCarlo1998"> [<a
|
||||
href="#ref-krauthIntroductionMonteCarlo1998"
|
||||
role="doc-biblioref">7</a></sup></span>: <span class="math display">\[
|
||||
role="doc-biblioref">7</a>]</span>: <span class="math display">\[
|
||||
\begin{aligned}
|
||||
q(k \to k') &= \min\left(1, e^{\beta (H^{k'} - H^k)}\right)
|
||||
\\
|
||||
@ -700,12 +700,11 @@ without performing the diagonalisation at no cost to the accuracy of the
|
||||
MCMC method.</p>
|
||||
<p>An extension of this idea is to try to define a classical model with
|
||||
a similar free energy dependence on the classical state as the full
|
||||
quantum, Ref.<span class="citation"
|
||||
data-cites="huangAcceleratedMonteCarlo2017"><sup><a
|
||||
quantum, Ref. <span class="citation"
|
||||
data-cites="huangAcceleratedMonteCarlo2017"> [<a
|
||||
href="#ref-huangAcceleratedMonteCarlo2017"
|
||||
role="doc-biblioref">10</a></sup></span> does this with restricted
|
||||
Boltzmann machines whose form is very similar to a classical spin
|
||||
model.</p>
|
||||
role="doc-biblioref">10</a>]</span> does this with restricted Boltzmann
|
||||
machines whose form is very similar to a classical spin model.</p>
|
||||
<h2 id="scaling">Scaling</h2>
|
||||
<p>In order to reduce the effects of the boundary conditions and the
|
||||
finite size of the system we redefine and normalise the coupling matrix
|
||||
@ -726,12 +725,12 @@ central moments of the order parameter m: <span class="math display">\[m
|
||||
= \sum_i (-1)^i (2n_i - 1) / N\]</span> % The Binder cumulant evaluated
|
||||
against temperature can be used as a diagnostic for the existence of a
|
||||
phase transition. If multiple such curves are plotted for different
|
||||
system sizes, a crossing indicates the location of a critical point<span
|
||||
class="citation"
|
||||
data-cites="binderFiniteSizeScaling1981 musialMonteCarloSimulations2002"><sup><a
|
||||
system sizes, a crossing indicates the location of a critical point
|
||||
<span class="citation"
|
||||
data-cites="binderFiniteSizeScaling1981 musialMonteCarloSimulations2002"> [<a
|
||||
href="#ref-binderFiniteSizeScaling1981" role="doc-biblioref">11</a>,<a
|
||||
href="#ref-musialMonteCarloSimulations2002"
|
||||
role="doc-biblioref"><strong>musialMonteCarloSimulations2002?</strong></a></sup></span>.</p>
|
||||
role="doc-biblioref"><strong>musialMonteCarloSimulations2002?</strong></a>]</span>.</p>
|
||||
<h2 id="markov-chain-monte-carlo-in-practice">Markov Chain Monte-Carlo
|
||||
in Practice</h2>
|
||||
<h3 id="quick-intro-to-mcmc">Quick Intro to MCMC</h3>
|
||||
@ -758,13 +757,13 @@ very expensive operation!~\footnote{The effort involved in exact
|
||||
diagonalisation scales like <span class="math inline">\(N^2\)</span> for
|
||||
systems with a tri-diagonal matrix representation (open boundary
|
||||
conditions and nearest neighbour hopping) and like <span
|
||||
class="math inline">\(N^3\)</span> for a generic matrix<span
|
||||
class="math inline">\(N^3\)</span> for a generic matrix <span
|
||||
class="citation"
|
||||
data-cites="bolchQueueingNetworksMarkov2006 usmaniInversionTridiagonalJacobi1994"><sup><a
|
||||
data-cites="bolchQueueingNetworksMarkov2006 usmaniInversionTridiagonalJacobi1994"> [<a
|
||||
href="#ref-bolchQueueingNetworksMarkov2006"
|
||||
role="doc-biblioref">12</a>,<a
|
||||
href="#ref-usmaniInversionTridiagonalJacobi1994"
|
||||
role="doc-biblioref">13</a></sup></span>.</p>
|
||||
role="doc-biblioref">13</a>]</span>.</p>
|
||||
<p>c</p>
|
||||
<p>MCMC sidesteps these issues by defining a random walk that focuses on
|
||||
the states with the greatest Boltzmann weight. At low temperatures this
|
||||
@ -878,10 +877,10 @@ auto-correlation time <span class="math inline">\(\tau(O)\)</span>
|
||||
informally as the number of MCMC samples of some observable O that are
|
||||
statistically equal to one independent sample or equivalently as the
|
||||
number of MCMC steps after which the samples are correlated below some
|
||||
cutoff, see<span class="citation"
|
||||
data-cites="krauthIntroductionMonteCarlo1996"><sup><a
|
||||
cutoff, see <span class="citation"
|
||||
data-cites="krauthIntroductionMonteCarlo1996"> [<a
|
||||
href="#ref-krauthIntroductionMonteCarlo1996"
|
||||
role="doc-biblioref">14</a></sup></span> for a more rigorous definition
|
||||
role="doc-biblioref">14</a>]</span> for a more rigorous definition
|
||||
involving a sum over the auto-correlation function. The auto-correlation
|
||||
time is generally shorter than the convergence time so it therefore
|
||||
makes sense from an efficiency standpoint to run a single walker for
|
||||
@ -960,28 +959,28 @@ than the current state.</p>
|
||||
<h2 id="two-step-trick">Two Step Trick</h2>
|
||||
<p>Here, we incorporate a modification to the standard
|
||||
Metropolis-Hastings algorithm <span class="citation"
|
||||
data-cites="hastingsMonteCarloSampling1970"><sup><a
|
||||
data-cites="hastingsMonteCarloSampling1970"> [<a
|
||||
href="#ref-hastingsMonteCarloSampling1970"
|
||||
role="doc-biblioref">15</a></sup></span> gleaned from Krauth <span
|
||||
class="citation" data-cites="krauthIntroductionMonteCarlo1998"><sup><a
|
||||
role="doc-biblioref">15</a>]</span> gleaned from Krauth <span
|
||||
class="citation" data-cites="krauthIntroductionMonteCarlo1998"> [<a
|
||||
href="#ref-krauthIntroductionMonteCarlo1998"
|
||||
role="doc-biblioref">7</a></sup></span>.</p>
|
||||
role="doc-biblioref">7</a>]</span>.</p>
|
||||
<p>In our computations <span class="citation"
|
||||
data-cites="hodsonMCMCFKModel2021"><sup><a
|
||||
href="#ref-hodsonMCMCFKModel2021"
|
||||
role="doc-biblioref">16</a></sup></span> we employ a modification of the
|
||||
algorithm which is based on the observation that the free energy of the
|
||||
FK system is composed of a classical part which is much quicker to
|
||||
compute than the quantum part. Hence, we can obtain a computational
|
||||
speedup by first considering the value of the classical energy
|
||||
difference <span class="math inline">\(\Delta H_s\)</span> and rejecting
|
||||
the transition if the former is too high. We only compute the quantum
|
||||
energy difference <span class="math inline">\(\Delta F_c\)</span> if the
|
||||
transition is accepted. We then perform a second rejection sampling step
|
||||
based upon it. This corresponds to two nested comparisons with the
|
||||
majority of the work only occurring if the first test passes and has the
|
||||
acceptance function <span class="math display">\[\mathcal{A}(a \to b) =
|
||||
\min\left(1, e^{-\beta \Delta H_s}\right)\min\left(1, e^{-\beta \Delta
|
||||
data-cites="hodsonMCMCFKModel2021"> [<a
|
||||
href="#ref-hodsonMCMCFKModel2021" role="doc-biblioref">16</a>]</span> we
|
||||
employ a modification of the algorithm which is based on the observation
|
||||
that the free energy of the FK system is composed of a classical part
|
||||
which is much quicker to compute than the quantum part. Hence, we can
|
||||
obtain a computational speedup by first considering the value of the
|
||||
classical energy difference <span class="math inline">\(\Delta
|
||||
H_s\)</span> and rejecting the transition if the former is too high. We
|
||||
only compute the quantum energy difference <span
|
||||
class="math inline">\(\Delta F_c\)</span> if the transition is accepted.
|
||||
We then perform a second rejection sampling step based upon it. This
|
||||
corresponds to two nested comparisons with the majority of the work only
|
||||
occurring if the first test passes and has the acceptance function <span
|
||||
class="math display">\[\mathcal{A}(a \to b) = \min\left(1, e^{-\beta
|
||||
\Delta H_s}\right)\min\left(1, e^{-\beta \Delta
|
||||
F_c}\right)\;.\]</span></p>
|
||||
<p>For the model parameters used in Fig. <a href="#fig:indiv_IPR"
|
||||
data-reference-type="ref" data-reference="fig:indiv_IPR">2</a>, we find
|
||||
@ -1008,9 +1007,9 @@ distribution, a problem which MCMC was employed to solve in the first
|
||||
place. For example, recent work trains restricted Boltzmann machines
|
||||
(RBMs) to generate samples for the proposal distribution of the FK
|
||||
model <span class="citation"
|
||||
data-cites="huangAcceleratedMonteCarlo2017"><sup><a
|
||||
data-cites="huangAcceleratedMonteCarlo2017"> [<a
|
||||
href="#ref-huangAcceleratedMonteCarlo2017"
|
||||
role="doc-biblioref">10</a></sup></span>. The RBMs are chosen as a
|
||||
role="doc-biblioref">10</a>]</span>. The RBMs are chosen as a
|
||||
parametrisation of the proposal distribution that can be efficiently
|
||||
sampled from while offering sufficient flexibility that they can be
|
||||
adjusted to match the target distribution. Our proposed method is
|
||||
@ -1021,11 +1020,11 @@ the two step method</h2>
|
||||
<p>Given a MCMC algorithm with target distribution <span
|
||||
class="math inline">\(\pi(a)\)</span> and transition function <span
|
||||
class="math inline">\(\mathcal{T}\)</span> the detailed balance
|
||||
condition is sufficient (along with some technical constraints<span
|
||||
class="citation" data-cites="wolffMonteCarloErrors2004"><sup><a
|
||||
condition is sufficient (along with some technical constraints <span
|
||||
class="citation" data-cites="wolffMonteCarloErrors2004"> [<a
|
||||
href="#ref-wolffMonteCarloErrors2004"
|
||||
role="doc-biblioref">5</a></sup></span>) to guarantee that in the long
|
||||
time limit the algorithm produces samples from <span
|
||||
role="doc-biblioref">5</a>]</span>) to guarantee that in the long time
|
||||
limit the algorithm produces samples from <span
|
||||
class="math inline">\(\pi\)</span>. <span
|
||||
class="math display">\[\pi(a)\mathcal{T}(a \to b) = \pi(b)\mathcal{T}(b
|
||||
\to a)\]</span></p>
|
||||
@ -1141,10 +1140,10 @@ for the additional complexity it would require.</p>
|
||||
<h3 id="inverse-participation-ratio">Inverse Participation Ratio</h3>
|
||||
<p>The inverse participation ratio is defined for a normalised wave
|
||||
function <span class="math inline">\(\psi_i = \psi(x_i), \sum_i
|
||||
\abs{\psi_i}^2 = 1\)</span> as its fourth moment<span class="citation"
|
||||
data-cites="kramerLocalizationTheoryExperiment1993"><sup><a
|
||||
\abs{\psi_i}^2 = 1\)</span> as its fourth moment <span class="citation"
|
||||
data-cites="kramerLocalizationTheoryExperiment1993"> [<a
|
||||
href="#ref-kramerLocalizationTheoryExperiment1993"
|
||||
role="doc-biblioref">17</a></sup></span>: <span class="math display">\[
|
||||
role="doc-biblioref">17</a>]</span>: <span class="math display">\[
|
||||
P^{-1} = \sum_i \abs{\psi_i}^4
|
||||
\]</span> % It acts as a measure of the portion of space occupied by the
|
||||
wave function. For localised states it will be independent of system
|
||||
@ -1155,11 +1154,10 @@ fractal dimensionality <span class="math inline">\(d > d* >
|
||||
P(L) \goeslike L^{d*}
|
||||
\]</span> % For extended states <span class="math inline">\(d* =
|
||||
0\)</span> while for localised ones <span class="math inline">\(d* =
|
||||
0\)</span>. In this work we take use an energy resolved IPR<span
|
||||
class="citation"
|
||||
data-cites="andersonAbsenceDiffusionCertain1958"><sup><a
|
||||
0\)</span>. In this work we take use an energy resolved IPR <span
|
||||
class="citation" data-cites="andersonAbsenceDiffusionCertain1958"> [<a
|
||||
href="#ref-andersonAbsenceDiffusionCertain1958"
|
||||
role="doc-biblioref">18</a></sup></span>: <span class="math display">\[
|
||||
role="doc-biblioref">18</a>]</span>: <span class="math display">\[
|
||||
DOS(\omega) = \sum_n \delta(\omega - \epsilon_n)
|
||||
IPR(\omega) = DOS(\omega)^{-1} \sum_{n,i} \delta(\omega - \epsilon_n)
|
||||
\abs{\psi_{n,i}}^4
|
||||
@ -1518,148 +1516,141 @@ class="sourceCode python"><code class="sourceCode python"><span id="cb6-1"><a hr
|
||||
<div class="sourceCode" id="cb7"><pre
|
||||
class="sourceCode python"><code class="sourceCode python"></code></pre></div>
|
||||
<p></ij></ij></p>
|
||||
<div id="refs" class="references csl-bib-body" data-line-spacing="2"
|
||||
role="doc-bibliography">
|
||||
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
|
||||
<div id="ref-devroyeRandomSampling1986" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">1. </div><div
|
||||
class="csl-right-inline">Devroye, L. Random Sampling. in <em>Non-Uniform
|
||||
Random Variate Generation</em> (ed. Devroye, L.) 611–641 (Springer,
|
||||
1986). doi:<a
|
||||
href="https://doi.org/10.1007/978-1-4613-8643-8_12">10.1007/978-1-4613-8643-8_12</a>.</div>
|
||||
<div class="csl-left-margin">[1] </div><div class="csl-right-inline">L.
|
||||
Devroye, <em><a
|
||||
href="https://doi.org/10.1007/978-1-4613-8643-8_12">Random
|
||||
Sampling</a></em>, in <em>Non-Uniform Random Variate Generation</em>,
|
||||
edited by L. Devroye (Springer, New York, NY, 1986), pp. 611–641.</div>
|
||||
</div>
|
||||
<div id="ref-BMCP2021" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">2. </div><div
|
||||
class="csl-right-inline">Martin, O. A., Kumar, R. & Lao, J.
|
||||
<em>Bayesian modeling and computation in python</em>. (2021).</div>
|
||||
<div class="csl-left-margin">[2] </div><div class="csl-right-inline">O.
|
||||
A. Martin, R. Kumar, and J. Lao, <em>Bayesian Modeling and Computation
|
||||
in Python</em> (Boca Raton, 2021).</div>
|
||||
</div>
|
||||
<div id="ref-binderGuidePracticalWork1988" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">3. </div><div
|
||||
class="csl-right-inline">Binder, K. & Heermann, D. W. Guide to
|
||||
Practical Work with the Monte Carlo Method. in <em>Monte Carlo
|
||||
Simulation in Statistical Physics: An Introduction</em> (eds. Binder, K.
|
||||
& Heermann, D. W.) 68–112 (Springer Berlin Heidelberg, 1988). doi:<a
|
||||
href="https://doi.org/10.1007/978-3-662-08854-8_3">10.1007/978-3-662-08854-8_3</a>.</div>
|
||||
<div class="csl-left-margin">[3] </div><div class="csl-right-inline">K.
|
||||
Binder and D. W. Heermann, <em><a
|
||||
href="https://doi.org/10.1007/978-3-662-08854-8_3">Guide to Practical
|
||||
Work with the Monte Carlo Method</a></em>, in <em>Monte Carlo Simulation
|
||||
in Statistical Physics: An Introduction</em>, edited by K. Binder and D.
|
||||
W. Heermann (Springer Berlin Heidelberg, Berlin, Heidelberg, 1988), pp.
|
||||
68–112.</div>
|
||||
</div>
|
||||
<div id="ref-kerteszAdvancesComputerSimulation1998" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">4. </div><div
|
||||
class="csl-right-inline"><em>Advances in Computer Simulation: Lectures
|
||||
Held at the Eötvös Summer School in Budapest, Hungary, 16–20 July
|
||||
1996</em>. (Springer-Verlag, 1998). doi:<a
|
||||
href="https://doi.org/10.1007/BFb0105456">10.1007/BFb0105456</a>.</div>
|
||||
<div class="csl-left-margin">[4] </div><div class="csl-right-inline">J.
|
||||
Kertesz and I. Kondor, editors, <em><a
|
||||
href="https://doi.org/10.1007/BFb0105456">Advances in Computer
|
||||
Simulation: Lectures Held at the Eötvös Summer School in Budapest,
|
||||
Hungary, 16–20 July 1996</a></em> (Springer-Verlag, Berlin Heidelberg,
|
||||
1998).</div>
|
||||
</div>
|
||||
<div id="ref-wolffMonteCarloErrors2004" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">5. </div><div
|
||||
class="csl-right-inline">Wolff, U. <a
|
||||
href="https://doi.org/10.1016/S0010-4655(03)00467-3">Monte Carlo errors
|
||||
with less errors</a>. <em>Computer Physics Communications</em>
|
||||
<strong>156</strong>, 143–153 (2004).</div>
|
||||
<div class="csl-left-margin">[5] </div><div class="csl-right-inline">U.
|
||||
Wolff, <em><a href="https://doi.org/10.1016/S0010-4655(03)00467-3">Monte
|
||||
Carlo Errors with Less Errors</a></em>, Computer Physics Communications
|
||||
<strong>156</strong>, 143 (2004).</div>
|
||||
</div>
|
||||
<div id="ref-kellyReversibilityStochasticNetworks1981" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">6. </div><div
|
||||
class="csl-right-inline">Kelly, F. P. <a
|
||||
href="https://doi.org/10.2307/2287860">Reversibility and stochastic
|
||||
networks / F.P. Kelly</a>. <em>SERBIULA (sistema Librum 2.0)</em>
|
||||
<strong>76</strong>, (1981).</div>
|
||||
<div class="csl-left-margin">[6] </div><div class="csl-right-inline">F.
|
||||
P. Kelly, <em><a href="https://doi.org/10.2307/2287860">Reversibility
|
||||
and Stochastic Networks / F.P. Kelly</a></em>, SERBIULA (Sistema Librum
|
||||
2.0) <strong>76</strong>, (1981).</div>
|
||||
</div>
|
||||
<div id="ref-krauthIntroductionMonteCarlo1998" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">7. </div><div
|
||||
class="csl-right-inline">Krauth, W. Introduction To Monte Carlo
|
||||
Algorithms. in <em>Advances in Computer Simulation: Lectures Held at the
|
||||
Eötvös Summer School in Budapest, Hungary, 16–20 July 1996</em>
|
||||
(Springer-Verlag, 1998). doi:<a
|
||||
href="https://doi.org/10.1007/BFb0105456">10.1007/BFb0105456</a>.</div>
|
||||
<div class="csl-left-margin">[7] </div><div class="csl-right-inline">W.
|
||||
Krauth, <em><a href="https://doi.org/10.1007/BFb0105456">Introduction To
|
||||
Monte Carlo Algorithms</a></em>, in <em>Advances in Computer Simulation:
|
||||
Lectures Held at the Eötvös Summer School in Budapest, Hungary, 16–20
|
||||
July 1996</em> (Springer-Verlag, Berlin Heidelberg, 1998).</div>
|
||||
</div>
|
||||
<div id="ref-kapferSamplingPolytopeHarddisk2013" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">8. </div><div
|
||||
class="csl-right-inline">Kapfer, S. C. & Krauth, W. <a
|
||||
<div class="csl-left-margin">[8] </div><div class="csl-right-inline">S.
|
||||
C. Kapfer and W. Krauth, <em><a
|
||||
href="https://doi.org/10.1088/1742-6596/454/1/012031">Sampling from a
|
||||
polytope and hard-disk Monte Carlo</a>. <em>J. Phys.: Conf. Ser.</em>
|
||||
Polytope and Hard-Disk Monte Carlo</a></em>, J. Phys.: Conf. Ser.
|
||||
<strong>454</strong>, 012031 (2013).</div>
|
||||
</div>
|
||||
<div id="ref-robertsWeakConvergenceOptimal1997" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">9. </div><div
|
||||
class="csl-right-inline">Roberts, G. O., Gelman, A. & Gilks, W. R.
|
||||
<a href="https://doi.org/10.1214/aoap/1034625254">Weak convergence and
|
||||
optimal scaling of random walk Metropolis algorithms</a>. <em>Ann. Appl.
|
||||
Probab.</em> <strong>7</strong>, 110–120 (1997).</div>
|
||||
<div class="csl-left-margin">[9] </div><div class="csl-right-inline">G.
|
||||
O. Roberts, A. Gelman, and W. R. Gilks, <em><a
|
||||
href="https://doi.org/10.1214/aoap/1034625254">Weak Convergence and
|
||||
Optimal Scaling of Random Walk Metropolis Algorithms</a></em>, Ann.
|
||||
Appl. Probab. <strong>7</strong>, 110 (1997).</div>
|
||||
</div>
|
||||
<div id="ref-huangAcceleratedMonteCarlo2017" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">10. </div><div
|
||||
class="csl-right-inline">Huang, L. & Wang, L. <a
|
||||
<div class="csl-left-margin">[10] </div><div class="csl-right-inline">L.
|
||||
Huang and L. Wang, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.95.035105">Accelerated Monte
|
||||
Carlo simulations with restricted Boltzmann machines</a>. <em>Phys. Rev.
|
||||
B</em> <strong>95</strong>, 035105 (2017).</div>
|
||||
Carlo Simulations with Restricted Boltzmann Machines</a></em>, Phys.
|
||||
Rev. B <strong>95</strong>, 035105 (2017).</div>
|
||||
</div>
|
||||
<div id="ref-binderFiniteSizeScaling1981" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">11. </div><div
|
||||
class="csl-right-inline">Binder, K. <a
|
||||
href="https://doi.org/10.1007/BF01293604">Finite size scaling analysis
|
||||
of ising model block distribution functions</a>. <em>Z. Physik B -
|
||||
Condensed Matter</em> <strong>43</strong>, 119–140 (1981).</div>
|
||||
<div class="csl-left-margin">[11] </div><div class="csl-right-inline">K.
|
||||
Binder, <em><a href="https://doi.org/10.1007/BF01293604">Finite Size
|
||||
Scaling Analysis of Ising Model Block Distribution Functions</a></em>,
|
||||
Z. Physik B - Condensed Matter <strong>43</strong>, 119 (1981).</div>
|
||||
</div>
|
||||
<div id="ref-bolchQueueingNetworksMarkov2006" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">12. </div><div
|
||||
class="csl-right-inline">Bolch, G., Greiner, S., Meer, H. de &
|
||||
Trivedi, K. S. <em>Queueing Networks and Markov Chains: Modeling and
|
||||
Performance Evaluation with Computer Science Applications</em>. (John
|
||||
Wiley & Sons, 2006).</div>
|
||||
<div class="csl-left-margin">[12] </div><div class="csl-right-inline">G.
|
||||
Bolch, S. Greiner, H. de Meer, and K. S. Trivedi, <em>Queueing Networks
|
||||
and Markov Chains: Modeling and Performance Evaluation with Computer
|
||||
Science Applications</em> (John Wiley & Sons, 2006).</div>
|
||||
</div>
|
||||
<div id="ref-usmaniInversionTridiagonalJacobi1994" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">13. </div><div
|
||||
class="csl-right-inline">Usmani, R. A. <a
|
||||
<div class="csl-left-margin">[13] </div><div class="csl-right-inline">R.
|
||||
A. Usmani, <em><a
|
||||
href="https://doi.org/10.1016/0024-3795(94)90414-6">Inversion of a
|
||||
tridiagonal jacobi matrix</a>. <em>Linear Algebra and its
|
||||
Applications</em> <strong>212-213</strong>, 413–414 (1994).</div>
|
||||
Tridiagonal Jacobi Matrix</a></em>, Linear Algebra and Its Applications
|
||||
<strong>212-213</strong>, 413 (1994).</div>
|
||||
</div>
|
||||
<div id="ref-krauthIntroductionMonteCarlo1996" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">14. </div><div
|
||||
class="csl-right-inline">Krauth, W. <a
|
||||
href="http://arxiv.org/abs/cond-mat/9612186">Introduction To Monte Carlo
|
||||
Algorithms</a>. <em>arXiv:cond-mat/9612186</em> (1996).</div>
|
||||
<div class="csl-left-margin">[14] </div><div class="csl-right-inline">W.
|
||||
Krauth, <em><a href="http://arxiv.org/abs/cond-mat/9612186">Introduction
|
||||
To Monte Carlo Algorithms</a></em>, arXiv:cond-Mat/9612186 (1996).</div>
|
||||
</div>
|
||||
<div id="ref-hastingsMonteCarloSampling1970" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">15. </div><div
|
||||
class="csl-right-inline">Hastings, W. K. <a
|
||||
href="https://doi.org/10.1093/biomet/57.1.97">Monte Carlo sampling
|
||||
methods using Markov chains and their applications</a>.
|
||||
<em>Biometrika</em> <strong>57</strong>, 97–109 (1970).</div>
|
||||
<div class="csl-left-margin">[15] </div><div class="csl-right-inline">W.
|
||||
K. Hastings, <em><a href="https://doi.org/10.1093/biomet/57.1.97">Monte
|
||||
Carlo Sampling Methods Using Markov Chains and Their
|
||||
Applications</a></em>, Biometrika <strong>57</strong>, 97 (1970).</div>
|
||||
</div>
|
||||
<div id="ref-hodsonMCMCFKModel2021" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">16. </div><div
|
||||
class="csl-right-inline">Hodson, T. Markov Chain Monte Carlo for the
|
||||
Kitaev Model. (2021) doi:<a
|
||||
href="https://doi.org/10.5281/zenodo.4593904">10.5281/zenodo.4593904</a>.</div>
|
||||
<div class="csl-left-margin">[16] </div><div class="csl-right-inline">T.
|
||||
Hodson, <em><a href="https://doi.org/10.5281/zenodo.4593904">Markov
|
||||
Chain Monte Carlo for the Kitaev Model</a></em>, (2021).</div>
|
||||
</div>
|
||||
<div id="ref-kramerLocalizationTheoryExperiment1993" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">17. </div><div
|
||||
class="csl-right-inline">Kramer, B. & MacKinnon, A. <a
|
||||
href="https://doi.org/10.1088/0034-4885/56/12/001">Localization: theory
|
||||
and experiment</a>. <em>Rep. Prog. Phys.</em> <strong>56</strong>,
|
||||
1469–1564 (1993).</div>
|
||||
<div class="csl-left-margin">[17] </div><div class="csl-right-inline">B.
|
||||
Kramer and A. MacKinnon, <em><a
|
||||
href="https://doi.org/10.1088/0034-4885/56/12/001">Localization: Theory
|
||||
and Experiment</a></em>, Rep. Prog. Phys. <strong>56</strong>, 1469
|
||||
(1993).</div>
|
||||
</div>
|
||||
<div id="ref-andersonAbsenceDiffusionCertain1958" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">18. </div><div
|
||||
class="csl-right-inline">Anderson, P. W. <a
|
||||
<div class="csl-left-margin">[18] </div><div class="csl-right-inline">P.
|
||||
W. Anderson, <em><a
|
||||
href="https://doi.org/10.1103/PhysRev.109.1492">Absence of Diffusion in
|
||||
Certain Random Lattices</a>. <em>Phys. Rev.</em> <strong>109</strong>,
|
||||
1492–1505 (1958).</div>
|
||||
Certain Random Lattices</a></em>, Phys. Rev. <strong>109</strong>, 1492
|
||||
(1958).</div>
|
||||
</div>
|
||||
</div>
|
||||
<section class="footnotes footnotes-end-of-document"
|
||||
@ -1675,11 +1666,11 @@ systems with a tri-diagonal matrix representation (open boundary
|
||||
conditions and nearest neighbour hopping) and like <span
|
||||
class="math inline">\(N^3\)</span> for a generic matrix <span
|
||||
class="citation"
|
||||
data-cites="bolchQueueingNetworksMarkov2006 usmaniInversionTridiagonalJacobi1994"><sup><a
|
||||
data-cites="bolchQueueingNetworksMarkov2006 usmaniInversionTridiagonalJacobi1994"> [<a
|
||||
href="#ref-bolchQueueingNetworksMarkov2006"
|
||||
role="doc-biblioref">12</a>,<a
|
||||
href="#ref-usmaniInversionTridiagonalJacobi1994"
|
||||
role="doc-biblioref">13</a></sup></span>.<a href="#fnref2"
|
||||
role="doc-biblioref">13</a>]</span>.<a href="#fnref2"
|
||||
class="footnote-back" role="doc-backlink">↩︎</a></p></li>
|
||||
<li id="fn3" role="doc-endnote"><p>or, in the general case, any desired
|
||||
distribution. MCMC has found a lot of use in sampling from the
|
||||
@ -1689,9 +1680,9 @@ role="doc-backlink">↩︎</a></p></li>
|
||||
<li id="fn4" role="doc-endnote"><p>or equivalently as the number of MCMC
|
||||
steps after which the samples are correlated below some cutoff,
|
||||
see <span class="citation"
|
||||
data-cites="krauthIntroductionMonteCarlo1996"><sup><a
|
||||
data-cites="krauthIntroductionMonteCarlo1996"> [<a
|
||||
href="#ref-krauthIntroductionMonteCarlo1996"
|
||||
role="doc-biblioref">14</a></sup></span> for a more rigorous definition
|
||||
role="doc-biblioref">14</a>]</span> for a more rigorous definition
|
||||
involving a sum over the auto-correlation function.<a href="#fnref4"
|
||||
class="footnote-back" role="doc-backlink">↩︎</a></p></li>
|
||||
</ol>
|
||||
|
@ -327,9 +327,9 @@ constant <span class="math inline">\(U=5\)</span> and constant <span
|
||||
class="math inline">\(J=5\)</span>, respectively. We determined the
|
||||
transition temperatures from the crossings of the Binder cumulants <span
|
||||
class="math inline">\(B_4 = \tex{m^4}/\tex{m^2}^2\)</span> <span
|
||||
class="citation" data-cites="binderFiniteSizeScaling1981"><sup><a
|
||||
class="citation" data-cites="binderFiniteSizeScaling1981"> [<a
|
||||
href="#ref-binderFiniteSizeScaling1981"
|
||||
role="doc-biblioref">1</a></sup></span>. For a representative set of
|
||||
role="doc-biblioref">1</a>]</span>. For a representative set of
|
||||
parameters, Fig. [<a href="#fig:phase_diagram" data-reference-type="ref"
|
||||
data-reference="fig:phase_diagram">1</a>c] shows the order parameter
|
||||
<span class="math inline">\(\tex{m}^2\)</span>. Fig. [<a
|
||||
@ -350,12 +350,12 @@ fermion mediated RKKY interaction between the Ising spins is absent.</p>
|
||||
<p>Our main interest concerns the additional structure of the fermionic
|
||||
sector in the high temperature phase. Following Ref. <span
|
||||
class="citation"
|
||||
data-cites="antipovInteractionTunedAndersonMott2016"><sup><a
|
||||
data-cites="antipovInteractionTunedAndersonMott2016"> [<a
|
||||
href="#ref-antipovInteractionTunedAndersonMott2016"
|
||||
role="doc-biblioref">2</a></sup></span>, we can distinguish between the
|
||||
Mott and Anderson insulating phases. The former is characterised by a
|
||||
gapped DOS in the absence of a CDW. Thus, the opening of a gap for large
|
||||
<span class="math inline">\(U\)</span> is distinct from the gap-opening
|
||||
role="doc-biblioref">2</a>]</span>, we can distinguish between the Mott
|
||||
and Anderson insulating phases. The former is characterised by a gapped
|
||||
DOS in the absence of a CDW. Thus, the opening of a gap for large <span
|
||||
class="math inline">\(U\)</span> is distinct from the gap-opening
|
||||
induced by the translational symmetry breaking in the CDW state below
|
||||
<span class="math inline">\(T_c\)</span>, see also Fig. [<a
|
||||
href="#fig:band_opening" data-reference-type="ref"
|
||||
@ -381,12 +381,11 @@ ka)^2}\;.\]</span></p>
|
||||
<p>At infinite temperature, all the spin configurations become equally
|
||||
likely and the fermionic model reduces to one of binary uncorrelated
|
||||
disorder in which all eigenstates are Anderson localised <span
|
||||
class="citation"
|
||||
data-cites="abrahamsScalingTheoryLocalization1979"><sup><a
|
||||
class="citation" data-cites="abrahamsScalingTheoryLocalization1979"> [<a
|
||||
href="#ref-abrahamsScalingTheoryLocalization1979"
|
||||
role="doc-biblioref">3</a></sup></span>. An Anderson localised state
|
||||
centered around <span class="math inline">\(r_0\)</span> has magnitude
|
||||
that drops exponentially over some localisation length <span
|
||||
role="doc-biblioref">3</a>]</span>. An Anderson localised state centered
|
||||
around <span class="math inline">\(r_0\)</span> has magnitude that drops
|
||||
exponentially over some localisation length <span
|
||||
class="math inline">\(\xi\)</span> i.e <span
|
||||
class="math inline">\(|\psi(r)|^2 \sim \exp{-\abs{r -
|
||||
r_0}/\xi}\)</span>. Calculating <span class="math inline">\(\xi\)</span>
|
||||
@ -417,12 +416,12 @@ additional complication arises from the fact that the scaling exponent
|
||||
may display intermediate behaviours for correlated disorder and in the
|
||||
vicinity of a localisation-delocalisation transition <span
|
||||
class="citation"
|
||||
data-cites="kramerLocalizationTheoryExperiment1993 eversAndersonTransitions2008"><sup><a
|
||||
data-cites="kramerLocalizationTheoryExperiment1993 eversAndersonTransitions2008"> [<a
|
||||
href="#ref-kramerLocalizationTheoryExperiment1993"
|
||||
role="doc-biblioref">4</a>,<a href="#ref-eversAndersonTransitions2008"
|
||||
role="doc-biblioref">5</a></sup></span>. The thermal defects of the CDW
|
||||
phase lead to a binary disorder potential with a finite correlation
|
||||
length, which in principle could result in delocalized eigenstates.</p>
|
||||
role="doc-biblioref">5</a>]</span>. The thermal defects of the CDW phase
|
||||
lead to a binary disorder potential with a finite correlation length,
|
||||
which in principle could result in delocalized eigenstates.</p>
|
||||
<p>The key question for our system is then: How is the <span
|
||||
class="math inline">\(T=0\)</span> CDW phase with fully delocalized
|
||||
fermionic states connected to the fully localized phase at high
|
||||
@ -488,7 +487,7 @@ alt="The DOS (a) and scaling exponent \tau (b) as a function of energy for the C
|
||||
<div id="fig:indiv_IPR_disorder" class="fignos">
|
||||
<figure>
|
||||
<img src="pdf_figs/indiv_IPR_disorder.svg"
|
||||
alt="Figure 4: A comparison of the full FK model to a simple binary disorder model (DM) with a CDW wave background perturbed by uncorrelated defects at density 0 < \rho < 1 matched to the largest corresponding FK model. As in Fig 2, the Energy resolved DOS(\omega) and \tau are shown. The DOSs match well and this data makes clear that the apparent scaling of IPR with system size is a finite size effect due to weak localisation 2, hence all the states are indeed localised as one would expect in 1D. The disorder model \tau_0,\tau_1 for each figure are: (a) 0.01\pm0.05, -0.02\pm0.06 (b) 0.01\pm0.04, -0.01\pm0.04 (c) 0.05\pm0.06, 0.04\pm0.06 (d) -0.03\pm0.06, 0.01\pm0.06. The lines are fit on system sizes N > 400" />
|
||||
alt="Figure 4: A comparison of the full FK model to a simple binary disorder model (DM) with a CDW wave background perturbed by uncorrelated defects at density 0 < \rho < 1 matched to the largest corresponding FK model. As in Fig 2, the Energy resolved DOS(\omega) and \tau are shown. The DOSs match well and this data makes clear that the apparent scaling of IPR with system size is a finite size effect due to weak localisation [2], hence all the states are indeed localised as one would expect in 1D. The disorder model \tau_0,\tau_1 for each figure are: (a) 0.01\pm0.05, -0.02\pm0.06 (b) 0.01\pm0.04, -0.01\pm0.04 (c) 0.05\pm0.06, 0.04\pm0.06 (d) -0.03\pm0.06, 0.01\pm0.06. The lines are fit on system sizes N > 400" />
|
||||
<figcaption aria-hidden="true"><span>Figure 4:</span> A comparison of
|
||||
the full FK model to a simple binary disorder model (DM) with a CDW wave
|
||||
background perturbed by uncorrelated defects at density <span
|
||||
@ -500,9 +499,9 @@ Energy resolved DOS(<span class="math inline">\(\omega\)</span>) and
|
||||
and this data makes clear that the apparent scaling of IPR with system
|
||||
size is a finite size effect due to weak localisation <span
|
||||
class="citation"
|
||||
data-cites="antipovInteractionTunedAndersonMott2016"><sup><a
|
||||
data-cites="antipovInteractionTunedAndersonMott2016"> [<a
|
||||
href="#ref-antipovInteractionTunedAndersonMott2016"
|
||||
role="doc-biblioref">2</a></sup></span>, hence all the states are indeed
|
||||
role="doc-biblioref">2</a>]</span>, hence all the states are indeed
|
||||
localised as one would expect in 1D. The disorder model <span
|
||||
class="math inline">\(\tau_0,\tau_1\)</span> for each figure are: (a)
|
||||
<span class="math inline">\(0.01\pm0.05, -0.02\pm0.06\)</span> (b) <span
|
||||
@ -534,22 +533,21 @@ class="math inline">\(\tau = 0.30\pm0.03\)</span> and <span
|
||||
class="math inline">\(\tau = 0.15\pm0.05\)</span>, respectively. This
|
||||
surprising finding suggests that the CDW bands are partially delocalised
|
||||
with multi-fractal behaviour of the wavefunctions <span class="citation"
|
||||
data-cites="eversAndersonTransitions2008"><sup><a
|
||||
data-cites="eversAndersonTransitions2008"> [<a
|
||||
href="#ref-eversAndersonTransitions2008"
|
||||
role="doc-biblioref">5</a></sup></span>. This phenomenon would be
|
||||
unexpected in a 1D model as they generally do not support delocalisation
|
||||
in the presence of disorder except as the result of correlations in the
|
||||
role="doc-biblioref">5</a>]</span>. This phenomenon would be unexpected
|
||||
in a 1D model as they generally do not support delocalisation in the
|
||||
presence of disorder except as the result of correlations in the
|
||||
emergent disorder potential <span class="citation"
|
||||
data-cites="croyAndersonLocalization1D2011 goldshteinPurePointSpectrum1977"><sup><a
|
||||
data-cites="croyAndersonLocalization1D2011 goldshteinPurePointSpectrum1977"> [<a
|
||||
href="#ref-croyAndersonLocalization1D2011" role="doc-biblioref">6</a>,<a
|
||||
href="#ref-goldshteinPurePointSpectrum1977"
|
||||
role="doc-biblioref">7</a></sup></span>. However, we later show by
|
||||
comparison to an uncorrelated Anderson model that these nonzero
|
||||
exponents are a finite size effect and the states are localised with a
|
||||
finite <span class="math inline">\(\xi\)</span> similar to the system
|
||||
size. As a result, the IPR does not scale correctly until the system
|
||||
size has grown much larger than <span
|
||||
class="math inline">\(\xi\)</span>. Fig. [<a
|
||||
role="doc-biblioref">7</a>]</span>. However, we later show by comparison
|
||||
to an uncorrelated Anderson model that these nonzero exponents are a
|
||||
finite size effect and the states are localised with a finite <span
|
||||
class="math inline">\(\xi\)</span> similar to the system size. As a
|
||||
result, the IPR does not scale correctly until the system size has grown
|
||||
much larger than <span class="math inline">\(\xi\)</span>. Fig. [<a
|
||||
href="#fig:indiv_IPR_disorder" data-reference-type="ref"
|
||||
data-reference="fig:indiv_IPR_disorder">4</a>] shows that the scaling of
|
||||
the IPR in the CDW phase does flatten out eventually.</p>
|
||||
@ -562,21 +560,21 @@ white, which highlights the distinction between the gapped Mott phase
|
||||
and the ungapped Anderson phase. In-gap states appear just below the
|
||||
critical point, smoothly filling the bandgap in the Anderson phase and
|
||||
forming islands in the Mott phase. As in the finite <span
|
||||
class="citation" data-cites="zondaGaplessRegimeCharge2019"><sup><a
|
||||
class="citation" data-cites="zondaGaplessRegimeCharge2019"> [<a
|
||||
href="#ref-zondaGaplessRegimeCharge2019"
|
||||
role="doc-biblioref"><strong>zondaGaplessRegimeCharge2019?</strong></a></sup></span>
|
||||
role="doc-biblioref"><strong>zondaGaplessRegimeCharge2019?</strong></a>]</span>
|
||||
and infinite dimensional <span class="citation"
|
||||
data-cites="hassanSpectralPropertiesChargedensitywave2007"><sup><a
|
||||
data-cites="hassanSpectralPropertiesChargedensitywave2007"> [<a
|
||||
href="#ref-hassanSpectralPropertiesChargedensitywave2007"
|
||||
role="doc-biblioref">8</a></sup></span> cases, the in-gap states merge
|
||||
and are pushed to lower energy for decreasing U as the <span
|
||||
role="doc-biblioref">8</a>]</span> cases, the in-gap states merge and
|
||||
are pushed to lower energy for decreasing U as the <span
|
||||
class="math inline">\(T=0\)</span> CDW gap closes. Intuitively, the
|
||||
presence of in-gap states can be understood as a result of domain wall
|
||||
fluctuations away from the AFM ordered background. These domain walls
|
||||
act as local potentials for impurity-like bound states <span
|
||||
class="citation" data-cites="zondaGaplessRegimeCharge2019"><sup><a
|
||||
class="citation" data-cites="zondaGaplessRegimeCharge2019"> [<a
|
||||
href="#ref-zondaGaplessRegimeCharge2019"
|
||||
role="doc-biblioref"><strong>zondaGaplessRegimeCharge2019?</strong></a></sup></span>.</p>
|
||||
role="doc-biblioref"><strong>zondaGaplessRegimeCharge2019?</strong></a>]</span>.</p>
|
||||
<p>In order to understand the localization properties we can compare the
|
||||
behaviour of our model with that of a simpler Anderson disorder model
|
||||
(DM) in which the spins are replaced by a CDW background with
|
||||
@ -623,18 +621,18 @@ modify the localisation behaviour? Similar to other soluble models of
|
||||
disorder-free localisation, we expect intriguing out-of equilibrium
|
||||
physics, for example slow entanglement dynamics akin to more generic
|
||||
interacting systems <span class="citation"
|
||||
data-cites="hartLogarithmicEntanglementGrowth2020"><sup><a
|
||||
data-cites="hartLogarithmicEntanglementGrowth2020"> [<a
|
||||
href="#ref-hartLogarithmicEntanglementGrowth2020"
|
||||
role="doc-biblioref">9</a></sup></span>. One could also investigate
|
||||
whether the rich ground state phenomenology of the FK model as a
|
||||
function of filling <span class="citation"
|
||||
data-cites="gruberGroundStatesSpinless1990"><sup><a
|
||||
role="doc-biblioref">9</a>]</span>. One could also investigate whether
|
||||
the rich ground state phenomenology of the FK model as a function of
|
||||
filling <span class="citation"
|
||||
data-cites="gruberGroundStatesSpinless1990"> [<a
|
||||
href="#ref-gruberGroundStatesSpinless1990"
|
||||
role="doc-biblioref">10</a></sup></span> such as the devil’s
|
||||
staircase <span class="citation"
|
||||
data-cites="michelettiCompleteDevilTextquotesingles1997"><sup><a
|
||||
role="doc-biblioref">10</a>]</span> such as the devil’s staircase <span
|
||||
class="citation"
|
||||
data-cites="michelettiCompleteDevilTextquotesingles1997"> [<a
|
||||
href="#ref-michelettiCompleteDevilTextquotesingles1997"
|
||||
role="doc-biblioref">11</a></sup></span> could be stabilised at finite
|
||||
role="doc-biblioref">11</a>]</span> could be stabilised at finite
|
||||
temperature. In a broader context, we envisage that long-range
|
||||
interactions can also be used to gain a deeper understanding of the
|
||||
temperature evolution of topological phases. One example would be a
|
||||
@ -676,98 +674,94 @@ H_{\mathrm{DM}} = & \;U \sum_{i} (-1)^i \; d_i \;(c^\dag_{i}c_{i} -
|
||||
\nonumber\end{aligned}\]</span></p>
|
||||
<div class="sourceCode" id="cb1"><pre
|
||||
class="sourceCode python"><code class="sourceCode python"></code></pre></div>
|
||||
<div id="refs" class="references csl-bib-body" data-line-spacing="2"
|
||||
role="doc-bibliography">
|
||||
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
|
||||
<div id="ref-binderFiniteSizeScaling1981" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">1. </div><div
|
||||
class="csl-right-inline">Binder, K. <a
|
||||
href="https://doi.org/10.1007/BF01293604">Finite size scaling analysis
|
||||
of ising model block distribution functions</a>. <em>Z. Physik B -
|
||||
Condensed Matter</em> <strong>43</strong>, 119–140 (1981).</div>
|
||||
<div class="csl-left-margin">[1] </div><div class="csl-right-inline">K.
|
||||
Binder, <em><a href="https://doi.org/10.1007/BF01293604">Finite Size
|
||||
Scaling Analysis of Ising Model Block Distribution Functions</a></em>,
|
||||
Z. Physik B - Condensed Matter <strong>43</strong>, 119 (1981).</div>
|
||||
</div>
|
||||
<div id="ref-antipovInteractionTunedAndersonMott2016" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">2. </div><div
|
||||
class="csl-right-inline">Antipov, A. E., Javanmard, Y., Ribeiro, P.
|
||||
& Kirchner, S. <a
|
||||
<div class="csl-left-margin">[2] </div><div class="csl-right-inline">A.
|
||||
E. Antipov, Y. Javanmard, P. Ribeiro, and S. Kirchner, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.117.146601">Interaction-Tuned
|
||||
Anderson versus Mott Localization</a>. <em>Phys. Rev. Lett.</em>
|
||||
Anderson Versus Mott Localization</a></em>, Phys. Rev. Lett.
|
||||
<strong>117</strong>, 146601 (2016).</div>
|
||||
</div>
|
||||
<div id="ref-abrahamsScalingTheoryLocalization1979" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">3. </div><div
|
||||
class="csl-right-inline">Abrahams, E., Anderson, P. W., Licciardello, D.
|
||||
C. & Ramakrishnan, T. V. <a
|
||||
href="https://doi.org/10.1103/PhysRevLett.42.673">Scaling Theory of
|
||||
Localization: Absence of Quantum Diffusion in Two Dimensions</a>.
|
||||
<em>Phys. Rev. Lett.</em> <strong>42</strong>, 673–676 (1979).</div>
|
||||
<div class="csl-left-margin">[3] </div><div class="csl-right-inline">E.
|
||||
Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan,
|
||||
<em><a href="https://doi.org/10.1103/PhysRevLett.42.673">Scaling Theory
|
||||
of Localization: Absence of Quantum Diffusion in Two
|
||||
Dimensions</a></em>, Phys. Rev. Lett. <strong>42</strong>, 673
|
||||
(1979).</div>
|
||||
</div>
|
||||
<div id="ref-kramerLocalizationTheoryExperiment1993" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">4. </div><div
|
||||
class="csl-right-inline">Kramer, B. & MacKinnon, A. <a
|
||||
href="https://doi.org/10.1088/0034-4885/56/12/001">Localization: theory
|
||||
and experiment</a>. <em>Rep. Prog. Phys.</em> <strong>56</strong>,
|
||||
1469–1564 (1993).</div>
|
||||
<div class="csl-left-margin">[4] </div><div class="csl-right-inline">B.
|
||||
Kramer and A. MacKinnon, <em><a
|
||||
href="https://doi.org/10.1088/0034-4885/56/12/001">Localization: Theory
|
||||
and Experiment</a></em>, Rep. Prog. Phys. <strong>56</strong>, 1469
|
||||
(1993).</div>
|
||||
</div>
|
||||
<div id="ref-eversAndersonTransitions2008" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">5. </div><div
|
||||
class="csl-right-inline">Evers, F. & Mirlin, A. D. <a
|
||||
<div class="csl-left-margin">[5] </div><div class="csl-right-inline">F.
|
||||
Evers and A. D. Mirlin, <em><a
|
||||
href="https://doi.org/10.1103/RevModPhys.80.1355">Anderson
|
||||
Transitions</a>. <em>Rev. Mod. Phys.</em> <strong>80</strong>, 1355–1417
|
||||
Transitions</a></em>, Rev. Mod. Phys. <strong>80</strong>, 1355
|
||||
(2008).</div>
|
||||
</div>
|
||||
<div id="ref-croyAndersonLocalization1D2011" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">6. </div><div
|
||||
class="csl-right-inline">Croy, A., Cain, P. & Schreiber, M. <a
|
||||
href="https://doi.org/10.1140/epjb/e2011-20212-1">Anderson localization
|
||||
in 1D systems with correlated disorder</a>. <em>Eur. Phys. J. B</em>
|
||||
<div class="csl-left-margin">[6] </div><div class="csl-right-inline">A.
|
||||
Croy, P. Cain, and M. Schreiber, <em><a
|
||||
href="https://doi.org/10.1140/epjb/e2011-20212-1">Anderson Localization
|
||||
in 1d Systems with Correlated Disorder</a></em>, Eur. Phys. J. B
|
||||
<strong>82</strong>, 107 (2011).</div>
|
||||
</div>
|
||||
<div id="ref-goldshteinPurePointSpectrum1977" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">7. </div><div
|
||||
class="csl-right-inline">Gol’dshtein, I. Ya., Molchanov, S. A. &
|
||||
Pastur, L. A. <a href="https://doi.org/10.1007/BF01135526">A pure point
|
||||
spectrum of the stochastic one-dimensional schrödinger operator</a>.
|
||||
<em>Funct Anal Its Appl</em> <strong>11</strong>, 1–8 (1977).</div>
|
||||
<div class="csl-left-margin">[7] </div><div class="csl-right-inline">I.
|
||||
Ya. Gol’dshtein, S. A. Molchanov, and L. A. Pastur, <em><a
|
||||
href="https://doi.org/10.1007/BF01135526">A Pure Point Spectrum of the
|
||||
Stochastic One-Dimensional Schrödinger Operator</a></em>, Funct Anal Its
|
||||
Appl <strong>11</strong>, 1 (1977).</div>
|
||||
</div>
|
||||
<div id="ref-hassanSpectralPropertiesChargedensitywave2007"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">8. </div><div
|
||||
class="csl-right-inline">Hassan, S. R. & Krishnamurthy, H. R. <a
|
||||
href="https://doi.org/10.1103/PhysRevB.76.205109">Spectral properties in
|
||||
the charge-density-wave phase of the half-filled Falicov-Kimball
|
||||
model</a>. <em>Phys. Rev. B</em> <strong>76</strong>, 205109
|
||||
(2007).</div>
|
||||
<div class="csl-left-margin">[8] </div><div class="csl-right-inline">S.
|
||||
R. Hassan and H. R. Krishnamurthy, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.76.205109">Spectral Properties in
|
||||
the Charge-Density-Wave Phase of the Half-Filled Falicov-Kimball
|
||||
Model</a></em>, Phys. Rev. B <strong>76</strong>, 205109 (2007).</div>
|
||||
</div>
|
||||
<div id="ref-hartLogarithmicEntanglementGrowth2020" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">9. </div><div
|
||||
class="csl-right-inline">Hart, O., Gopalakrishnan, S. & Castelnovo,
|
||||
C. <a href="http://arxiv.org/abs/2009.00618">Logarithmic entanglement
|
||||
growth from disorder-free localisation in the two-leg compass
|
||||
ladder</a>. <em>arXiv:2009.00618 [cond-mat]</em> (2020).</div>
|
||||
<div class="csl-left-margin">[9] </div><div class="csl-right-inline">O.
|
||||
Hart, S. Gopalakrishnan, and C. Castelnovo, <em><a
|
||||
href="http://arxiv.org/abs/2009.00618">Logarithmic Entanglement Growth
|
||||
from Disorder-Free Localisation in the Two-Leg Compass Ladder</a></em>,
|
||||
arXiv:2009.00618 [Cond-Mat] (2020).</div>
|
||||
</div>
|
||||
<div id="ref-gruberGroundStatesSpinless1990" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">10. </div><div
|
||||
class="csl-right-inline">Gruber, C., Iwanski, J., Jedrzejewski, J. &
|
||||
Lemberger, P. <a href="https://doi.org/10.1103/PhysRevB.41.2198">Ground
|
||||
states of the spinless Falicov-Kimball model</a>. <em>Phys. Rev. B</em>
|
||||
<strong>41</strong>, 2198–2209 (1990).</div>
|
||||
<div class="csl-left-margin">[10] </div><div class="csl-right-inline">C.
|
||||
Gruber, J. Iwanski, J. Jedrzejewski, and P. Lemberger, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.41.2198">Ground States of the
|
||||
Spinless Falicov-Kimball Model</a></em>, Phys. Rev. B
|
||||
<strong>41</strong>, 2198 (1990).</div>
|
||||
</div>
|
||||
<div id="ref-michelettiCompleteDevilTextquotesingles1997"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">11. </div><div
|
||||
class="csl-right-inline">Micheletti, C., Harris, A. B. & Yeomans, J.
|
||||
M. <a href="https://doi.org/10.1088/0305-4470/30/21/002">A complete
|
||||
devil\textquotesingles staircase in the Falicov - Kimball model</a>.
|
||||
<em>J. Phys. A: Math. Gen.</em> <strong>30</strong>, L711–L717
|
||||
<div class="csl-left-margin">[11] </div><div class="csl-right-inline">C.
|
||||
Micheletti, A. B. Harris, and J. M. Yeomans, <em><a
|
||||
href="https://doi.org/10.1088/0305-4470/30/21/002">A Complete
|
||||
Devil\textquotesingles Staircase in the Falicov - Kimball
|
||||
Model</a></em>, J. Phys. A: Math. Gen. <strong>30</strong>, L711
|
||||
(1997).</div>
|
||||
</div>
|
||||
</div>
|
||||
|
@ -539,10 +539,10 @@ symmetries</strong> and <strong><span class="math inline">\(2^2 =
|
||||
4\)</span> topological sectors</strong>.</p>
|
||||
<p>The topological sector forms the basis of proposals to construct
|
||||
topologically protected qubits since the four sectors can only be mixed
|
||||
by a highly non-local perturbations<span class="citation"
|
||||
data-cites="kitaevFaulttolerantQuantumComputation2003"><sup><a
|
||||
by a highly non-local perturbations <span class="citation"
|
||||
data-cites="kitaevFaulttolerantQuantumComputation2003"> [<a
|
||||
href="#ref-kitaevFaulttolerantQuantumComputation2003"
|
||||
role="doc-biblioref">1</a></sup></span>.</p>
|
||||
role="doc-biblioref">1</a>]</span>.</p>
|
||||
<p>Takeaway: The Extended Hilbert Space decomposes into a direct product
|
||||
of Flux Sectors, four Topological Sectors and a set of gauge
|
||||
symmetries.</p>
|
||||
@ -675,11 +675,11 @@ any information about the underlying lattice.</p>
|
||||
<p><span class="math display">\[\prod_i^{2N} D_i = \prod_i^{2N} b^x_i
|
||||
\prod_i^{2N} b^y_i \prod_i^{2N} b^z_i \prod_i^{2N} c_i\]</span></p>
|
||||
<p>The product over <span class="math inline">\(c_i\)</span> operators
|
||||
reduces to a determinant of the Q matrix and the fermion parity,
|
||||
see<span class="citation"
|
||||
data-cites="pedrocchiPhysicalSolutionsKitaev2011"><sup><a
|
||||
reduces to a determinant of the Q matrix and the fermion parity, see
|
||||
<span class="citation"
|
||||
data-cites="pedrocchiPhysicalSolutionsKitaev2011"> [<a
|
||||
href="#ref-pedrocchiPhysicalSolutionsKitaev2011"
|
||||
role="doc-biblioref">2</a></sup></span>. The only difference from the
|
||||
role="doc-biblioref">2</a>]</span>. The only difference from the
|
||||
honeycomb case is that we cannot explicitly compute the factors <span
|
||||
class="math inline">\(p_x,p_y,p_z = \pm\;1\)</span> that arise from
|
||||
reordering the b operators such that pairs of vertices linked by the
|
||||
@ -702,20 +702,19 @@ depend only on the lattice structure.</p>
|
||||
<p><span class="math inline">\(\hat{\pi} = \prod{i}^{N} (1 -
|
||||
2\hat{n}_i)\)</span> is the parity of the particular many body state
|
||||
determined by fermionic occupation numbers <span
|
||||
class="math inline">\(n_i\)</span>. As discussed in<span
|
||||
class="citation"
|
||||
data-cites="pedrocchiPhysicalSolutionsKitaev2011"><sup><a
|
||||
class="math inline">\(n_i\)</span>. As discussed in <span
|
||||
class="citation" data-cites="pedrocchiPhysicalSolutionsKitaev2011"> [<a
|
||||
href="#ref-pedrocchiPhysicalSolutionsKitaev2011"
|
||||
role="doc-biblioref">2</a></sup></span>, <span
|
||||
role="doc-biblioref">2</a>]</span>, <span
|
||||
class="math inline">\(\hat{\pi}\)</span> is gauge invariant in the sense
|
||||
that <span class="math inline">\([\hat{\pi}, D_i] = 0\)</span>.</p>
|
||||
<p>This implies that <span class="math inline">\(det(Q^u) \prod -i
|
||||
u_{ij}\)</span> is also a gauge invariant quantity. In translation
|
||||
invariant models this quantity which can be related to the parity of the
|
||||
number of vortex pairs in the system<span class="citation"
|
||||
data-cites="yaoAlgebraicSpinLiquid2009"><sup><a
|
||||
number of vortex pairs in the system <span class="citation"
|
||||
data-cites="yaoAlgebraicSpinLiquid2009"> [<a
|
||||
href="#ref-yaoAlgebraicSpinLiquid2009"
|
||||
role="doc-biblioref">3</a></sup></span>.</p>
|
||||
role="doc-biblioref">3</a>]</span>.</p>
|
||||
<p>All these factors take values <span class="math inline">\(\pm
|
||||
1\)</span> so <span class="math inline">\(\mathcal{P}_0\)</span> is 0 or
|
||||
1 for a particular state. Since <span
|
||||
@ -744,12 +743,12 @@ vortex pair, transporting one of them around the major or minor
|
||||
diameters of the torus and, then, annihilating them again.</figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
<p>More general arguments<span class="citation"
|
||||
data-cites="chungExplicitMonodromyMoore2007 oshikawaTopologicalDegeneracyNonAbelian2007"><sup><a
|
||||
<p>More general arguments <span class="citation"
|
||||
data-cites="chungExplicitMonodromyMoore2007 oshikawaTopologicalDegeneracyNonAbelian2007"> [<a
|
||||
href="#ref-chungExplicitMonodromyMoore2007"
|
||||
role="doc-biblioref">4</a>,<a
|
||||
href="#ref-oshikawaTopologicalDegeneracyNonAbelian2007"
|
||||
role="doc-biblioref">5</a></sup></span> imply that <span
|
||||
role="doc-biblioref">5</a>]</span> imply that <span
|
||||
class="math inline">\(det(Q^u) \prod -i u_{ij}\)</span> has an
|
||||
interesting relationship to the topological fluxes. In the non-Abelian
|
||||
phase, we expect that it will change sign in exactly one of the four
|
||||
@ -838,8 +837,8 @@ definition, the vortex free sector.</p>
|
||||
<p>On the Honeycomb, Lieb’s theorem implies that the ground state
|
||||
corresponds to the state where all <span class="math inline">\(u_{jk} =
|
||||
1\)</span>. This implies that the flux free sector is the ground state
|
||||
sector<span class="citation" data-cites="lieb_flux_1994"><sup><a
|
||||
href="#ref-lieb_flux_1994" role="doc-biblioref">6</a></sup></span>.</p>
|
||||
sector <span class="citation" data-cites="lieb_flux_1994"> [<a
|
||||
href="#ref-lieb_flux_1994" role="doc-biblioref">6</a>]</span>.</p>
|
||||
<p>Lieb’s theorem does not generalise easily to the amorphous case.
|
||||
However, we can get some intuition by examining the problem that will
|
||||
lead to a guess for the ground state. We will then provide numerical
|
||||
@ -919,12 +918,11 @@ i)^{n_{\mathrm{sides}}},
|
||||
class="math inline">\(n_{\mathrm{sides}}\)</span> is the number of edges
|
||||
that form each plaquette and the choice of sign gives a twofold chiral
|
||||
ground state degeneracy.</p>
|
||||
<p>This conjecture is consistent with Lieb’s theorem on regular
|
||||
lattices<span class="citation" data-cites="lieb_flux_1994"><sup><a
|
||||
href="#ref-lieb_flux_1994" role="doc-biblioref">6</a></sup></span> and
|
||||
is supported by numerical evidence. As noted before, any flux that
|
||||
differs from the ground state is an excitation which we call a
|
||||
vortex.</p>
|
||||
<p>This conjecture is consistent with Lieb’s theorem on regular lattices
|
||||
<span class="citation" data-cites="lieb_flux_1994"> [<a
|
||||
href="#ref-lieb_flux_1994" role="doc-biblioref">6</a>]</span> and is
|
||||
supported by numerical evidence. As noted before, any flux that differs
|
||||
from the ground state is an excitation which we call a vortex.</p>
|
||||
<h3 id="finite-size-effects">Finite size effects</h3>
|
||||
<p>This guess only works for larger lattices. To rigorously test it, we
|
||||
would want to directly enumerate the <span
|
||||
@ -975,19 +973,18 @@ around the predicted ground state never yield a lower energy state.</p>
|
||||
<strong>chiral</strong> degeneracy which arises because the global sign
|
||||
of the odd plaquettes does not matter.</p>
|
||||
<p>This happens because we have broken the time reversal symmetry of the
|
||||
original model by adding odd plaquettes<span class="citation"
|
||||
data-cites="Chua2011 yaoExactChiralSpin2007 ChuaPRB2011 Fiete2012 Natori2016 Wu2009 Peri2020 WangHaoranPRB2021"><sup><a
|
||||
original model by adding odd plaquettes <span class="citation"
|
||||
data-cites="Chua2011 yaoExactChiralSpin2007 ChuaPRB2011 Fiete2012 Natori2016 Wu2009 Peri2020 WangHaoranPRB2021"> [<a
|
||||
href="#ref-Chua2011" role="doc-biblioref">7</a>–<a
|
||||
href="#ref-WangHaoranPRB2021"
|
||||
role="doc-biblioref">14</a></sup></span>.</p>
|
||||
href="#ref-WangHaoranPRB2021" role="doc-biblioref">14</a>]</span>.</p>
|
||||
<p>Similarly to the behaviour of the original Kitaev model in response
|
||||
to a magnetic field, we get two degenerate ground states of different
|
||||
handedness. Practically speaking, one ground state is related to the
|
||||
other by inverting the imaginary <span
|
||||
class="math inline">\(\phi\)</span> fluxes<span class="citation"
|
||||
data-cites="yaoExactChiralSpin2007"><sup><a
|
||||
class="math inline">\(\phi\)</span> fluxes <span class="citation"
|
||||
data-cites="yaoExactChiralSpin2007"> [<a
|
||||
href="#ref-yaoExactChiralSpin2007"
|
||||
role="doc-biblioref">8</a></sup></span>.</p>
|
||||
role="doc-biblioref">8</a>]</span>.</p>
|
||||
<h2 id="phases-of-the-kitaev-model">Phases of the Kitaev Model</h2>
|
||||
<p>discuss the Abelian A phase / toric code phase / anisotropic
|
||||
phase</p>
|
||||
@ -1114,190 +1111,185 @@ and construct the set <span class="math inline">\((+1, +1), (+1, -1),
|
||||
<figure>
|
||||
<img src="/assets/thesis/amk_chapter/topological_fluxes.png"
|
||||
data-short-caption="Topological Fluxes" style="width:57.0%"
|
||||
alt="Figure 14: Wilson loops that wind the major or minor diameters of the torus measure flux winding through the hole of the doughnut/torus or through the filling. If they made doughnuts that both had a jam filling and a hole, this analogy would be a lot easier to make15." />
|
||||
alt="Figure 14: Wilson loops that wind the major or minor diameters of the torus measure flux winding through the hole of the doughnut/torus or through the filling. If they made doughnuts that both had a jam filling and a hole, this analogy would be a lot easier to make [15]." />
|
||||
<figcaption aria-hidden="true"><span>Figure 14:</span> Wilson loops that
|
||||
wind the major or minor diameters of the torus measure flux winding
|
||||
through the hole of the doughnut/torus or through the filling. If they
|
||||
made doughnuts that both had a jam filling and a hole, this analogy
|
||||
would be a lot easier to make<span class="citation"
|
||||
data-cites="parkerWhyDoesThis"><sup><a href="#ref-parkerWhyDoesThis"
|
||||
role="doc-biblioref">15</a></sup></span>.</figcaption>
|
||||
would be a lot easier to make <span class="citation"
|
||||
data-cites="parkerWhyDoesThis"> [<a href="#ref-parkerWhyDoesThis"
|
||||
role="doc-biblioref">15</a>]</span>.</figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
<p>However, in the non-Abelian phase we have to wrangle with
|
||||
monodromy<span class="citation"
|
||||
data-cites="chungExplicitMonodromyMoore2007 oshikawaTopologicalDegeneracyNonAbelian2007"><sup><a
|
||||
<p>However, in the non-Abelian phase we have to wrangle with monodromy
|
||||
<span class="citation"
|
||||
data-cites="chungExplicitMonodromyMoore2007 oshikawaTopologicalDegeneracyNonAbelian2007"> [<a
|
||||
href="#ref-chungExplicitMonodromyMoore2007"
|
||||
role="doc-biblioref">4</a>,<a
|
||||
href="#ref-oshikawaTopologicalDegeneracyNonAbelian2007"
|
||||
role="doc-biblioref">5</a></sup></span>. Monodromy is the behaviour of
|
||||
role="doc-biblioref">5</a>]</span>. Monodromy is the behaviour of
|
||||
objects as they move around a singularity. This manifests here in that
|
||||
the identity of a vortex and cloud of Majoranas can change as we wind
|
||||
them around the torus in such a way that, rather than annihilating to
|
||||
the vacuum, we annihilate them to create an excited state instead of a
|
||||
ground state. This means that we end up with only three degenerate
|
||||
ground states in the non-Abelian phase <span class="math inline">\((+1,
|
||||
+1), (+1, -1), (-1, +1)\)</span><span class="citation"
|
||||
data-cites="chungTopologicalQuantumPhase2010 yaoAlgebraicSpinLiquid2009"><sup><a
|
||||
+1), (+1, -1), (-1, +1)\)</span> <span class="citation"
|
||||
data-cites="chungTopologicalQuantumPhase2010 yaoAlgebraicSpinLiquid2009"> [<a
|
||||
href="#ref-yaoAlgebraicSpinLiquid2009" role="doc-biblioref">3</a>,<a
|
||||
href="#ref-chungTopologicalQuantumPhase2010"
|
||||
role="doc-biblioref">16</a></sup></span>. Concretely, this is because
|
||||
the projector enforces both flux and fermion parity. When we wind a
|
||||
vortex around both non-contractible loops of the torus, it flips the
|
||||
flux parity. Therefore, we have to introduce a fermionic excitation to
|
||||
make the state physical. Hence, the process does not give a fourth
|
||||
ground state.</p>
|
||||
role="doc-biblioref">16</a>]</span>. Concretely, this is because the
|
||||
projector enforces both flux and fermion parity. When we wind a vortex
|
||||
around both non-contractible loops of the torus, it flips the flux
|
||||
parity. Therefore, we have to introduce a fermionic excitation to make
|
||||
the state physical. Hence, the process does not give a fourth ground
|
||||
state.</p>
|
||||
<p>Recently, the topology has notably gained interest because of
|
||||
proposals to use this ground state degeneracy to implement both
|
||||
passively fault tolerant and actively stabilised quantum
|
||||
computations<span class="citation"
|
||||
data-cites="kitaevFaulttolerantQuantumComputation2003 poulinStabilizerFormalismOperator2005 hastingsDynamicallyGeneratedLogical2021"><sup><a
|
||||
passively fault tolerant and actively stabilised quantum computations
|
||||
<span class="citation"
|
||||
data-cites="kitaevFaulttolerantQuantumComputation2003 poulinStabilizerFormalismOperator2005 hastingsDynamicallyGeneratedLogical2021"> [<a
|
||||
href="#ref-kitaevFaulttolerantQuantumComputation2003"
|
||||
role="doc-biblioref">1</a>,<a
|
||||
href="#ref-poulinStabilizerFormalismOperator2005"
|
||||
role="doc-biblioref">17</a>,<a
|
||||
href="#ref-hastingsDynamicallyGeneratedLogical2021"
|
||||
role="doc-biblioref">18</a></sup></span>.</p>
|
||||
<div id="refs" class="references csl-bib-body" data-line-spacing="2"
|
||||
role="doc-bibliography">
|
||||
role="doc-biblioref">18</a>]</span>.</p>
|
||||
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
|
||||
<div id="ref-kitaevFaulttolerantQuantumComputation2003"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">1. </div><div
|
||||
class="csl-right-inline">Kitaev, A. Yu. <a
|
||||
href="https://doi.org/10.1016/S0003-4916(02)00018-0">Fault-tolerant
|
||||
quantum computation by anyons</a>. <em>Annals of Physics</em>
|
||||
<strong>303</strong>, 2–30 (2003).</div>
|
||||
<div class="csl-left-margin">[1] </div><div class="csl-right-inline">A.
|
||||
Yu. Kitaev, <em><a
|
||||
href="https://doi.org/10.1016/S0003-4916(02)00018-0">Fault-Tolerant
|
||||
Quantum Computation by Anyons</a></em>, Annals of Physics
|
||||
<strong>303</strong>, 2 (2003).</div>
|
||||
</div>
|
||||
<div id="ref-pedrocchiPhysicalSolutionsKitaev2011" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">2. </div><div
|
||||
class="csl-right-inline">Pedrocchi, F. L., Chesi, S. & Loss, D. <a
|
||||
<div class="csl-left-margin">[2] </div><div class="csl-right-inline">F.
|
||||
L. Pedrocchi, S. Chesi, and D. Loss, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.84.165414">Physical solutions of
|
||||
the Kitaev honeycomb model</a>. <em>Phys. Rev. B</em>
|
||||
<strong>84</strong>, 165414 (2011).</div>
|
||||
the Kitaev honeycomb model</a></em>, Phys. Rev. B <strong>84</strong>,
|
||||
165414 (2011).</div>
|
||||
</div>
|
||||
<div id="ref-yaoAlgebraicSpinLiquid2009" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">3. </div><div class="csl-right-inline">Yao,
|
||||
H., Zhang, S.-C. & Kivelson, S. A. <a
|
||||
<div class="csl-left-margin">[3] </div><div class="csl-right-inline">H.
|
||||
Yao, S.-C. Zhang, and S. A. Kivelson, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.102.217202">Algebraic Spin
|
||||
Liquid in an Exactly Solvable Spin Model</a>. <em>Phys. Rev. Lett.</em>
|
||||
Liquid in an Exactly Solvable Spin Model</a></em>, Phys. Rev. Lett.
|
||||
<strong>102</strong>, 217202 (2009).</div>
|
||||
</div>
|
||||
<div id="ref-chungExplicitMonodromyMoore2007" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">4. </div><div
|
||||
class="csl-right-inline">Chung, S. B. & Stone, M. <a
|
||||
href="https://doi.org/10.1088/1751-8113/40/19/001">Explicit monodromy of
|
||||
Moore–Read wavefunctions on a torus</a>. <em>J. Phys. A: Math.
|
||||
Theor.</em> <strong>40</strong>, 4923–4947 (2007).</div>
|
||||
<div class="csl-left-margin">[4] </div><div class="csl-right-inline">S.
|
||||
B. Chung and M. Stone, <em><a
|
||||
href="https://doi.org/10.1088/1751-8113/40/19/001">Explicit Monodromy of
|
||||
Moore–Read Wavefunctions on a Torus</a></em>, J. Phys. A: Math. Theor.
|
||||
<strong>40</strong>, 4923 (2007).</div>
|
||||
</div>
|
||||
<div id="ref-oshikawaTopologicalDegeneracyNonAbelian2007"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">5. </div><div
|
||||
class="csl-right-inline">Oshikawa, M., Kim, Y. B., Shtengel, K., Nayak,
|
||||
C. & Tewari, S. <a
|
||||
href="https://doi.org/10.1016/j.aop.2006.08.001">Topological degeneracy
|
||||
of non-Abelian states for dummies</a>. <em>Annals of Physics</em>
|
||||
<strong>322</strong>, 1477–1498 (2007).</div>
|
||||
<div class="csl-left-margin">[5] </div><div class="csl-right-inline">M.
|
||||
Oshikawa, Y. B. Kim, K. Shtengel, C. Nayak, and S. Tewari, <em><a
|
||||
href="https://doi.org/10.1016/j.aop.2006.08.001">Topological Degeneracy
|
||||
of Non-Abelian States for Dummies</a></em>, Annals of Physics
|
||||
<strong>322</strong>, 1477 (2007).</div>
|
||||
</div>
|
||||
<div id="ref-lieb_flux_1994" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">6. </div><div
|
||||
class="csl-right-inline">Lieb, E. H. <a
|
||||
href="https://doi.org/10.1103/PhysRevLett.73.2158">Flux Phase of the
|
||||
Half-Filled Band</a>. <em>Physical Review Letters</em>
|
||||
<strong>73</strong>, 2158–2161 (1994).</div>
|
||||
<div class="csl-left-margin">[6] </div><div class="csl-right-inline">E.
|
||||
H. Lieb, <em><a href="https://doi.org/10.1103/PhysRevLett.73.2158">Flux
|
||||
Phase of the Half-Filled Band</a></em>, Physical Review Letters
|
||||
<strong>73</strong>, 2158 (1994).</div>
|
||||
</div>
|
||||
<div id="ref-Chua2011" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">7. </div><div
|
||||
class="csl-right-inline">Chua, V., Yao, H. & Fiete, G. A. <a
|
||||
href="https://doi.org/10.1103/PhysRevB.83.180412">Exact chiral spin
|
||||
liquid with stable spin Fermi surface on the kagome lattice</a>.
|
||||
<em>Phys. Rev. B</em> <strong>83</strong>, 180412 (2011).</div>
|
||||
<div class="csl-left-margin">[7] </div><div class="csl-right-inline">V.
|
||||
Chua, H. Yao, and G. A. Fiete, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.83.180412">Exact Chiral Spin
|
||||
Liquid with Stable Spin Fermi Surface on the Kagome Lattice</a></em>,
|
||||
Phys. Rev. B <strong>83</strong>, 180412 (2011).</div>
|
||||
</div>
|
||||
<div id="ref-yaoExactChiralSpin2007" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">8. </div><div class="csl-right-inline">Yao,
|
||||
H. & Kivelson, S. A. <a
|
||||
href="https://doi.org/10.1103/PhysRevLett.99.247203">An exact chiral
|
||||
spin liquid with non-Abelian anyons</a>. <em>Phys. Rev. Lett.</em>
|
||||
<div class="csl-left-margin">[8] </div><div class="csl-right-inline">H.
|
||||
Yao and S. A. Kivelson, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.99.247203">An Exact Chiral
|
||||
Spin Liquid with Non-Abelian Anyons</a></em>, Phys. Rev. Lett.
|
||||
<strong>99</strong>, 247203 (2007).</div>
|
||||
</div>
|
||||
<div id="ref-ChuaPRB2011" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">9. </div><div
|
||||
class="csl-right-inline">Chua, V. & Fiete, G. A. <a
|
||||
href="https://doi.org/10.1103/PhysRevB.84.195129">Exactly solvable
|
||||
topological chiral spin liquid with random exchange</a>. <em>Phys. Rev.
|
||||
B</em> <strong>84</strong>, 195129 (2011).</div>
|
||||
<div class="csl-left-margin">[9] </div><div class="csl-right-inline">V.
|
||||
Chua and G. A. Fiete, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.84.195129">Exactly Solvable
|
||||
Topological Chiral Spin Liquid with Random Exchange</a></em>, Phys. Rev.
|
||||
B <strong>84</strong>, 195129 (2011).</div>
|
||||
</div>
|
||||
<div id="ref-Fiete2012" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">10. </div><div
|
||||
class="csl-right-inline">Fiete, G. A. <em>et al.</em> <a
|
||||
<div class="csl-left-margin">[10] </div><div class="csl-right-inline">G.
|
||||
A. Fiete, V. Chua, M. Kargarian, R. Lundgren, A. Rüegg, J. Wen, and V.
|
||||
Zyuzin, <em><a
|
||||
href="https://doi.org/10.1016/j.physe.2011.11.011">Topological
|
||||
insulators and quantum spin liquids</a>. <em>Physica E: Low-dimensional
|
||||
Systems and Nanostructures</em> <strong>44</strong>, 845–859
|
||||
(2012).</div>
|
||||
Insulators and Quantum Spin Liquids</a></em>, Physica E: Low-Dimensional
|
||||
Systems and Nanostructures <strong>44</strong>, 845 (2012).</div>
|
||||
</div>
|
||||
<div id="ref-Natori2016" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">11. </div><div
|
||||
class="csl-right-inline">Natori, W. M. H., Andrade, E. C., Miranda, E.
|
||||
& Pereira, R. G. <a
|
||||
<div class="csl-left-margin">[11] </div><div class="csl-right-inline">W.
|
||||
M. H. Natori, E. C. Andrade, E. Miranda, and R. G. Pereira, <em><a
|
||||
href="https://link.aps.org/doi/10.1103/PhysRevLett.117.017204">Chiral
|
||||
spin-orbital liquids with nodal lines</a>. <em>Phys. Rev. Lett.</em>
|
||||
Spin-Orbital Liquids with Nodal Lines</a></em>, Phys. Rev. Lett.
|
||||
<strong>117</strong>, 017204 (2016).</div>
|
||||
</div>
|
||||
<div id="ref-Wu2009" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">12. </div><div class="csl-right-inline">Wu,
|
||||
C., Arovas, D. & Hung, H.-H. Γ-matrix generalization of the Kitaev
|
||||
model. <em>Physical Review B</em> <strong>79</strong>, 134427
|
||||
(2009).</div>
|
||||
<div class="csl-left-margin">[12] </div><div class="csl-right-inline">C.
|
||||
Wu, D. Arovas, and H.-H. Hung, <em>Γ-Matrix Generalization of the Kitaev
|
||||
Model</em>, Physical Review B <strong>79</strong>, 134427 (2009).</div>
|
||||
</div>
|
||||
<div id="ref-Peri2020" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">13. </div><div
|
||||
class="csl-right-inline">Peri, V. <em>et al.</em> <a
|
||||
href="https://doi.org/10.1103/PhysRevB.101.041114">Non-Abelian chiral
|
||||
spin liquid on a simple non-Archimedean lattice</a>. <em>Phys. Rev.
|
||||
B</em> <strong>101</strong>, 041114 (2020).</div>
|
||||
<div class="csl-left-margin">[13] </div><div class="csl-right-inline">V.
|
||||
Peri, S. Ok, S. S. Tsirkin, T. Neupert, G. Baskaran, M. Greiter, R.
|
||||
Moessner, and R. Thomale, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.101.041114">Non-Abelian Chiral
|
||||
Spin Liquid on a Simple Non-Archimedean Lattice</a></em>, Phys. Rev. B
|
||||
<strong>101</strong>, 041114 (2020).</div>
|
||||
</div>
|
||||
<div id="ref-WangHaoranPRB2021" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">14. </div><div
|
||||
class="csl-right-inline">Wang, H. & Principi, A. <a
|
||||
href="https://doi.org/10.1103/PhysRevB.104.214422">Majorana edge and
|
||||
corner states in square and kagome quantum spin-3/2 liquids</a>.
|
||||
<em>Phys. Rev. B</em> <strong>104</strong>, 214422 (2021).</div>
|
||||
<div class="csl-left-margin">[14] </div><div class="csl-right-inline">H.
|
||||
Wang and A. Principi, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.104.214422">Majorana Edge and
|
||||
Corner States in Square and Kagome Quantum Spin-3/2 Liquids</a></em>,
|
||||
Phys. Rev. B <strong>104</strong>, 214422 (2021).</div>
|
||||
</div>
|
||||
<div id="ref-parkerWhyDoesThis" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">15. </div><div
|
||||
<div class="csl-left-margin">[15] </div><div
|
||||
class="csl-right-inline"><em><a
|
||||
href="https://www.youtube.com/watch?v=ymF1bp-qrjU">Why does this balloon
|
||||
have -1 holes?</a></em></div>
|
||||
href="https://www.youtube.com/watch?v=ymF1bp-qrjU">Why Does This Balloon
|
||||
Have -1 Holes?</a></em> (n.d.).</div>
|
||||
</div>
|
||||
<div id="ref-chungTopologicalQuantumPhase2010" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">16. </div><div
|
||||
class="csl-right-inline">Chung, S. B., Yao, H., Hughes, T. L. & Kim,
|
||||
E.-A. <a href="https://doi.org/10.1103/PhysRevB.81.060403">Topological
|
||||
quantum phase transition in an exactly solvable model of a chiral spin
|
||||
liquid at finite temperature</a>. <em>Phys. Rev. B</em>
|
||||
<strong>81</strong>, 060403 (2010).</div>
|
||||
<div class="csl-left-margin">[16] </div><div class="csl-right-inline">S.
|
||||
B. Chung, H. Yao, T. L. Hughes, and E.-A. Kim, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.81.060403">Topological Quantum
|
||||
Phase Transition in an Exactly Solvable Model of a Chiral Spin Liquid at
|
||||
Finite Temperature</a></em>, Phys. Rev. B <strong>81</strong>, 060403
|
||||
(2010).</div>
|
||||
</div>
|
||||
<div id="ref-poulinStabilizerFormalismOperator2005" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">17. </div><div
|
||||
class="csl-right-inline">Poulin, D. <a
|
||||
<div class="csl-left-margin">[17] </div><div class="csl-right-inline">D.
|
||||
Poulin, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.95.230504">Stabilizer
|
||||
Formalism for Operator Quantum Error Correction</a>. <em>Phys. Rev.
|
||||
Lett.</em> <strong>95</strong>, 230504 (2005).</div>
|
||||
Formalism for Operator Quantum Error Correction</a></em>, Phys. Rev.
|
||||
Lett. <strong>95</strong>, 230504 (2005).</div>
|
||||
</div>
|
||||
<div id="ref-hastingsDynamicallyGeneratedLogical2021" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">18. </div><div
|
||||
class="csl-right-inline">Hastings, M. B. & Haah, J. <a
|
||||
<div class="csl-left-margin">[18] </div><div class="csl-right-inline">M.
|
||||
B. Hastings and J. Haah, <em><a
|
||||
href="https://doi.org/10.22331/q-2021-10-19-564">Dynamically Generated
|
||||
Logical Qubits</a>. <em>Quantum</em> <strong>5</strong>, 564
|
||||
(2021).</div>
|
||||
Logical Qubits</a></em>, Quantum <strong>5</strong>, 564 (2021).</div>
|
||||
</div>
|
||||
</div>
|
||||
</main>
|
||||
|
@ -245,11 +245,11 @@ id="toc-open-boundary-conditions">Open boundary conditions</a></li>
|
||||
guidance from Willian and Johannes. The project grew out of an interest
|
||||
Gino, Peru and I had in studying amorphous systems, coupled with
|
||||
Johannes’ expertise on the Kitaev model. The idea to use voronoi
|
||||
partitions came from<span class="citation"
|
||||
data-cites="marsalTopologicalWeaireThorpe2020"><sup><a
|
||||
partitions came from <span class="citation"
|
||||
data-cites="marsalTopologicalWeaireThorpe2020"> [<a
|
||||
href="#ref-marsalTopologicalWeaireThorpe2020"
|
||||
role="doc-biblioref">1</a></sup></span> and Gino did the implementation
|
||||
of this. The idea and implementation of the edge colouring using SAT
|
||||
role="doc-biblioref">1</a>]</span> and Gino did the implementation of
|
||||
this. The idea and implementation of the edge colouring using SAT
|
||||
solvers, the mapping from flux sector to bond sector using A* search
|
||||
were both entirely my work. Peru came up with the ground state
|
||||
conjecture and implemented the local markers. Gino and I did much of the
|
||||
@ -289,11 +289,11 @@ material. Candidate materials, such as <span
|
||||
class="math inline">\(\alpha\mathrm{-RuCl}_3\)</span>, are known to have
|
||||
sufficiently strong spin-orbit coupling and the correct lattice
|
||||
structure to behave according to the Kitaev Honeycomb model with small
|
||||
corrections<span class="citation"
|
||||
data-cites="banerjeeProximateKitaevQuantum2016 trebstKitaevMaterials2022"><sup><a
|
||||
corrections <span class="citation"
|
||||
data-cites="banerjeeProximateKitaevQuantum2016 trebstKitaevMaterials2022"> [<a
|
||||
href="#ref-banerjeeProximateKitaevQuantum2016"
|
||||
role="doc-biblioref">2</a>,<a href="#ref-trebstKitaevMaterials2022"
|
||||
role="doc-biblioref"><strong>trebstKitaevMaterials2022?</strong></a></sup></span>.</p>
|
||||
role="doc-biblioref"><strong>trebstKitaevMaterials2022?</strong></a>]</span>.</p>
|
||||
<p><strong>expand later: Why do we need spin orbit coupling and what
|
||||
will the corrections be?</strong></p>
|
||||
<p>Second, its ground state is the canonical example of the long sought
|
||||
@ -301,17 +301,17 @@ after quantum spin liquid state. Its excitations are anyons, particles
|
||||
that can only exist in two dimensions that break the normal
|
||||
fermion/boson dichotomy. Anyons have been the subject of much attention
|
||||
because, among other reasons, they can be braided through spacetime to
|
||||
achieve noise tolerant quantum computations<span class="citation"
|
||||
data-cites="freedmanTopologicalQuantumComputation2003"><sup><a
|
||||
achieve noise tolerant quantum computations <span class="citation"
|
||||
data-cites="freedmanTopologicalQuantumComputation2003"> [<a
|
||||
href="#ref-freedmanTopologicalQuantumComputation2003"
|
||||
role="doc-biblioref">3</a></sup></span>.</p>
|
||||
role="doc-biblioref">3</a>]</span>.</p>
|
||||
<p>Third, and perhaps most importantly, this model is a rare many body
|
||||
interacting quantum system that can be treated analytically. It is
|
||||
exactly solvable. We can explicitly write down its many body ground
|
||||
states in terms of single particle states<span class="citation"
|
||||
data-cites="kitaevAnyonsExactlySolved2006"><sup><a
|
||||
states in terms of single particle states <span class="citation"
|
||||
data-cites="kitaevAnyonsExactlySolved2006"> [<a
|
||||
href="#ref-kitaevAnyonsExactlySolved2006"
|
||||
role="doc-biblioref">4</a></sup></span>. The solubility of the Kitaev
|
||||
role="doc-biblioref">4</a>]</span>. The solubility of the Kitaev
|
||||
Honeycomb Model, like the Falikov-Kimball model of chapter 1, comes
|
||||
about because the model has extensively many conserved degrees of
|
||||
freedom. These conserved quantities can be factored out as classical
|
||||
@ -326,9 +326,9 @@ lattices.</p>
|
||||
look at the gauge symmetries of the model as well as its solution via a
|
||||
transformation to a Majorana hamiltonian. This discussion shows that,
|
||||
for the the model to be solvable, it needs only be defined on a
|
||||
trivalent, tri-edge-colourable lattice<span class="citation"
|
||||
data-cites="Nussinov2009"><sup><a href="#ref-Nussinov2009"
|
||||
role="doc-biblioref">5</a></sup></span>.</p>
|
||||
trivalent, tri-edge-colourable lattice <span class="citation"
|
||||
data-cites="Nussinov2009"> [<a href="#ref-Nussinov2009"
|
||||
role="doc-biblioref">5</a>]</span>.</p>
|
||||
<p>The methods section discusses how to generate such lattices and
|
||||
colour them. It also explain how to map back and forth between
|
||||
configurations of the gauge field and configurations of the gauge
|
||||
@ -512,12 +512,11 @@ on site <span class="math inline">\(j\)</span> and <span
|
||||
class="math inline">\(\langle j,k\rangle_\alpha\)</span> is a pair of
|
||||
nearest-neighbour indices connected by an <span
|
||||
class="math inline">\(\alpha\)</span>-bond with exchange coupling <span
|
||||
class="math inline">\(J^\alpha\)</span><span class="citation"
|
||||
data-cites="kitaevAnyonsExactlySolved2006"><sup><a
|
||||
class="math inline">\(J^\alpha\)</span> <span class="citation"
|
||||
data-cites="kitaevAnyonsExactlySolved2006"> [<a
|
||||
href="#ref-kitaevAnyonsExactlySolved2006"
|
||||
role="doc-biblioref">4</a></sup></span>. For notational brevity, it is
|
||||
useful to introduce the bond operators <span
|
||||
class="math inline">\(K_{ij} =
|
||||
role="doc-biblioref">4</a>]</span>. For notational brevity, it is useful
|
||||
to introduce the bond operators <span class="math inline">\(K_{ij} =
|
||||
\sigma_j^{\alpha}\sigma_k^{\alpha}\)</span> where <span
|
||||
class="math inline">\(\alpha\)</span> is a function of <span
|
||||
class="math inline">\(i,j\)</span> that picks the correct bond type.</p>
|
||||
@ -744,10 +743,9 @@ theory of the Majorana Hamiltonian further.</p>
|
||||
u_{ij} c_i c_j\]</span> in which most of the Majorana degrees of freedom
|
||||
have paired along bonds to become a classical gauge field <span
|
||||
class="math inline">\(u_{ij}\)</span>. What follows is relatively
|
||||
standard theory for quadratic Majorana Hamiltonians<span
|
||||
class="citation" data-cites="BlaizotRipka1986"><sup><a
|
||||
href="#ref-BlaizotRipka1986"
|
||||
role="doc-biblioref">6</a></sup></span>.</p>
|
||||
standard theory for quadratic Majorana Hamiltonians <span
|
||||
class="citation" data-cites="BlaizotRipka1986"> [<a
|
||||
href="#ref-BlaizotRipka1986" role="doc-biblioref">6</a>]</span>.</p>
|
||||
<p>Because of the antisymmetry of the matrix with entries <span
|
||||
class="math inline">\(J^{\alpha} u_{ij}\)</span>, the eigenvalues of the
|
||||
Hamiltonian <span class="math inline">\(\tilde{H}_u\)</span> come in
|
||||
@ -865,52 +863,49 @@ which we set to 1 when calculating the projector.</p>
|
||||
anyway, an arbitrary pairing of the unpaired <span
|
||||
class="math inline">\(b^\alpha\)</span> operators could be performed.
|
||||
</i,j></i,j></p>
|
||||
<div id="refs" class="references csl-bib-body" data-line-spacing="2"
|
||||
role="doc-bibliography">
|
||||
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
|
||||
<div id="ref-marsalTopologicalWeaireThorpe2020" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">1. </div><div
|
||||
class="csl-right-inline">Marsal, Q., Varjas, D. & Grushin, A. G. <a
|
||||
<div class="csl-left-margin">[1] </div><div class="csl-right-inline">Q.
|
||||
Marsal, D. Varjas, and A. G. Grushin, <em><a
|
||||
href="https://doi.org/10.1073/pnas.2007384117">Topological Weaire–Thorpe
|
||||
models of amorphous matter</a>. <em>Proceedings of the National Academy
|
||||
of Sciences</em> <strong>117</strong>, 30260–30265 (2020).</div>
|
||||
Models of Amorphous Matter</a></em>, Proceedings of the National Academy
|
||||
of Sciences <strong>117</strong>, 30260 (2020).</div>
|
||||
</div>
|
||||
<div id="ref-banerjeeProximateKitaevQuantum2016" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">2. </div><div
|
||||
class="csl-right-inline">Banerjee, A. <em>et al.</em> <a
|
||||
<div class="csl-left-margin">[2] </div><div class="csl-right-inline">A.
|
||||
Banerjee et al., <em><a
|
||||
href="https://doi.org/10.1038/nmat4604">Proximate Kitaev Quantum Spin
|
||||
Liquid Behaviour in {\alpha}-RuCl$_3$</a>. <em>Nature Mater</em>
|
||||
<strong>15</strong>, 733–740 (2016).</div>
|
||||
Liquid Behaviour in {\Alpha}-RuCl$_3$</a></em>, Nature Mater
|
||||
<strong>15</strong>, 733 (2016).</div>
|
||||
</div>
|
||||
<div id="ref-freedmanTopologicalQuantumComputation2003"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">3. </div><div
|
||||
class="csl-right-inline">Freedman, M., Kitaev, A., Larsen, M. &
|
||||
Wang, Z. <a
|
||||
href="https://doi.org/10.1090/S0273-0979-02-00964-3">Topological quantum
|
||||
computation</a>. <em>Bull. Amer. Math. Soc.</em> <strong>40</strong>,
|
||||
31–38 (2003).</div>
|
||||
<div class="csl-left-margin">[3] </div><div class="csl-right-inline">M.
|
||||
Freedman, A. Kitaev, M. Larsen, and Z. Wang, <em><a
|
||||
href="https://doi.org/10.1090/S0273-0979-02-00964-3">Topological Quantum
|
||||
Computation</a></em>, Bull. Amer. Math. Soc. <strong>40</strong>, 31
|
||||
(2003).</div>
|
||||
</div>
|
||||
<div id="ref-kitaevAnyonsExactlySolved2006" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">4. </div><div
|
||||
class="csl-right-inline">Kitaev, A. <a
|
||||
href="https://doi.org/10.1016/j.aop.2005.10.005">Anyons in an exactly
|
||||
solved model and beyond</a>. <em>Annals of Physics</em>
|
||||
<strong>321</strong>, 2–111 (2006).</div>
|
||||
<div class="csl-left-margin">[4] </div><div class="csl-right-inline">A.
|
||||
Kitaev, <em><a href="https://doi.org/10.1016/j.aop.2005.10.005">Anyons
|
||||
in an Exactly Solved Model and Beyond</a></em>, Annals of Physics
|
||||
<strong>321</strong>, 2 (2006).</div>
|
||||
</div>
|
||||
<div id="ref-Nussinov2009" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">5. </div><div
|
||||
class="csl-right-inline">Nussinov, Z. & Ortiz, G. <a
|
||||
href="https://doi.org/10.1103/PhysRevB.79.214440">Bond algebras and
|
||||
exact solvability of Hamiltonians: spin S=½ multilayer systems</a>.
|
||||
<em>Physical Review B</em> <strong>79</strong>, 214440 (2009).</div>
|
||||
<div class="csl-left-margin">[5] </div><div class="csl-right-inline">Z.
|
||||
Nussinov and G. Ortiz, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.79.214440">Bond Algebras and
|
||||
Exact Solvability of Hamiltonians: Spin S=½ Multilayer Systems</a></em>,
|
||||
Physical Review B <strong>79</strong>, 214440 (2009).</div>
|
||||
</div>
|
||||
<div id="ref-BlaizotRipka1986" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">6. </div><div
|
||||
class="csl-right-inline">Blaizot, J.-P. & Ripka, G. <em>Quantum
|
||||
theory of finite systems</em>. (The MIT Press, 1986).</div>
|
||||
<div class="csl-left-margin">[6] </div><div
|
||||
class="csl-right-inline">J.-P. Blaizot and G. Ripka, <em>Quantum Theory
|
||||
of Finite Systems</em> (The MIT Press, 1986).</div>
|
||||
</div>
|
||||
</div>
|
||||
</main>
|
||||
|
@ -234,20 +234,20 @@ Markers</a></li>
|
||||
<h1 id="methods">Methods</h1>
|
||||
<p>The practical implementation of what is described in this section is
|
||||
available as a Python package called Koala (Kitaev On Amorphous
|
||||
LAttices)<span class="citation"
|
||||
data-cites="tomImperialCMTHKoalaFirst2022"><sup><a
|
||||
LAttices) <span class="citation"
|
||||
data-cites="tomImperialCMTHKoalaFirst2022"> [<a
|
||||
href="#ref-tomImperialCMTHKoalaFirst2022"
|
||||
role="doc-biblioref"><strong>tomImperialCMTHKoalaFirst2022?</strong></a></sup></span>.
|
||||
role="doc-biblioref"><strong>tomImperialCMTHKoalaFirst2022?</strong></a>]</span>.
|
||||
All results and figures were generated with Koala.</p>
|
||||
<h2 id="voronisation">Voronisation</h2>
|
||||
<p>To study the properties of the amorphous Kitaev model, we need to
|
||||
sample from the space of possible trivalent graphs.</p>
|
||||
<p>A simple method is to use a Voronoi partition of the torus<span
|
||||
<p>A simple method is to use a Voronoi partition of the torus <span
|
||||
class="citation"
|
||||
data-cites="mitchellAmorphousTopologicalInsulators2018 marsalTopologicalWeaireThorpeModels2020 florescu_designer_2009"><sup><a
|
||||
data-cites="mitchellAmorphousTopologicalInsulators2018 marsalTopologicalWeaireThorpeModels2020 florescu_designer_2009"> [<a
|
||||
href="#ref-mitchellAmorphousTopologicalInsulators2018"
|
||||
role="doc-biblioref">1</a>–<a href="#ref-florescu_designer_2009"
|
||||
role="doc-biblioref">3</a></sup></span>. We start by sampling <em>seed
|
||||
role="doc-biblioref">3</a>]</span>. We start by sampling <em>seed
|
||||
points</em> uniformly (or otherwise) on the torus. Then, we compute the
|
||||
partition of the torus into regions closest (with a Euclidean metric) to
|
||||
each seed point. The straight lines (if the torus is flattened out) at
|
||||
@ -259,23 +259,23 @@ the graph is embedded into the plane. It is also trivalent in that every
|
||||
vertex is connected to exactly three edges <strong>cite</strong>.</p>
|
||||
<p>Ideally, we would sample uniformly from the space of possible
|
||||
trivalent graphs. Indeed, there has been some work on how to do this
|
||||
using a Markov Chain Monte Carlo approach<span class="citation"
|
||||
data-cites="alyamiUniformSamplingDirected2016"><sup><a
|
||||
using a Markov Chain Monte Carlo approach <span class="citation"
|
||||
data-cites="alyamiUniformSamplingDirected2016"> [<a
|
||||
href="#ref-alyamiUniformSamplingDirected2016"
|
||||
role="doc-biblioref">4</a></sup></span>. However, it does not guarantee
|
||||
that the resulting graph is planar, which we must ensure so that the
|
||||
edges can be 3-coloured.</p>
|
||||
<p>In practice, we use a standard algorithm<span class="citation"
|
||||
data-cites="barberQuickhullAlgorithmConvex1996"><sup><a
|
||||
role="doc-biblioref">4</a>]</span>. However, it does not guarantee that
|
||||
the resulting graph is planar, which we must ensure so that the edges
|
||||
can be 3-coloured.</p>
|
||||
<p>In practice, we use a standard algorithm <span class="citation"
|
||||
data-cites="barberQuickhullAlgorithmConvex1996"> [<a
|
||||
href="#ref-barberQuickhullAlgorithmConvex1996"
|
||||
role="doc-biblioref">5</a></sup></span> from Scipy<span class="citation"
|
||||
data-cites="virtanenSciPyFundamentalAlgorithms2020"><sup><a
|
||||
role="doc-biblioref">5</a>]</span> from Scipy <span class="citation"
|
||||
data-cites="virtanenSciPyFundamentalAlgorithms2020"> [<a
|
||||
href="#ref-virtanenSciPyFundamentalAlgorithms2020"
|
||||
role="doc-biblioref">6</a></sup></span> which computes the Voronoi
|
||||
partition of the plane. To compute the Voronoi partition of the torus,
|
||||
we take the seed points and replicate them into a repeating grid. This
|
||||
will be either 3x3 or, for very small numbers of seed points, 5x5. Then,
|
||||
we identify edges in the output to construct a lattice on the torus.</p>
|
||||
role="doc-biblioref">6</a>]</span> which computes the Voronoi partition
|
||||
of the plane. To compute the Voronoi partition of the torus, we take the
|
||||
seed points and replicate them into a repeating grid. This will be
|
||||
either 3x3 or, for very small numbers of seed points, 5x5. Then, we
|
||||
identify edges in the output to construct a lattice on the torus.</p>
|
||||
<div id="fig:lattice_construction_animated" class="fignos">
|
||||
<figure>
|
||||
<img
|
||||
@ -368,47 +368,46 @@ onto the plane without any edges crossing. Bridgeless graphs do not
|
||||
contain any edges that, when removed, would partition the graph into
|
||||
disconnected components.</p>
|
||||
<p>This problem must be distinguished from that considered by the famous
|
||||
four-colour theorem<span class="citation"
|
||||
data-cites="appelEveryPlanarMap1989"><sup><a
|
||||
href="#ref-appelEveryPlanarMap1989"
|
||||
role="doc-biblioref">7</a></sup></span>. The 4-colour theorem is
|
||||
concerned with assigning colours to the <strong>vertices</strong> of a
|
||||
graph, such that no vertices that share an edge have the same colour.
|
||||
Here we are concerned with an edge colouring.</p>
|
||||
four-colour theorem <span class="citation"
|
||||
data-cites="appelEveryPlanarMap1989"> [<a
|
||||
href="#ref-appelEveryPlanarMap1989" role="doc-biblioref">7</a>]</span>.
|
||||
The 4-colour theorem is concerned with assigning colours to the
|
||||
<strong>vertices</strong> of a graph, such that no vertices that share
|
||||
an edge have the same colour. Here we are concerned with an edge
|
||||
colouring.</p>
|
||||
<p>The four-colour theorem applies to planar graphs, those that can be
|
||||
embedded onto the plane without any edges crossing. Here we are
|
||||
concerned with Toroidal graphs, which can be embedded onto the torus
|
||||
without any edges crossing. In fact, toroidal graphs require up to seven
|
||||
colours<span class="citation"
|
||||
data-cites="heawoodMapColouringTheorems"><sup><a
|
||||
colours <span class="citation"
|
||||
data-cites="heawoodMapColouringTheorems"> [<a
|
||||
href="#ref-heawoodMapColouringTheorems"
|
||||
role="doc-biblioref">8</a></sup></span>. The complete graph <span
|
||||
role="doc-biblioref">8</a>]</span>. The complete graph <span
|
||||
class="math inline">\(K_7\)</span> is a good example of a toroidal graph
|
||||
that requires seven colours.</p>
|
||||
<p><span class="math inline">\(\Delta + 1\)</span> colours are enough to
|
||||
edge-colour any graph. An <span
|
||||
class="math inline">\(\mathcal{O}(mn)\)</span> algorithm exists to do it
|
||||
for a graph with <span class="math inline">\(m\)</span> edges and <span
|
||||
class="math inline">\(n\)</span> vertices<span class="citation"
|
||||
data-cites="gEstimateChromaticClass1964"><sup><a
|
||||
class="math inline">\(n\)</span> vertices <span class="citation"
|
||||
data-cites="gEstimateChromaticClass1964"> [<a
|
||||
href="#ref-gEstimateChromaticClass1964"
|
||||
role="doc-biblioref">9</a></sup></span>. Restricting ourselves to graphs
|
||||
with <span class="math inline">\(\Delta = 3\)</span> like ours, those
|
||||
can be four-edge-coloured in linear time<span class="citation"
|
||||
data-cites="skulrattanakulchai4edgecoloringGraphsMaximum2002"><sup><a
|
||||
role="doc-biblioref">9</a>]</span>. Restricting ourselves to graphs with
|
||||
<span class="math inline">\(\Delta = 3\)</span> like ours, those can be
|
||||
four-edge-coloured in linear time <span class="citation"
|
||||
data-cites="skulrattanakulchai4edgecoloringGraphsMaximum2002"> [<a
|
||||
href="#ref-skulrattanakulchai4edgecoloringGraphsMaximum2002"
|
||||
role="doc-biblioref">10</a></sup></span>.</p>
|
||||
role="doc-biblioref">10</a>]</span>.</p>
|
||||
<p>However, three-edge-colouring them is more difficult. Cubic, planar,
|
||||
bridgeless graphs can be three-edge-coloured if and only if they can be
|
||||
four-face-coloured<span class="citation"
|
||||
data-cites="tait1880remarks"><sup><a href="#ref-tait1880remarks"
|
||||
role="doc-biblioref">11</a></sup></span>. An <span
|
||||
class="math inline">\(\mathcal{O}(n^2)\)</span> algorithm exists
|
||||
here<span class="citation" data-cites="robertson1996efficiently"><sup><a
|
||||
four-face-coloured <span class="citation"
|
||||
data-cites="tait1880remarks"> [<a href="#ref-tait1880remarks"
|
||||
role="doc-biblioref">11</a>]</span>. An <span
|
||||
class="math inline">\(\mathcal{O}(n^2)\)</span> algorithm exists here
|
||||
<span class="citation" data-cites="robertson1996efficiently"> [<a
|
||||
href="#ref-robertson1996efficiently"
|
||||
role="doc-biblioref">12</a></sup></span>. However, it is not clear
|
||||
whether this extends to cubic, <strong>toroidal</strong> bridgeless
|
||||
graphs.</p>
|
||||
role="doc-biblioref">12</a>]</span>. However, it is not clear whether
|
||||
this extends to cubic, <strong>toroidal</strong> bridgeless graphs.</p>
|
||||
<div id="fig:multiple_colourings" class="fignos">
|
||||
<figure>
|
||||
<img
|
||||
@ -467,22 +466,22 @@ solver. A SAT problem is a set of statements about some number of
|
||||
boolean variables , such as “<span class="math inline">\(x_1\)</span> or
|
||||
not <span class="math inline">\(x_3\)</span> is true”, and looks for an
|
||||
assignment <span class="math inline">\(x_i \in {0,1}\)</span> that
|
||||
satisfies all the statements<span class="citation"
|
||||
data-cites="Karp1972"><sup><a href="#ref-Karp1972"
|
||||
role="doc-biblioref">13</a></sup></span>.</p>
|
||||
satisfies all the statements <span class="citation"
|
||||
data-cites="Karp1972"> [<a href="#ref-Karp1972"
|
||||
role="doc-biblioref">13</a>]</span>.</p>
|
||||
<p>General purpose, high performance programs for solving SAT problems
|
||||
have been an area of active research for decades<span class="citation"
|
||||
data-cites="alounehComprehensiveStudyAnalysis2019"><sup><a
|
||||
have been an area of active research for decades <span class="citation"
|
||||
data-cites="alounehComprehensiveStudyAnalysis2019"> [<a
|
||||
href="#ref-alounehComprehensiveStudyAnalysis2019"
|
||||
role="doc-biblioref">14</a></sup></span>. Such programs are useful
|
||||
because, by the Cook-Levin theorem, any NP problem can be encoded in
|
||||
polynomial time as an instance of a SAT problem . This property is what
|
||||
makes SAT one of the subset of NP problems called NP-Complete<span
|
||||
role="doc-biblioref">14</a>]</span>. Such programs are useful because,
|
||||
by the Cook-Levin theorem, any NP problem can be encoded in polynomial
|
||||
time as an instance of a SAT problem . This property is what makes SAT
|
||||
one of the subset of NP problems called NP-Complete <span
|
||||
class="citation"
|
||||
data-cites="cookComplexityTheoremprovingProcedures1971 levin1973universal"><sup><a
|
||||
data-cites="cookComplexityTheoremprovingProcedures1971 levin1973universal"> [<a
|
||||
href="#ref-cookComplexityTheoremprovingProcedures1971"
|
||||
role="doc-biblioref">15</a>,<a href="#ref-levin1973universal"
|
||||
role="doc-biblioref">16</a></sup></span>.</p>
|
||||
role="doc-biblioref">16</a>]</span>.</p>
|
||||
<p>Thus, it is a relatively standard technique in the computer science
|
||||
community to solve NP problems by first transforming them to SAT
|
||||
instances and then using an off the shelf SAT solver. The output of this
|
||||
@ -495,9 +494,9 @@ could be used to speed up its solution, using a SAT solver appears to be
|
||||
a reasonable first method to try. As will be discussed later, this
|
||||
turned out to work well enough and looking for a better solution was not
|
||||
necessary.</p>
|
||||
<p>We use a solver called <code>MiniSAT</code><span class="citation"
|
||||
data-cites="imms-sat18"><sup><a href="#ref-imms-sat18"
|
||||
role="doc-biblioref">17</a></sup></span>. Like most modern SAT solvers,
|
||||
<p>We use a solver called <code>MiniSAT</code> <span class="citation"
|
||||
data-cites="imms-sat18"> [<a href="#ref-imms-sat18"
|
||||
role="doc-biblioref">17</a>]</span>. Like most modern SAT solvers,
|
||||
<code>MiniSAT</code> requires the input problem to be specified in
|
||||
Conjunctive Normal Form (CNF). CNF requires that the constraints be
|
||||
encoded as a set of <em>clauses</em> of the form <span
|
||||
@ -555,11 +554,11 @@ a graph and assigns them a colour that is not already disallowed. This
|
||||
does not work for our purposes because it is not designed to look for a
|
||||
particular n-colouring. However, it does include the option of using a
|
||||
heuristic function that determine the order in which vertices will be
|
||||
coloured<span class="citation"
|
||||
data-cites="kosowski2004classical matulaSmallestlastOrderingClustering1983"><sup><a
|
||||
coloured <span class="citation"
|
||||
data-cites="kosowski2004classical matulaSmallestlastOrderingClustering1983"> [<a
|
||||
href="#ref-kosowski2004classical" role="doc-biblioref">18</a>,<a
|
||||
href="#ref-matulaSmallestlastOrderingClustering1983"
|
||||
role="doc-biblioref">19</a></sup></span>. Perhaps</p>
|
||||
role="doc-biblioref">19</a>]</span>. Perhaps</p>
|
||||
<div id="fig:times" class="fignos">
|
||||
<figure>
|
||||
<img src="/assets/thesis/amk_chapter/methods/times/times.svg"
|
||||
@ -658,154 +657,147 @@ system.</p>
|
||||
<p><strong>Expand on definition here</strong></p>
|
||||
<p><strong>Discuss link between Chern number and Anyonic
|
||||
Statistics</strong></p>
|
||||
<div id="refs" class="references csl-bib-body" data-line-spacing="2"
|
||||
role="doc-bibliography">
|
||||
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
|
||||
<div id="ref-mitchellAmorphousTopologicalInsulators2018"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">1. </div><div
|
||||
class="csl-right-inline">Mitchell, N. P., Nash, L. M., Hexner, D.,
|
||||
Turner, A. M. & Irvine, W. T. M. <a
|
||||
href="https://doi.org/10.1038/s41567-017-0024-5">Amorphous topological
|
||||
insulators constructed from random point sets</a>. <em>Nature Phys</em>
|
||||
<strong>14</strong>, 380–385 (2018).</div>
|
||||
<div class="csl-left-margin">[1] </div><div class="csl-right-inline">N.
|
||||
P. Mitchell, L. M. Nash, D. Hexner, A. M. Turner, and W. T. M. Irvine,
|
||||
<em><a href="https://doi.org/10.1038/s41567-017-0024-5">Amorphous
|
||||
topological insulators constructed from random point sets</a></em>,
|
||||
Nature Phys <strong>14</strong>, 380 (2018).</div>
|
||||
</div>
|
||||
<div id="ref-marsalTopologicalWeaireThorpeModels2020" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">2. </div><div
|
||||
class="csl-right-inline">Marsal, Q., Varjas, D. & Grushin, A. G. <a
|
||||
<div class="csl-left-margin">[2] </div><div class="csl-right-inline">Q.
|
||||
Marsal, D. Varjas, and A. G. Grushin, <em><a
|
||||
href="https://doi.org/10.1073/pnas.2007384117">Topological Weaire-Thorpe
|
||||
models of amorphous matter</a>. <em>Proc. Natl. Acad. Sci. U.S.A.</em>
|
||||
<strong>117</strong>, 30260–30265 (2020).</div>
|
||||
Models of Amorphous Matter</a></em>, Proc. Natl. Acad. Sci. U.S.A.
|
||||
<strong>117</strong>, 30260 (2020).</div>
|
||||
</div>
|
||||
<div id="ref-florescu_designer_2009" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">3. </div><div
|
||||
class="csl-right-inline">Florescu, M., Torquato, S. & Steinhardt, P.
|
||||
J. <a href="https://doi.org/10.1073/pnas.0907744106">Designer disordered
|
||||
materials with large, complete photonic band gaps</a>. <em>Proceedings
|
||||
of the National Academy of Sciences</em> <strong>106</strong>,
|
||||
20658–20663 (2009).</div>
|
||||
<div class="csl-left-margin">[3] </div><div class="csl-right-inline">M.
|
||||
Florescu, S. Torquato, and P. J. Steinhardt, <em><a
|
||||
href="https://doi.org/10.1073/pnas.0907744106">Designer Disordered
|
||||
Materials with Large, Complete Photonic Band Gaps</a></em>, Proceedings
|
||||
of the National Academy of Sciences <strong>106</strong>, 20658
|
||||
(2009).</div>
|
||||
</div>
|
||||
<div id="ref-alyamiUniformSamplingDirected2016" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">4. </div><div
|
||||
class="csl-right-inline">Alyami, S. A., Azad, A. K. M. & Keith, J.
|
||||
M. <a href="https://doi.org/10.1016/j.endm.2016.05.005">Uniform Sampling
|
||||
of Directed and Undirected Graphs Conditional on Vertex
|
||||
Connectivity</a>. <em>Electronic Notes in Discrete Mathematics</em>
|
||||
<strong>53</strong>, 43–55 (2016).</div>
|
||||
<div class="csl-left-margin">[4] </div><div class="csl-right-inline">S.
|
||||
A. Alyami, A. K. M. Azad, and J. M. Keith, <em><a
|
||||
href="https://doi.org/10.1016/j.endm.2016.05.005">Uniform Sampling of
|
||||
Directed and Undirected Graphs Conditional on Vertex
|
||||
Connectivity</a></em>, Electronic Notes in Discrete Mathematics
|
||||
<strong>53</strong>, 43 (2016).</div>
|
||||
</div>
|
||||
<div id="ref-barberQuickhullAlgorithmConvex1996" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">5. </div><div
|
||||
class="csl-right-inline">Barber, C. B., Dobkin, D. P. & Huhdanpaa,
|
||||
H. <a href="https://doi.org/10.1145/235815.235821">The quickhull
|
||||
algorithm for convex hulls</a>. <em>ACM Trans. Math. Softw.</em>
|
||||
<strong>22</strong>, 469–483 (1996).</div>
|
||||
<div class="csl-left-margin">[5] </div><div class="csl-right-inline">C.
|
||||
B. Barber, D. P. Dobkin, and H. Huhdanpaa, <em><a
|
||||
href="https://doi.org/10.1145/235815.235821">The Quickhull Algorithm for
|
||||
Convex Hulls</a></em>, ACM Trans. Math. Softw. <strong>22</strong>, 469
|
||||
(1996).</div>
|
||||
</div>
|
||||
<div id="ref-virtanenSciPyFundamentalAlgorithms2020" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">6. </div><div
|
||||
class="csl-right-inline">Virtanen, P. <em>et al.</em> <a
|
||||
href="https://doi.org/10.1038/s41592-019-0686-2">SciPy 1.0: fundamental
|
||||
algorithms for scientific computing in Python</a>. <em>Nature
|
||||
Methods</em> <strong>17</strong>, 261–272 (2020).</div>
|
||||
<div class="csl-left-margin">[6] </div><div class="csl-right-inline">P.
|
||||
Virtanen et al., <em><a
|
||||
href="https://doi.org/10.1038/s41592-019-0686-2">SciPy 1.0: Fundamental
|
||||
Algorithms for Scientific Computing in Python</a></em>, Nature Methods
|
||||
<strong>17</strong>, 3 (2020).</div>
|
||||
</div>
|
||||
<div id="ref-appelEveryPlanarMap1989" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">7. </div><div
|
||||
class="csl-right-inline">Appel, K. & Haken, W. Every Planar Map Is
|
||||
Four Colorable. in (1989). doi:<a
|
||||
href="https://doi.org/10.1090/conm/098">10.1090/conm/098</a>.</div>
|
||||
<div class="csl-left-margin">[7] </div><div class="csl-right-inline">K.
|
||||
Appel and W. Haken, <em><a href="https://doi.org/10.1090/conm/098">Every
|
||||
Planar Map Is Four Colorable</a></em>, in (1989).</div>
|
||||
</div>
|
||||
<div id="ref-heawoodMapColouringTheorems" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">8. </div><div
|
||||
class="csl-right-inline">Heawood, P. J. Map colouring theorems.
|
||||
<em>Quarterly Journal of Mathematics</em> 322–339.</div>
|
||||
<div class="csl-left-margin">[8] </div><div class="csl-right-inline">P.
|
||||
J. Heawood, <em>Map Colouring Theorems</em>, Quarterly Journal of
|
||||
Mathematics 322 (n.d.).</div>
|
||||
</div>
|
||||
<div id="ref-gEstimateChromaticClass1964" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">9. </div><div class="csl-right-inline">G,
|
||||
V. V. <a href="https://cir.nii.ac.jp/crid/1571980075458819456">On an
|
||||
estimate of the chromatic class of a p-graph</a>. <em>Discret
|
||||
Analiz</em> <strong>3</strong>, 25–30 (1964).</div>
|
||||
<div class="csl-left-margin">[9] </div><div class="csl-right-inline">V.
|
||||
V. G, <em><a href="https://cir.nii.ac.jp/crid/1571980075458819456">On an
|
||||
Estimate of the Chromatic Class of a p-Graph</a></em>, Discret Analiz
|
||||
<strong>3</strong>, 25 (1964).</div>
|
||||
</div>
|
||||
<div id="ref-skulrattanakulchai4edgecoloringGraphsMaximum2002"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">10. </div><div
|
||||
class="csl-right-inline">Skulrattanakulchai, S. <a
|
||||
<div class="csl-left-margin">[10] </div><div class="csl-right-inline">S.
|
||||
Skulrattanakulchai, <em><a
|
||||
href="https://doi.org/10.1016/S0020-0190(01)00221-6">4-edge-coloring
|
||||
graphs of maximum degree 3 in linear time</a>. <em>Inf. Process.
|
||||
Lett.</em> <strong>81</strong>, 191–195 (2002).</div>
|
||||
graphs of maximum degree 3 in linear time</a></em>, Inf. Process. Lett.
|
||||
<strong>81</strong>, 191 (2002).</div>
|
||||
</div>
|
||||
<div id="ref-tait1880remarks" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">11. </div><div
|
||||
class="csl-right-inline">Tait, P. G. Remarks on the colouring of maps.
|
||||
in <em>Proc. Roy. Soc. Edinburgh</em> vol. 10 501–503 (1880).</div>
|
||||
<div class="csl-left-margin">[11] </div><div class="csl-right-inline">P.
|
||||
G. Tait, <em>Remarks on the Colouring of Maps</em>, in <em>Proc. Roy.
|
||||
Soc. Edinburgh</em>, Vol. 10 (1880), pp. 501–503.</div>
|
||||
</div>
|
||||
<div id="ref-robertson1996efficiently" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">12. </div><div
|
||||
class="csl-right-inline">Robertson, N., Sanders, D. P., Seymour, P.
|
||||
& Thomas, R. Efficiently four-coloring planar graphs. in
|
||||
<em>Proceedings of the twenty-eighth annual ACM symposium on Theory of
|
||||
computing</em> 571–575 (1996).</div>
|
||||
<div class="csl-left-margin">[12] </div><div class="csl-right-inline">N.
|
||||
Robertson, D. P. Sanders, P. Seymour, and R. Thomas, <em>Efficiently
|
||||
Four-Coloring Planar Graphs</em>, in <em>Proceedings of the
|
||||
Twenty-Eighth Annual ACM Symposium on Theory of Computing</em> (1996),
|
||||
pp. 571–575.</div>
|
||||
</div>
|
||||
<div id="ref-Karp1972" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">13. </div><div
|
||||
class="csl-right-inline">Karp, R. M. Reducibility among combinatorial
|
||||
problems. in <em>Complexity of computer computations</em> (eds. Miller,
|
||||
R. E., Thatcher, J. W. & Bohlinger, J. D.) 85–103 (Springer US,
|
||||
1972). doi:<a
|
||||
href="https://doi.org/10.1007/978-1-4684-2001-2_9">10.1007/978-1-4684-2001-2_9</a>.</div>
|
||||
<div class="csl-left-margin">[13] </div><div class="csl-right-inline">R.
|
||||
M. Karp, <em><a
|
||||
href="https://doi.org/10.1007/978-1-4684-2001-2_9">Reducibility Among
|
||||
Combinatorial Problems</a></em>, in <em>Complexity of Computer
|
||||
Computations</em>, edited by R. E. Miller, J. W. Thatcher, and J. D.
|
||||
Bohlinger (Springer US, Boston, MA, 1972), pp. 85–103.</div>
|
||||
</div>
|
||||
<div id="ref-alounehComprehensiveStudyAnalysis2019" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">14. </div><div
|
||||
class="csl-right-inline">Alouneh, S., Abed, S., Al Shayeji, M. H. &
|
||||
Mesleh, R. <a href="https://doi.org/10.1007/s10462-018-9628-0">A
|
||||
comprehensive study and analysis on SAT-solvers: advances, usages and
|
||||
achievements</a>. <em>Artif Intell Rev</em> <strong>52</strong>,
|
||||
2575–2601 (2019).</div>
|
||||
<div class="csl-left-margin">[14] </div><div class="csl-right-inline">S.
|
||||
Alouneh, S. Abed, M. H. Al Shayeji, and R. Mesleh, <em><a
|
||||
href="https://doi.org/10.1007/s10462-018-9628-0">A Comprehensive Study
|
||||
and Analysis on SAT-Solvers: Advances, Usages and Achievements</a></em>,
|
||||
Artif Intell Rev <strong>52</strong>, 2575 (2019).</div>
|
||||
</div>
|
||||
<div id="ref-cookComplexityTheoremprovingProcedures1971"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">15. </div><div
|
||||
class="csl-right-inline">Cook, S. A. The complexity of theorem-proving
|
||||
procedures. in <em>Proceedings of the third annual ACM symposium on
|
||||
Theory of computing</em> 151–158 (Association for Computing Machinery,
|
||||
1971). doi:<a
|
||||
href="https://doi.org/10.1145/800157.805047">10.1145/800157.805047</a>.</div>
|
||||
<div class="csl-left-margin">[15] </div><div class="csl-right-inline">S.
|
||||
A. Cook, <em><a href="https://doi.org/10.1145/800157.805047">The
|
||||
Complexity of Theorem-Proving Procedures</a></em>, in <em>Proceedings of
|
||||
the Third Annual ACM Symposium on Theory of Computing</em> (Association
|
||||
for Computing Machinery, New York, NY, USA, 1971), pp. 151–158.</div>
|
||||
</div>
|
||||
<div id="ref-levin1973universal" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">16. </div><div
|
||||
class="csl-right-inline">Levin, L. A. Universal sequential search
|
||||
problems. <em>Problemy peredachi informatsii</em> <strong>9</strong>,
|
||||
115–116 (1973).</div>
|
||||
<div class="csl-left-margin">[16] </div><div class="csl-right-inline">L.
|
||||
A. Levin, <em>Universal Sequential Search Problems</em>, Problemy
|
||||
Peredachi Informatsii <strong>9</strong>, 115 (1973).</div>
|
||||
</div>
|
||||
<div id="ref-imms-sat18" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">17. </div><div
|
||||
class="csl-right-inline">Ignatiev, A., Morgado, A. & Marques-Silva,
|
||||
J. PySAT: A Python toolkit for prototyping with SAT oracles. in
|
||||
<em>SAT</em> 428–437 (2018). doi:<a
|
||||
href="https://doi.org/10.1007/978-3-319-94144-8_26">10.1007/978-3-319-94144-8_26</a>.</div>
|
||||
<div class="csl-left-margin">[17] </div><div class="csl-right-inline">A.
|
||||
Ignatiev, A. Morgado, and J. Marques-Silva, <em><a
|
||||
href="https://doi.org/10.1007/978-3-319-94144-8_26">PySAT: A Python
|
||||
Toolkit for Prototyping with SAT Oracles</a></em>, in <em>SAT</em>
|
||||
(2018), pp. 428–437.</div>
|
||||
</div>
|
||||
<div id="ref-kosowski2004classical" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">18. </div><div
|
||||
class="csl-right-inline">Kosowski, A. & Manuszewski, K. Classical
|
||||
coloring of graphs. <em>Contemporary Mathematics</em>
|
||||
<strong>352</strong>, 1–20 (2004).</div>
|
||||
<div class="csl-left-margin">[18] </div><div class="csl-right-inline">A.
|
||||
Kosowski and K. Manuszewski, <em>Classical Coloring of Graphs</em>,
|
||||
Contemporary Mathematics <strong>352</strong>, 1 (2004).</div>
|
||||
</div>
|
||||
<div id="ref-matulaSmallestlastOrderingClustering1983" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">19. </div><div
|
||||
class="csl-right-inline">Matula, D. W. & Beck, L. L. <a
|
||||
href="https://doi.org/10.1145/2402.322385">Smallest-last ordering and
|
||||
clustering and graph coloring algorithms</a>. <em>J. ACM</em>
|
||||
<strong>30</strong>, 417–427 (1983).</div>
|
||||
<div class="csl-left-margin">[19] </div><div class="csl-right-inline">D.
|
||||
W. Matula and L. L. Beck, <em><a
|
||||
href="https://doi.org/10.1145/2402.322385">Smallest-Last Ordering and
|
||||
Clustering and Graph Coloring Algorithms</a></em>, J. ACM
|
||||
<strong>30</strong>, 417 (1983).</div>
|
||||
</div>
|
||||
</div>
|
||||
</main>
|
||||
|
@ -249,10 +249,10 @@ ground state flux sector is correct. We will do this by enumerating all
|
||||
the flux sectors of many separate system realisations. However there are
|
||||
some issues we will need to address to make this argument work.</p>
|
||||
<p>We have two seemingly irreconcilable problems. Finite size effects
|
||||
have a large energetic contribution for small systems<span
|
||||
class="citation" data-cites="kitaevAnyonsExactlySolved2006"><sup><a
|
||||
have a large energetic contribution for small systems <span
|
||||
class="citation" data-cites="kitaevAnyonsExactlySolved2006"> [<a
|
||||
href="#ref-kitaevAnyonsExactlySolved2006"
|
||||
role="doc-biblioref">1</a></sup></span> so we would like to perform our
|
||||
role="doc-biblioref">1</a>]</span> so we would like to perform our
|
||||
analysis for very large lattices. However for an amorphous system with
|
||||
<span class="math inline">\(N\)</span> plaquettes, <span
|
||||
class="math inline">\(2N\)</span> edges and <span
|
||||
@ -308,15 +308,15 @@ relatively regular pattern for the imaginary fluxes with only a global
|
||||
two-fold chiral degeneracy.</p>
|
||||
<p>Thus, states with a fixed flux sector spontaneously break time
|
||||
reversal symmetry. This was first described by Yao and Kivelson for a
|
||||
translation invariant Kitaev model with odd sided plaquettes<span
|
||||
class="citation" data-cites="Yao2011"><sup><a href="#ref-Yao2011"
|
||||
role="doc-biblioref">2</a></sup></span>.</p>
|
||||
translation invariant Kitaev model with odd sided plaquettes <span
|
||||
class="citation" data-cites="Yao2011"> [<a href="#ref-Yao2011"
|
||||
role="doc-biblioref">2</a>]</span>.</p>
|
||||
<p>So we have flux sectors that come in degenerate pairs, where time
|
||||
reversal is equivalent to inverting the flux through every odd
|
||||
plaquette, a general feature for lattices with odd plaquettes <span
|
||||
class="citation" data-cites="yaoExactChiralSpin2007 Peri2020"><sup><a
|
||||
class="citation" data-cites="yaoExactChiralSpin2007 Peri2020"> [<a
|
||||
href="#ref-yaoExactChiralSpin2007" role="doc-biblioref">3</a>,<a
|
||||
href="#ref-Peri2020" role="doc-biblioref">4</a></sup></span>. This
|
||||
href="#ref-Peri2020" role="doc-biblioref">4</a>]</span>. This
|
||||
spontaneously broken symmetry avoids the need to explicitly break TRS
|
||||
with a magnetic field term as is done in the original honeycomb
|
||||
model.</p>
|
||||
@ -348,12 +348,11 @@ straight lines <span class="math inline">\(|J^x| = |J^y| +
|
||||
class="math inline">\(x,y,z\)</span>, shown as dotted line on ~<a
|
||||
href="#fig:phase_diagram">1</a> (Right). We find that on the amorphous
|
||||
lattice these boundaries exhibit an inward curvature, similar to
|
||||
honeycomb Kitaev models with flux<span class="citation"
|
||||
data-cites="Nasu_Thermal_2015"><sup><a href="#ref-Nasu_Thermal_2015"
|
||||
role="doc-biblioref">5</a></sup></span> or bond<span class="citation"
|
||||
data-cites="knolle_dynamics_2016"><sup><a
|
||||
href="#ref-knolle_dynamics_2016" role="doc-biblioref">6</a></sup></span>
|
||||
disorder.</p>
|
||||
honeycomb Kitaev models with flux <span class="citation"
|
||||
data-cites="Nasu_Thermal_2015"> [<a href="#ref-Nasu_Thermal_2015"
|
||||
role="doc-biblioref">5</a>]</span> or bond <span class="citation"
|
||||
data-cites="knolle_dynamics_2016"> [<a href="#ref-knolle_dynamics_2016"
|
||||
role="doc-biblioref">6</a>]</span> disorder.</p>
|
||||
<div id="fig:phase_diagram" class="fignos">
|
||||
<figure>
|
||||
<img
|
||||
@ -388,11 +387,11 @@ class="math inline">\(0\)</span> to <span class="math inline">\(\pm
|
||||
later I’ll double check this with finite size scaling.</p>
|
||||
<p>The next question is: do these phases support excitations with
|
||||
Abelian or non-Abelian statistics? To answer that we turn to Chern
|
||||
numbers<span class="citation"
|
||||
data-cites="berryQuantalPhaseFactors1984 simonHolonomyQuantumAdiabatic1983 thoulessQuantizedHallConductance1982"><sup><a
|
||||
numbers <span class="citation"
|
||||
data-cites="berryQuantalPhaseFactors1984 simonHolonomyQuantumAdiabatic1983 thoulessQuantizedHallConductance1982"> [<a
|
||||
href="#ref-berryQuantalPhaseFactors1984" role="doc-biblioref">7</a>–<a
|
||||
href="#ref-thoulessQuantizedHallConductance1982"
|
||||
role="doc-biblioref">9</a></sup></span>. As discussed earlier the Chern
|
||||
role="doc-biblioref">9</a>]</span>. As discussed earlier the Chern
|
||||
number is a quantity intimately linked to both the topological
|
||||
properties and the anyonic statistics of a model. Here we will make use
|
||||
of the fact that the Abelian/non-Abelian character of a model is linked
|
||||
@ -400,28 +399,27 @@ to its Chern number <strong>[citation]</strong>. However the Chern
|
||||
number is only defined for the translation invariant case because it
|
||||
relies on integrals defined in k-space.</p>
|
||||
<p>A family of real space generalisations of the Chern number that work
|
||||
for amorphous systems exist called local topological markers<span
|
||||
for amorphous systems exist called local topological markers <span
|
||||
class="citation"
|
||||
data-cites="bianco_mapping_2011 Hastings_Almost_2010 mitchellAmorphousTopologicalInsulators2018"><sup><a
|
||||
data-cites="bianco_mapping_2011 Hastings_Almost_2010 mitchellAmorphousTopologicalInsulators2018"> [<a
|
||||
href="#ref-bianco_mapping_2011" role="doc-biblioref">10</a>–<a
|
||||
href="#ref-mitchellAmorphousTopologicalInsulators2018"
|
||||
role="doc-biblioref">12</a></sup></span> and indeed Kitaev defines one
|
||||
in his original paper on the model<span class="citation"
|
||||
data-cites="kitaevAnyonsExactlySolved2006"><sup><a
|
||||
role="doc-biblioref">12</a>]</span> and indeed Kitaev defines one in his
|
||||
original paper on the model <span class="citation"
|
||||
data-cites="kitaevAnyonsExactlySolved2006"> [<a
|
||||
href="#ref-kitaevAnyonsExactlySolved2006"
|
||||
role="doc-biblioref">1</a></sup></span>.</p>
|
||||
<p>Here we use the crosshair marker of<span class="citation"
|
||||
data-cites="peru_preprint"><sup><a href="#ref-peru_preprint"
|
||||
role="doc-biblioref">13</a></sup></span> because it works well on
|
||||
smaller systems. We calculate the projector <span
|
||||
class="math inline">\(P = \sum_i |\psi_i\rangle \langle \psi_i|\)</span>
|
||||
onto the occupied fermion eigenstates of the system in open boundary
|
||||
conditions. The projector encodes local information about the occupied
|
||||
eigenstates of the system and is typically exponentially localised
|
||||
<strong>[cite]</strong>. The name <em>crosshair</em> comes from the fact
|
||||
that the marker is defined with respect to a particular point <span
|
||||
class="math inline">\((x_0, y_0)\)</span> by step functions in x and
|
||||
y</p>
|
||||
role="doc-biblioref">1</a>]</span>.</p>
|
||||
<p>Here we use the crosshair marker of <span class="citation"
|
||||
data-cites="peru_preprint"> [<a href="#ref-peru_preprint"
|
||||
role="doc-biblioref">13</a>]</span> because it works well on smaller
|
||||
systems. We calculate the projector <span class="math inline">\(P =
|
||||
\sum_i |\psi_i\rangle \langle \psi_i|\)</span> onto the occupied fermion
|
||||
eigenstates of the system in open boundary conditions. The projector
|
||||
encodes local information about the occupied eigenstates of the system
|
||||
and is typically exponentially localised <strong>[cite]</strong>. The
|
||||
name <em>crosshair</em> comes from the fact that the marker is defined
|
||||
with respect to a particular point <span class="math inline">\((x_0,
|
||||
y_0)\)</span> by step functions in x and y</p>
|
||||
<p><span class="math display">\[\begin{aligned}
|
||||
\nu (x, y) = 4\pi \; \Im\; \mathrm{Tr}_{\mathrm{B}}
|
||||
\left (
|
||||
@ -440,54 +438,51 @@ character of the phases.</p>
|
||||
<p>In the A phase of the amorphous model we find that <span
|
||||
class="math inline">\(\nu=0\)</span> and hence the excitations have
|
||||
Abelian character, similar to the honeycomb model. This phase is thus
|
||||
the amorphous analogue of the Abelian toric-code quantum spin
|
||||
liquid<span class="citation"
|
||||
data-cites="kitaev_fault-tolerant_2003"><sup><a
|
||||
the amorphous analogue of the Abelian toric-code quantum spin liquid
|
||||
<span class="citation" data-cites="kitaev_fault-tolerant_2003"> [<a
|
||||
href="#ref-kitaev_fault-tolerant_2003"
|
||||
role="doc-biblioref">14</a></sup></span>.</p>
|
||||
role="doc-biblioref">14</a>]</span>.</p>
|
||||
<p>The B phase has <span class="math inline">\(\nu=\pm1\)</span> so is a
|
||||
non-Abelian <em>chiral spin liquid</em> (CSL) similar to that of the
|
||||
Yao-Kivelson model<span class="citation"
|
||||
data-cites="yaoExactChiralSpin2007"><sup><a
|
||||
href="#ref-yaoExactChiralSpin2007"
|
||||
role="doc-biblioref">3</a></sup></span>. The CSL state is the the
|
||||
magnetic analogue of the fractional quantum Hall state
|
||||
<strong>[cite]</strong>. Hereafter we focus our attention on this
|
||||
phase.</p>
|
||||
Yao-Kivelson model <span class="citation"
|
||||
data-cites="yaoExactChiralSpin2007"> [<a
|
||||
href="#ref-yaoExactChiralSpin2007" role="doc-biblioref">3</a>]</span>.
|
||||
The CSL state is the the magnetic analogue of the fractional quantum
|
||||
Hall state <strong>[cite]</strong>. Hereafter we focus our attention on
|
||||
this phase.</p>
|
||||
<div id="fig:phase_diagram_chern" class="fignos">
|
||||
<figure>
|
||||
<img
|
||||
src="/assets/thesis/amk_chapter/results/phase_diagram_chern/phase_diagram_chern.svg"
|
||||
data-short-caption="Local Chern Markers" style="width:100.0%"
|
||||
alt="Figure 2: (Center) The crosshair marker13, a local topological marker, evaluated on the Amorphous Kitaev Model. The marker is defined around a point, denoted by the dotted crosshair. Information about the local topological properties of the system are encoded within a region around that point. (Left) Summing these contributions up to some finite radius (dotted line here, dotted circle in the centre) gives a generalised version of the Chern number for the system which becomes quantised in the thermodynamic limit. The radius must be chosen large enough to capture information about the local properties of the lattice while not so large as to include contributions from the edge states. The isotropic regime J_\alpha = 1 in red has \nu = \pm 1 implying it supports excitations with non-Abelian statistics, while the anisotropic regime in orange has \nu = \pm 0 implying it has Abelian statistics. (Right) Extending this analysis to the whole J_\alpha phase diagram with fixed r = 0.3 nicely confirms that the isotropic phase is non-Abelian." />
|
||||
alt="Figure 2: (Center) The crosshair marker [13], a local topological marker, evaluated on the Amorphous Kitaev Model. The marker is defined around a point, denoted by the dotted crosshair. Information about the local topological properties of the system are encoded within a region around that point. (Left) Summing these contributions up to some finite radius (dotted line here, dotted circle in the centre) gives a generalised version of the Chern number for the system which becomes quantised in the thermodynamic limit. The radius must be chosen large enough to capture information about the local properties of the lattice while not so large as to include contributions from the edge states. The isotropic regime J_\alpha = 1 in red has \nu = \pm 1 implying it supports excitations with non-Abelian statistics, while the anisotropic regime in orange has \nu = \pm 0 implying it has Abelian statistics. (Right) Extending this analysis to the whole J_\alpha phase diagram with fixed r = 0.3 nicely confirms that the isotropic phase is non-Abelian." />
|
||||
<figcaption aria-hidden="true"><span>Figure 2:</span> (Center) The
|
||||
crosshair marker<span class="citation"
|
||||
data-cites="peru_preprint"><sup><a href="#ref-peru_preprint"
|
||||
role="doc-biblioref">13</a></sup></span>, a local topological marker,
|
||||
evaluated on the Amorphous Kitaev Model. The marker is defined around a
|
||||
point, denoted by the dotted crosshair. Information about the local
|
||||
topological properties of the system are encoded within a region around
|
||||
that point. (Left) Summing these contributions up to some finite radius
|
||||
(dotted line here, dotted circle in the centre) gives a generalised
|
||||
version of the Chern number for the system which becomes quantised in
|
||||
the thermodynamic limit. The radius must be chosen large enough to
|
||||
capture information about the local properties of the lattice while not
|
||||
so large as to include contributions from the edge states. The isotropic
|
||||
regime <span class="math inline">\(J_\alpha = 1\)</span> in red has
|
||||
<span class="math inline">\(\nu = \pm 1\)</span> implying it supports
|
||||
excitations with non-Abelian statistics, while the anisotropic regime in
|
||||
orange has <span class="math inline">\(\nu = \pm 0\)</span> implying it
|
||||
has Abelian statistics. (Right) Extending this analysis to the whole
|
||||
<span class="math inline">\(J_\alpha\)</span> phase diagram with fixed
|
||||
<span class="math inline">\(r = 0.3\)</span> nicely confirms that the
|
||||
isotropic phase is non-Abelian.</figcaption>
|
||||
crosshair marker <span class="citation" data-cites="peru_preprint"> [<a
|
||||
href="#ref-peru_preprint" role="doc-biblioref">13</a>]</span>, a local
|
||||
topological marker, evaluated on the Amorphous Kitaev Model. The marker
|
||||
is defined around a point, denoted by the dotted crosshair. Information
|
||||
about the local topological properties of the system are encoded within
|
||||
a region around that point. (Left) Summing these contributions up to
|
||||
some finite radius (dotted line here, dotted circle in the centre) gives
|
||||
a generalised version of the Chern number for the system which becomes
|
||||
quantised in the thermodynamic limit. The radius must be chosen large
|
||||
enough to capture information about the local properties of the lattice
|
||||
while not so large as to include contributions from the edge states. The
|
||||
isotropic regime <span class="math inline">\(J_\alpha = 1\)</span> in
|
||||
red has <span class="math inline">\(\nu = \pm 1\)</span> implying it
|
||||
supports excitations with non-Abelian statistics, while the anisotropic
|
||||
regime in orange has <span class="math inline">\(\nu = \pm 0\)</span>
|
||||
implying it has Abelian statistics. (Right) Extending this analysis to
|
||||
the whole <span class="math inline">\(J_\alpha\)</span> phase diagram
|
||||
with fixed <span class="math inline">\(r = 0.3\)</span> nicely confirms
|
||||
that the isotropic phase is non-Abelian.</figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
<h3 id="edge-modes">Edge Modes</h3>
|
||||
<p>Chiral Spin Liquids support topological protected edge modes on open
|
||||
boundary conditions<span class="citation"
|
||||
data-cites="qi_general_2006"><sup><a href="#ref-qi_general_2006"
|
||||
role="doc-biblioref">15</a></sup></span>. fig. <a
|
||||
boundary conditions <span class="citation"
|
||||
data-cites="qi_general_2006"> [<a href="#ref-qi_general_2006"
|
||||
role="doc-biblioref">15</a>]</span>. fig. <a
|
||||
href="#fig:edge_modes">3</a> shows the probability density of one such
|
||||
edge mode. It is near zero energy and exponentially localised to the
|
||||
boundary of the system. While the model is gapped in periodic boundary
|
||||
@ -522,35 +517,34 @@ states.</figcaption>
|
||||
Thermal Metal</h2>
|
||||
<p>Previous work on the honeycomb model at finite temperature has shown
|
||||
that the B phase undergoes a thermal transition from a quantum spin
|
||||
liquid phase a to a <strong>thermal metal</strong> phase<span
|
||||
class="citation" data-cites="selfThermallyInducedMetallic2019"><sup><a
|
||||
liquid phase a to a <strong>thermal metal</strong> phase <span
|
||||
class="citation" data-cites="selfThermallyInducedMetallic2019"> [<a
|
||||
href="#ref-selfThermallyInducedMetallic2019"
|
||||
role="doc-biblioref">16</a></sup></span>.</p>
|
||||
role="doc-biblioref">16</a>]</span>.</p>
|
||||
<p>This happens because at finite temperature, thermal fluctuations lead
|
||||
to spontaneous vortex-pair formation. As discussed previously these
|
||||
fluxes are dressed by Majorana bounds states and the composite object is
|
||||
an Ising-type non-Abelian anyon<span class="citation"
|
||||
data-cites="Beenakker2013"><sup><a href="#ref-Beenakker2013"
|
||||
role="doc-biblioref">17</a></sup></span>. The interactions between these
|
||||
an Ising-type non-Abelian anyon <span class="citation"
|
||||
data-cites="Beenakker2013"> [<a href="#ref-Beenakker2013"
|
||||
role="doc-biblioref">17</a>]</span>. The interactions between these
|
||||
anyons are oscillatory similar to the RKKY exchange and decay
|
||||
exponentially with separation<span class="citation"
|
||||
data-cites="Laumann2012 Lahtinen_2011 lahtinenTopologicalLiquidNucleation2012"><sup><a
|
||||
exponentially with separation <span class="citation"
|
||||
data-cites="Laumann2012 Lahtinen_2011 lahtinenTopologicalLiquidNucleation2012"> [<a
|
||||
href="#ref-Laumann2012" role="doc-biblioref">18</a>–<a
|
||||
href="#ref-lahtinenTopologicalLiquidNucleation2012"
|
||||
role="doc-biblioref">20</a></sup></span>. At sufficient density, the
|
||||
anyons hybridise to a macroscopically degenerate state known as
|
||||
<em>thermal metal</em><span class="citation"
|
||||
data-cites="Laumann2012"><sup><a href="#ref-Laumann2012"
|
||||
role="doc-biblioref">18</a></sup></span>. At close range the oscillatory
|
||||
behaviour of the interactions can be modelled by a random sign which
|
||||
forms the basis for a random matrix theory description of the thermal
|
||||
metal state.</p>
|
||||
role="doc-biblioref">20</a>]</span>. At sufficient density, the anyons
|
||||
hybridise to a macroscopically degenerate state known as <em>thermal
|
||||
metal</em> <span class="citation" data-cites="Laumann2012"> [<a
|
||||
href="#ref-Laumann2012" role="doc-biblioref">18</a>]</span>. At close
|
||||
range the oscillatory behaviour of the interactions can be modelled by a
|
||||
random sign which forms the basis for a random matrix theory description
|
||||
of the thermal metal state.</p>
|
||||
<p>The amorphous chiral spin liquid undergoes the same form of Anderson
|
||||
transition to a thermal metal state. Markov Chain Monte Carlo would be
|
||||
necessary to simulate this in full detail<span class="citation"
|
||||
data-cites="selfThermallyInducedMetallic2019"><sup><a
|
||||
necessary to simulate this in full detail <span class="citation"
|
||||
data-cites="selfThermallyInducedMetallic2019"> [<a
|
||||
href="#ref-selfThermallyInducedMetallic2019"
|
||||
role="doc-biblioref">16</a></sup></span> but in order to avoid that
|
||||
role="doc-biblioref">16</a>]</span> but in order to avoid that
|
||||
complexity in the current work we instead opted to use vortex density
|
||||
<span class="math inline">\(\rho\)</span> as a proxy for
|
||||
temperature.</p>
|
||||
@ -641,11 +635,11 @@ model onto a Majorana model with interactions that take random signs
|
||||
which can itself be mapped onto a coarser lattice with lower energy
|
||||
excitations and so on. This can be repeating indefinitely, showing the
|
||||
model must have excitations at arbitrarily low energies in the
|
||||
thermodynamic limit<span class="citation"
|
||||
data-cites="bocquet_disordered_2000 selfThermallyInducedMetallic2019"><sup><a
|
||||
thermodynamic limit <span class="citation"
|
||||
data-cites="bocquet_disordered_2000 selfThermallyInducedMetallic2019"> [<a
|
||||
href="#ref-selfThermallyInducedMetallic2019"
|
||||
role="doc-biblioref">16</a>,<a href="#ref-bocquet_disordered_2000"
|
||||
role="doc-biblioref">21</a></sup></span>.</p>
|
||||
role="doc-biblioref">21</a>]</span>.</p>
|
||||
<p>These signatures for our model and for the honeycomb model are shown
|
||||
in fig. <a href="#fig:DOS_oscillations">6</a>. They do not occur in the
|
||||
honeycomb model unless the chiral symmetry is broken by a magnetic
|
||||
@ -656,21 +650,21 @@ field.</p>
|
||||
src="/assets/thesis/amk_chapter/results/DOS_oscillations/DOS_oscillations.svg"
|
||||
data-short-caption="Distinctive Oscillations in the Density of States"
|
||||
style="width:100.0%"
|
||||
alt="Figure 6: Density of states at high temperature showing the logarithmic divergence at zero energy and oscillations characteristic of the thermal metal state16,21. (a) shows the honeycomb lattice model in the B phase with magnetic field, while (b) shows that our model transitions to a thermal metal phase without an external magnetic field but rather due to the spontaneous chiral symmetry breaking. In both plots the density of vortices is \rho = 0.5 corresponding to the T = \infty limit." />
|
||||
alt="Figure 6: Density of states at high temperature showing the logarithmic divergence at zero energy and oscillations characteristic of the thermal metal state [16,21]. (a) shows the honeycomb lattice model in the B phase with magnetic field, while (b) shows that our model transitions to a thermal metal phase without an external magnetic field but rather due to the spontaneous chiral symmetry breaking. In both plots the density of vortices is \rho = 0.5 corresponding to the T = \infty limit." />
|
||||
<figcaption aria-hidden="true"><span>Figure 6:</span> Density of states
|
||||
at high temperature showing the logarithmic divergence at zero energy
|
||||
and oscillations characteristic of the thermal metal state<span
|
||||
and oscillations characteristic of the thermal metal state <span
|
||||
class="citation"
|
||||
data-cites="bocquet_disordered_2000 selfThermallyInducedMetallic2019"><sup><a
|
||||
data-cites="bocquet_disordered_2000 selfThermallyInducedMetallic2019"> [<a
|
||||
href="#ref-selfThermallyInducedMetallic2019"
|
||||
role="doc-biblioref">16</a>,<a href="#ref-bocquet_disordered_2000"
|
||||
role="doc-biblioref">21</a></sup></span>. (a) shows the honeycomb
|
||||
lattice model in the B phase with magnetic field, while (b) shows that
|
||||
our model transitions to a thermal metal phase without an external
|
||||
magnetic field but rather due to the spontaneous chiral symmetry
|
||||
breaking. In both plots the density of vortices is <span
|
||||
class="math inline">\(\rho = 0.5\)</span> corresponding to the <span
|
||||
class="math inline">\(T = \infty\)</span> limit.</figcaption>
|
||||
role="doc-biblioref">21</a>]</span>. (a) shows the honeycomb lattice
|
||||
model in the B phase with magnetic field, while (b) shows that our model
|
||||
transitions to a thermal metal phase without an external magnetic field
|
||||
but rather due to the spontaneous chiral symmetry breaking. In both
|
||||
plots the density of vortices is <span class="math inline">\(\rho =
|
||||
0.5\)</span> corresponding to the <span class="math inline">\(T =
|
||||
\infty\)</span> limit.</figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
<h1 id="conclusion">Conclusion</h1>
|
||||
@ -719,46 +713,45 @@ Realisations and Signatures</h2>
|
||||
<p>The obvious question is whether amorphous Kitaev materials could be
|
||||
physically realised.</p>
|
||||
<p>Most crystals can as exists in a metastable amorphous state if they
|
||||
are cooled rapidly, freezing them into a disordered configuration<span
|
||||
are cooled rapidly, freezing them into a disordered configuration <span
|
||||
class="citation"
|
||||
data-cites="Weaire1976 Petrakovski1981 Kaneyoshi2018"><sup><a
|
||||
data-cites="Weaire1976 Petrakovski1981 Kaneyoshi2018"> [<a
|
||||
href="#ref-Weaire1976" role="doc-biblioref">22</a>–<a
|
||||
href="#ref-Kaneyoshi2018" role="doc-biblioref">24</a></sup></span>.
|
||||
Indeed quenching has been used by humans to control the hardness of
|
||||
steel or iron for thousands of years. It would therefore be interesting
|
||||
to study amorphous version of candidate Kitaev materials<span
|
||||
class="citation" data-cites="trebstKitaevMaterials2022"><sup><a
|
||||
href="#ref-Kaneyoshi2018" role="doc-biblioref">24</a>]</span>. Indeed
|
||||
quenching has been used by humans to control the hardness of steel or
|
||||
iron for thousands of years. It would therefore be interesting to study
|
||||
amorphous version of candidate Kitaev materials <span class="citation"
|
||||
data-cites="trebstKitaevMaterials2022"> [<a
|
||||
href="#ref-trebstKitaevMaterials2022"
|
||||
role="doc-biblioref"><strong>trebstKitaevMaterials2022?</strong></a></sup></span>
|
||||
role="doc-biblioref"><strong>trebstKitaevMaterials2022?</strong></a>]</span>
|
||||
such as <span class="math inline">\(\alpha-\textrm{RuCl}_3\)</span> to
|
||||
see whether they maintain even approximate fixed coordination number
|
||||
locally as is the case with amorphous Silicon and Germanium<span
|
||||
class="citation" data-cites="Weaire1971 betteridge1973possible"><sup><a
|
||||
locally as is the case with amorphous Silicon and Germanium <span
|
||||
class="citation" data-cites="Weaire1971 betteridge1973possible"> [<a
|
||||
href="#ref-Weaire1971" role="doc-biblioref">25</a>,<a
|
||||
href="#ref-betteridge1973possible"
|
||||
role="doc-biblioref">26</a></sup></span>.</p>
|
||||
role="doc-biblioref">26</a>]</span>.</p>
|
||||
<p>Looking instead at more engineered realisation, metal organic
|
||||
frameworks have been shown to be capable of forming amorphous
|
||||
lattices <span class="citation"
|
||||
data-cites="bennett2014amorphous"><sup><a
|
||||
href="#ref-bennett2014amorphous"
|
||||
role="doc-biblioref">27</a></sup></span> and there are recent proposals
|
||||
for realizing strong Kitaev interactions <span class="citation"
|
||||
data-cites="yamadaDesigningKitaevSpin2017"><sup><a
|
||||
lattices <span class="citation" data-cites="bennett2014amorphous"> [<a
|
||||
href="#ref-bennett2014amorphous" role="doc-biblioref">27</a>]</span> and
|
||||
there are recent proposals for realizing strong Kitaev
|
||||
interactions <span class="citation"
|
||||
data-cites="yamadaDesigningKitaevSpin2017"> [<a
|
||||
href="#ref-yamadaDesigningKitaevSpin2017"
|
||||
role="doc-biblioref">28</a></sup></span> as well as reports of QSL
|
||||
role="doc-biblioref">28</a>]</span> as well as reports of QSL
|
||||
behavior <span class="citation"
|
||||
data-cites="misumiQuantumSpinLiquid2020"><sup><a
|
||||
data-cites="misumiQuantumSpinLiquid2020"> [<a
|
||||
href="#ref-misumiQuantumSpinLiquid2020"
|
||||
role="doc-biblioref">29</a></sup></span>.</p>
|
||||
role="doc-biblioref">29</a>]</span>.</p>
|
||||
<h2 id="generalisations">Generalisations</h2>
|
||||
<p>The model presented here could be generalized in several ways.</p>
|
||||
<p>First, it would be interesting to study the stability of the chiral
|
||||
amorphous Kitaev QSL with respect to perturbations <span
|
||||
class="citation"
|
||||
data-cites="Rau2014 Chaloupka2010 Chaloupka2013 Chaloupka2015 Winter2016"><sup><a
|
||||
data-cites="Rau2014 Chaloupka2010 Chaloupka2013 Chaloupka2015 Winter2016"> [<a
|
||||
href="#ref-Rau2014" role="doc-biblioref">30</a>–<a
|
||||
href="#ref-Winter2016" role="doc-biblioref">34</a></sup></span>.</p>
|
||||
href="#ref-Winter2016" role="doc-biblioref">34</a>]</span>.</p>
|
||||
<p>Second, one could investigate whether a QSL phase may exist for for
|
||||
other models defined on amorphous lattices. For example, in real
|
||||
materials, there will generally be an additional small Heisenberg term
|
||||
@ -767,398 +760,382 @@ j,k\rangle_\alpha} J^{\alpha}\sigma_j^{\alpha}\sigma_k^{\alpha} +
|
||||
\sigma_j\sigma_k\]</span> With a view to more realistic prospects of
|
||||
observation, it would be interesting to see if the properties of the
|
||||
Kitaev-Heisenberg model generalise from the honeycomb to the amorphous
|
||||
case[<span class="citation" data-cites="Chaloupka2010"><sup><a
|
||||
href="#ref-Chaloupka2010" role="doc-biblioref">31</a></sup></span>;<span
|
||||
class="citation" data-cites="Chaloupka2015"><sup><a
|
||||
href="#ref-Chaloupka2015" role="doc-biblioref">33</a></sup></span>;<span
|
||||
class="citation" data-cites="Jackeli2009"><sup><a
|
||||
href="#ref-Jackeli2009" role="doc-biblioref">35</a></sup></span>;<span
|
||||
class="citation" data-cites="Kalmeyer1989"><sup><a
|
||||
href="#ref-Kalmeyer1989" role="doc-biblioref">36</a></sup></span>;<span
|
||||
class="citation"
|
||||
data-cites="manousakisSpinTextonehalfHeisenberg1991"><sup><a
|
||||
case[<span class="citation" data-cites="Chaloupka2010"> [<a
|
||||
href="#ref-Chaloupka2010" role="doc-biblioref">31</a>]</span>; <span
|
||||
class="citation" data-cites="Chaloupka2015"> [<a
|
||||
href="#ref-Chaloupka2015" role="doc-biblioref">33</a>]</span>; <span
|
||||
class="citation" data-cites="Jackeli2009"> [<a href="#ref-Jackeli2009"
|
||||
role="doc-biblioref">35</a>]</span>; <span class="citation"
|
||||
data-cites="Kalmeyer1989"> [<a href="#ref-Kalmeyer1989"
|
||||
role="doc-biblioref">36</a>]</span>; <span class="citation"
|
||||
data-cites="manousakisSpinTextonehalfHeisenberg1991"> [<a
|
||||
href="#ref-manousakisSpinTextonehalfHeisenberg1991"
|
||||
role="doc-biblioref">37</a></sup></span>;].</p>
|
||||
role="doc-biblioref">37</a>]</span>;].</p>
|
||||
<p>Finally it might be possible to look at generalizations to
|
||||
higher-spin models or those on random networks with different
|
||||
coordination numbers<span class="citation"
|
||||
data-cites="Baskaran2008 Yao2009 Nussinov2009 Yao2011 Chua2011 Natori2020 Chulliparambil2020 Chulliparambil2021 Seifert2020 WangHaoranPRB2021 Wu2009"><sup><a
|
||||
coordination numbers <span class="citation"
|
||||
data-cites="Baskaran2008 Yao2009 Nussinov2009 Yao2011 Chua2011 Natori2020 Chulliparambil2020 Chulliparambil2021 Seifert2020 WangHaoranPRB2021 Wu2009"> [<a
|
||||
href="#ref-Yao2011" role="doc-biblioref">2</a>,<a
|
||||
href="#ref-Baskaran2008" role="doc-biblioref">38</a>–<a
|
||||
href="#ref-Wu2009" role="doc-biblioref">47</a></sup></span></p>
|
||||
href="#ref-Wu2009" role="doc-biblioref">47</a>]</span></p>
|
||||
<p>Overall, there has been surprisingly little research on amorphous
|
||||
quantum many body phases albeit material candidates aplenty. We expect
|
||||
our exact chiral amorphous spin liquid to find many generalisation to
|
||||
realistic amorphous quantum magnets and beyond.</p>
|
||||
<div id="refs" class="references csl-bib-body" data-line-spacing="2"
|
||||
role="doc-bibliography">
|
||||
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
|
||||
<div id="ref-kitaevAnyonsExactlySolved2006" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">1. </div><div
|
||||
class="csl-right-inline">Kitaev, A. <a
|
||||
href="https://doi.org/10.1016/j.aop.2005.10.005">Anyons in an exactly
|
||||
solved model and beyond</a>. <em>Annals of Physics</em>
|
||||
<strong>321</strong>, 2–111 (2006).</div>
|
||||
<div class="csl-left-margin">[1] </div><div class="csl-right-inline">A.
|
||||
Kitaev, <em><a href="https://doi.org/10.1016/j.aop.2005.10.005">Anyons
|
||||
in an Exactly Solved Model and Beyond</a></em>, Annals of Physics
|
||||
<strong>321</strong>, 2 (2006).</div>
|
||||
</div>
|
||||
<div id="ref-Yao2011" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">2. </div><div class="csl-right-inline">Yao,
|
||||
H. & Lee, D.-H. <a
|
||||
href="https://doi.org/10.1103/PhysRevLett.107.087205">Fermionic magnons,
|
||||
non-abelian spinons, and the spin quantum hall effect from an exactly
|
||||
solvable spin-1/2 kitaev model with SU(2) symmetry</a>. <em>Phys. Rev.
|
||||
Lett.</em> <strong>107</strong>, 087205 (2011).</div>
|
||||
<div class="csl-left-margin">[2] </div><div class="csl-right-inline">H.
|
||||
Yao and D.-H. Lee, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.107.087205">Fermionic Magnons,
|
||||
Non-Abelian Spinons, and the Spin Quantum Hall Effect from an Exactly
|
||||
Solvable Spin-1/2 Kitaev Model with SU(2) Symmetry</a></em>, Phys. Rev.
|
||||
Lett. <strong>107</strong>, 087205 (2011).</div>
|
||||
</div>
|
||||
<div id="ref-yaoExactChiralSpin2007" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">3. </div><div class="csl-right-inline">Yao,
|
||||
H. & Kivelson, S. A. <a
|
||||
href="https://doi.org/10.1103/PhysRevLett.99.247203">An exact chiral
|
||||
spin liquid with non-Abelian anyons</a>. <em>Phys. Rev. Lett.</em>
|
||||
<div class="csl-left-margin">[3] </div><div class="csl-right-inline">H.
|
||||
Yao and S. A. Kivelson, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.99.247203">An Exact Chiral
|
||||
Spin Liquid with Non-Abelian Anyons</a></em>, Phys. Rev. Lett.
|
||||
<strong>99</strong>, 247203 (2007).</div>
|
||||
</div>
|
||||
<div id="ref-Peri2020" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">4. </div><div
|
||||
class="csl-right-inline">Peri, V. <em>et al.</em> <a
|
||||
href="https://doi.org/10.1103/PhysRevB.101.041114">Non-Abelian chiral
|
||||
spin liquid on a simple non-Archimedean lattice</a>. <em>Phys. Rev.
|
||||
B</em> <strong>101</strong>, 041114 (2020).</div>
|
||||
<div class="csl-left-margin">[4] </div><div class="csl-right-inline">V.
|
||||
Peri, S. Ok, S. S. Tsirkin, T. Neupert, G. Baskaran, M. Greiter, R.
|
||||
Moessner, and R. Thomale, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.101.041114">Non-Abelian Chiral
|
||||
Spin Liquid on a Simple Non-Archimedean Lattice</a></em>, Phys. Rev. B
|
||||
<strong>101</strong>, 041114 (2020).</div>
|
||||
</div>
|
||||
<div id="ref-Nasu_Thermal_2015" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">5. </div><div
|
||||
class="csl-right-inline">Nasu, J., Udagawa, M. & Motome, Y. <a
|
||||
<div class="csl-left-margin">[5] </div><div class="csl-right-inline">J.
|
||||
Nasu, M. Udagawa, and Y. Motome, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.92.115122">Thermal
|
||||
fractionalization of quantum spins in a Kitaev model: Temperature-linear
|
||||
specific heat and coherent transport of Majorana fermions</a>. <em>Phys.
|
||||
Rev. B</em> <strong>92</strong>, 115122 (2015).</div>
|
||||
Fractionalization of Quantum Spins in a Kitaev Model: Temperature-Linear
|
||||
Specific Heat and Coherent Transport of Majorana Fermions</a></em>,
|
||||
Phys. Rev. B <strong>92</strong>, 115122 (2015).</div>
|
||||
</div>
|
||||
<div id="ref-knolle_dynamics_2016" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">6. </div><div
|
||||
class="csl-right-inline">Knolle, J. Dynamics of a quantum spin liquid.
|
||||
(Max Planck Institute for the Physics of Complex Systems, Dresden,
|
||||
2016).</div>
|
||||
<div class="csl-left-margin">[6] </div><div class="csl-right-inline">J.
|
||||
Knolle, Dynamics of a Quantum Spin Liquid, Max Planck Institute for the
|
||||
Physics of Complex Systems, Dresden, 2016.</div>
|
||||
</div>
|
||||
<div id="ref-berryQuantalPhaseFactors1984" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">7. </div><div
|
||||
class="csl-right-inline">Berry, M. V. <a
|
||||
href="https://doi.org/10.1098/rspa.1984.0023">Quantal phase factors
|
||||
accompanying adiabatic changes</a>. <em>Proceedings of the Royal Society
|
||||
of London. A. Mathematical and Physical Sciences</em>
|
||||
<strong>392</strong>, 45–57 (1984).</div>
|
||||
<div class="csl-left-margin">[7] </div><div class="csl-right-inline">M.
|
||||
V. Berry, <em><a href="https://doi.org/10.1098/rspa.1984.0023">Quantal
|
||||
Phase Factors Accompanying Adiabatic Changes</a></em>, Proceedings of
|
||||
the Royal Society of London. A. Mathematical and Physical Sciences
|
||||
<strong>392</strong>, 45 (1984).</div>
|
||||
</div>
|
||||
<div id="ref-simonHolonomyQuantumAdiabatic1983" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">8. </div><div
|
||||
class="csl-right-inline">Simon, B. <a
|
||||
<div class="csl-left-margin">[8] </div><div class="csl-right-inline">B.
|
||||
Simon, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.51.2167">Holonomy, the Quantum
|
||||
Adiabatic Theorem, and Berry’s Phase</a>. <em>Phys. Rev. Lett.</em>
|
||||
<strong>51</strong>, 2167–2170 (1983).</div>
|
||||
Adiabatic Theorem, and Berry’s Phase</a></em>, Phys. Rev. Lett.
|
||||
<strong>51</strong>, 2167 (1983).</div>
|
||||
</div>
|
||||
<div id="ref-thoulessQuantizedHallConductance1982" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">9. </div><div
|
||||
class="csl-right-inline">Thouless, D. J., Kohmoto, M., Nightingale, M.
|
||||
P. & den Nijs, M. <a
|
||||
<div class="csl-left-margin">[9] </div><div class="csl-right-inline">D.
|
||||
J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.49.405">Quantized Hall
|
||||
Conductance in a Two-Dimensional Periodic Potential</a>. <em>Phys. Rev.
|
||||
Lett.</em> <strong>49</strong>, 405–408 (1982).</div>
|
||||
Conductance in a Two-Dimensional Periodic Potential</a></em>, Phys. Rev.
|
||||
Lett. <strong>49</strong>, 405 (1982).</div>
|
||||
</div>
|
||||
<div id="ref-bianco_mapping_2011" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">10. </div><div
|
||||
class="csl-right-inline">Bianco, R. & Resta, R. <a
|
||||
href="https://doi.org/10.1103/PhysRevB.84.241106">Mapping topological
|
||||
order in coordinate space</a>. <em>Physical Review B</em>
|
||||
<div class="csl-left-margin">[10] </div><div class="csl-right-inline">R.
|
||||
Bianco and R. Resta, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.84.241106">Mapping Topological
|
||||
Order in Coordinate Space</a></em>, Physical Review B
|
||||
<strong>84</strong>, 241106 (2011).</div>
|
||||
</div>
|
||||
<div id="ref-Hastings_Almost_2010" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">11. </div><div
|
||||
class="csl-right-inline">Hastings, M. B. & Loring, T. A. <a
|
||||
href="https://doi.org/10.1063/1.3274817">Almost commuting matrices,
|
||||
localized Wannier functions, and the quantum Hall effect</a>.
|
||||
<em>Journal of Mathematical Physics</em> <strong>51</strong>, 015214
|
||||
<div class="csl-left-margin">[11] </div><div class="csl-right-inline">M.
|
||||
B. Hastings and T. A. Loring, <em><a
|
||||
href="https://doi.org/10.1063/1.3274817">Almost Commuting Matrices,
|
||||
Localized Wannier Functions, and the Quantum Hall Effect</a></em>,
|
||||
Journal of Mathematical Physics <strong>51</strong>, 015214
|
||||
(2010).</div>
|
||||
</div>
|
||||
<div id="ref-mitchellAmorphousTopologicalInsulators2018"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">12. </div><div
|
||||
class="csl-right-inline">Mitchell, N. P., Nash, L. M., Hexner, D.,
|
||||
Turner, A. M. & Irvine, W. T. M. <a
|
||||
href="https://doi.org/10.1038/s41567-017-0024-5">Amorphous topological
|
||||
insulators constructed from random point sets</a>. <em>Nature Phys</em>
|
||||
<strong>14</strong>, 380–385 (2018).</div>
|
||||
<div class="csl-left-margin">[12] </div><div class="csl-right-inline">N.
|
||||
P. Mitchell, L. M. Nash, D. Hexner, A. M. Turner, and W. T. M. Irvine,
|
||||
<em><a href="https://doi.org/10.1038/s41567-017-0024-5">Amorphous
|
||||
topological insulators constructed from random point sets</a></em>,
|
||||
Nature Phys <strong>14</strong>, 380 (2018).</div>
|
||||
</div>
|
||||
<div id="ref-peru_preprint" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">13. </div><div
|
||||
class="csl-right-inline">d’Ornellas, P., Barnett, R. & Lee, D. K. K.
|
||||
Quantised bulk conductivity as a local chern marker. <em>arXiv
|
||||
preprint</em> (2022) doi:<a
|
||||
href="https://doi.org/10.48550/ARXIV.2207.01389">10.48550/ARXIV.2207.01389</a>.</div>
|
||||
<div class="csl-left-margin">[13] </div><div class="csl-right-inline">P.
|
||||
d’Ornellas, R. Barnett, and D. K. K. Lee, <em><a
|
||||
href="https://doi.org/10.48550/ARXIV.2207.01389">Quantised Bulk
|
||||
Conductivity as a Local Chern Marker</a></em>, arXiv Preprint
|
||||
(2022).</div>
|
||||
</div>
|
||||
<div id="ref-kitaev_fault-tolerant_2003" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">14. </div><div
|
||||
class="csl-right-inline">Kitaev, A. Y. <a
|
||||
href="https://doi.org/10.1016/S0003-4916(02)00018-0">Fault-tolerant
|
||||
quantum computation by anyons</a>. <em>Annals of Physics</em>
|
||||
<strong>303</strong>, 2–30 (2003).</div>
|
||||
<div class="csl-left-margin">[14] </div><div class="csl-right-inline">A.
|
||||
Y. Kitaev, <em><a
|
||||
href="https://doi.org/10.1016/S0003-4916(02)00018-0">Fault-Tolerant
|
||||
Quantum Computation by Anyons</a></em>, Annals of Physics
|
||||
<strong>303</strong>, 2 (2003).</div>
|
||||
</div>
|
||||
<div id="ref-qi_general_2006" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">15. </div><div class="csl-right-inline">Qi,
|
||||
X.-L., Wu, Y.-S. & Zhang, S.-C. <a
|
||||
href="https://doi.org/10.1103/PhysRevB.74.045125">General theorem
|
||||
relating the bulk topological number to edge states in two-dimensional
|
||||
insulators</a>. <em>Physical Review B</em> <strong>74</strong>, 045125
|
||||
<div class="csl-left-margin">[15] </div><div
|
||||
class="csl-right-inline">X.-L. Qi, Y.-S. Wu, and S.-C. Zhang, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.74.045125">General Theorem
|
||||
Relating the Bulk Topological Number to Edge States in Two-Dimensional
|
||||
Insulators</a></em>, Physical Review B <strong>74</strong>, 045125
|
||||
(2006).</div>
|
||||
</div>
|
||||
<div id="ref-selfThermallyInducedMetallic2019" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">16. </div><div
|
||||
class="csl-right-inline">Self, C. N., Knolle, J., Iblisdir, S. &
|
||||
Pachos, J. K. <a
|
||||
href="https://doi.org/10.1103/PhysRevB.99.045142">Thermally induced
|
||||
metallic phase in a gapped quantum spin liquid - a Monte Carlo study of
|
||||
the Kitaev model with parity projection</a>. <em>Phys. Rev. B</em>
|
||||
<div class="csl-left-margin">[16] </div><div class="csl-right-inline">C.
|
||||
N. Self, J. Knolle, S. Iblisdir, and J. K. Pachos, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.99.045142">Thermally Induced
|
||||
Metallic Phase in a Gapped Quantum Spin Liquid - a Monte Carlo Study of
|
||||
the Kitaev Model with Parity Projection</a></em>, Phys. Rev. B
|
||||
<strong>99</strong>, 045142 (2019).</div>
|
||||
</div>
|
||||
<div id="ref-Beenakker2013" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">17. </div><div
|
||||
class="csl-right-inline">Beenakker, C. W. J. <a
|
||||
<div class="csl-left-margin">[17] </div><div class="csl-right-inline">C.
|
||||
W. J. Beenakker, <em><a
|
||||
href="https://doi.org/10.1146/annurev-conmatphys-030212-184337">Search
|
||||
for majorana fermions in superconductors</a>. <em>Annual Review of
|
||||
Condensed Matter Physics</em> <strong>4</strong>, 113–136 (2013).</div>
|
||||
for Majorana Fermions in Superconductors</a></em>, Annual Review of
|
||||
Condensed Matter Physics <strong>4</strong>, 113 (2013).</div>
|
||||
</div>
|
||||
<div id="ref-Laumann2012" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">18. </div><div
|
||||
class="csl-right-inline">Laumann, C. R., Ludwig, A. W. W., Huse, D. A.
|
||||
& Trebst, S. <a
|
||||
href="https://doi.org/10.1103/PhysRevB.85.161301">Disorder-induced
|
||||
Majorana metal in interacting non-Abelian anyon systems</a>. <em>Phys.
|
||||
Rev. B</em> <strong>85</strong>, 161301 (2012).</div>
|
||||
<div class="csl-left-margin">[18] </div><div class="csl-right-inline">C.
|
||||
R. Laumann, A. W. W. Ludwig, D. A. Huse, and S. Trebst, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.85.161301">Disorder-Induced
|
||||
Majorana Metal in Interacting Non-Abelian Anyon Systems</a></em>, Phys.
|
||||
Rev. B <strong>85</strong>, 161301 (2012).</div>
|
||||
</div>
|
||||
<div id="ref-Lahtinen_2011" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">19. </div><div
|
||||
class="csl-right-inline">Lahtinen, V. <a
|
||||
<div class="csl-left-margin">[19] </div><div class="csl-right-inline">V.
|
||||
Lahtinen, <em><a
|
||||
href="https://doi.org/10.1088/1367-2630/13/7/075009">Interacting
|
||||
non-Abelian anyons as Majorana fermions in the honeycomb lattice
|
||||
model</a>. <em>New Journal of Physics</em> <strong>13</strong>, 075009
|
||||
Non-Abelian Anyons as Majorana Fermions in the Honeycomb Lattice
|
||||
Model</a></em>, New Journal of Physics <strong>13</strong>, 075009
|
||||
(2011).</div>
|
||||
</div>
|
||||
<div id="ref-lahtinenTopologicalLiquidNucleation2012" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">20. </div><div
|
||||
class="csl-right-inline">Lahtinen, V., Ludwig, A. W. W., Pachos, J. K.
|
||||
& Trebst, S. <a
|
||||
href="https://doi.org/10.1103/PhysRevB.86.075115">Topological liquid
|
||||
nucleation induced by vortex-vortex interactions in Kitaev’s honeycomb
|
||||
model</a>. <em>Phys. Rev. B</em> <strong>86</strong>, 075115
|
||||
(2012).</div>
|
||||
<div class="csl-left-margin">[20] </div><div class="csl-right-inline">V.
|
||||
Lahtinen, A. W. W. Ludwig, J. K. Pachos, and S. Trebst, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.86.075115">Topological Liquid
|
||||
Nucleation Induced by Vortex-Vortex Interactions in Kitaev’s Honeycomb
|
||||
Model</a></em>, Phys. Rev. B <strong>86</strong>, 075115 (2012).</div>
|
||||
</div>
|
||||
<div id="ref-bocquet_disordered_2000" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">21. </div><div
|
||||
class="csl-right-inline">Bocquet, M., Serban, D. & Zirnbauer, M. R.
|
||||
<a href="https://doi.org/10.1016/S0550-3213(00)00208-X">Disordered 2d
|
||||
quasiparticles in class D: Dirac fermions with random mass, and dirty
|
||||
superconductors</a>. <em>Nuclear Physics B</em> <strong>578</strong>,
|
||||
628–680 (2000).</div>
|
||||
<div class="csl-left-margin">[21] </div><div class="csl-right-inline">M.
|
||||
Bocquet, D. Serban, and M. R. Zirnbauer, <em><a
|
||||
href="https://doi.org/10.1016/S0550-3213(00)00208-X">Disordered 2d
|
||||
Quasiparticles in Class D: Dirac Fermions with Random Mass, and Dirty
|
||||
Superconductors</a></em>, Nuclear Physics B <strong>578</strong>, 628
|
||||
(2000).</div>
|
||||
</div>
|
||||
<div id="ref-Weaire1976" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">22. </div><div
|
||||
class="csl-right-inline">Weaire, D. & Thorpe, M. F. <a
|
||||
href="https://doi.org/10.1080/00107517608210851">The structure of
|
||||
amorphous solids</a>. <em>Contemporary Physics</em> <strong>17</strong>,
|
||||
173–191 (1976).</div>
|
||||
<div class="csl-left-margin">[22] </div><div class="csl-right-inline">D.
|
||||
Weaire and M. F. Thorpe, <em><a
|
||||
href="https://doi.org/10.1080/00107517608210851">The Structure of
|
||||
Amorphous Solids</a></em>, Contemporary Physics <strong>17</strong>, 173
|
||||
(1976).</div>
|
||||
</div>
|
||||
<div id="ref-Petrakovski1981" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">23. </div><div
|
||||
class="csl-right-inline">Petrakovskii, G. A. <a
|
||||
<div class="csl-left-margin">[23] </div><div class="csl-right-inline">G.
|
||||
A. Petrakovskii, <em><a
|
||||
href="https://doi.org/10.1070/pu1981v024n06abeh004850">Amorphous
|
||||
magnetic materials</a>. <em>Soviet Physics Uspekhi</em>
|
||||
<strong>24</strong>, 511–525 (1981).</div>
|
||||
Magnetic Materials</a></em>, Soviet Physics Uspekhi <strong>24</strong>,
|
||||
511 (1981).</div>
|
||||
</div>
|
||||
<div id="ref-Kaneyoshi2018" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">24. </div><div
|
||||
class="csl-right-inline"><em>Amorphous magnetism</em>. (CRC Press,
|
||||
<div class="csl-left-margin">[24] </div><div class="csl-right-inline">T.
|
||||
Kaneyoshi, editor, <em>Amorphous Magnetism</em> (CRC Press, Boca Raton,
|
||||
2018).</div>
|
||||
</div>
|
||||
<div id="ref-Weaire1971" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">25. </div><div
|
||||
class="csl-right-inline">Weaire, D. & Thorpe, M. F. <a
|
||||
href="https://doi.org/10.1103/PhysRevB.4.2508">Electronic properties of
|
||||
an amorphous solid. I. A simple tight-binding theory</a>. <em>Phys. Rev.
|
||||
B</em> <strong>4</strong>, 2508–2520 (1971).</div>
|
||||
<div class="csl-left-margin">[25] </div><div class="csl-right-inline">D.
|
||||
Weaire and M. F. Thorpe, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.4.2508">Electronic Properties of
|
||||
an Amorphous Solid. I. A Simple Tight-Binding Theory</a></em>, Phys.
|
||||
Rev. B <strong>4</strong>, 2508 (1971).</div>
|
||||
</div>
|
||||
<div id="ref-betteridge1973possible" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">26. </div><div
|
||||
class="csl-right-inline">Betteridge, G. A possible model of amorphous
|
||||
silicon and germanium. <em>Journal of Physics C: Solid State
|
||||
Physics</em> <strong>6</strong>, L427 (1973).</div>
|
||||
<div class="csl-left-margin">[26] </div><div class="csl-right-inline">G.
|
||||
Betteridge, <em>A Possible Model of Amorphous Silicon and
|
||||
Germanium</em>, Journal of Physics C: Solid State Physics
|
||||
<strong>6</strong>, L427 (1973).</div>
|
||||
</div>
|
||||
<div id="ref-bennett2014amorphous" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">27. </div><div
|
||||
class="csl-right-inline">Bennett, T. D. & Cheetham, A. K. Amorphous
|
||||
metal–organic frameworks. <em>Accounts of chemical research</em>
|
||||
<strong>47</strong>, 1555–1562 (2014).</div>
|
||||
<div class="csl-left-margin">[27] </div><div class="csl-right-inline">T.
|
||||
D. Bennett and A. K. Cheetham, <em>Amorphous Metal–Organic
|
||||
Frameworks</em>, Accounts of Chemical Research <strong>47</strong>, 1555
|
||||
(2014).</div>
|
||||
</div>
|
||||
<div id="ref-yamadaDesigningKitaevSpin2017" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">28. </div><div
|
||||
class="csl-right-inline">Yamada, M. G., Fujita, H. & Oshikawa, M. <a
|
||||
<div class="csl-left-margin">[28] </div><div class="csl-right-inline">M.
|
||||
G. Yamada, H. Fujita, and M. Oshikawa, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.119.057202">Designing Kitaev
|
||||
Spin Liquids in Metal-Organic Frameworks</a>. <em>Phys. Rev. Lett.</em>
|
||||
Spin Liquids in Metal-Organic Frameworks</a></em>, Phys. Rev. Lett.
|
||||
<strong>119</strong>, 057202 (2017).</div>
|
||||
</div>
|
||||
<div id="ref-misumiQuantumSpinLiquid2020" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">29. </div><div
|
||||
class="csl-right-inline">Misumi, Y. <em>et al.</em> <a
|
||||
href="https://doi.org/10.1021/jacs.0c05472">Quantum Spin Liquid State in
|
||||
a Two-Dimensional Semiconductive Metal–Organic Framework</a>. <em>J. Am.
|
||||
Chem. Soc.</em> <strong>142</strong>, 16513–16517 (2020).</div>
|
||||
<div class="csl-left-margin">[29] </div><div class="csl-right-inline">Y.
|
||||
Misumi, A. Yamaguchi, Z. Zhang, T. Matsushita, N. Wada, M. Tsuchiizu,
|
||||
and K. Awaga, <em><a href="https://doi.org/10.1021/jacs.0c05472">Quantum
|
||||
Spin Liquid State in a Two-Dimensional Semiconductive Metal–Organic
|
||||
Framework</a></em>, J. Am. Chem. Soc. <strong>142</strong>, 16513
|
||||
(2020).</div>
|
||||
</div>
|
||||
<div id="ref-Rau2014" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">30. </div><div
|
||||
class="csl-right-inline">Rau, J. G., Lee, E. K.-H. & Kee, H.-Y. <a
|
||||
href="https://doi.org/10.1103/PhysRevLett.112.077204">Generic spin model
|
||||
for the honeycomb iridates beyond the kitaev limit</a>. <em>Phys. Rev.
|
||||
Lett.</em> <strong>112</strong>, 077204 (2014).</div>
|
||||
<div class="csl-left-margin">[30] </div><div class="csl-right-inline">J.
|
||||
G. Rau, E. K.-H. Lee, and H.-Y. Kee, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.112.077204">Generic Spin Model
|
||||
for the Honeycomb Iridates Beyond the Kitaev Limit</a></em>, Phys. Rev.
|
||||
Lett. <strong>112</strong>, 077204 (2014).</div>
|
||||
</div>
|
||||
<div id="ref-Chaloupka2010" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">31. </div><div
|
||||
class="csl-right-inline">Chaloupka, J., Jackeli, G. & Khaliullin, G.
|
||||
Kitaev-Heisenberg model on a honeycomb lattice: possible exotic phases
|
||||
in iridium oxides A₂IrO₃. <em>Phys. Rev. Lett.</em>
|
||||
<strong>105</strong>, 027204 (2010).</div>
|
||||
<div class="csl-left-margin">[31] </div><div class="csl-right-inline">J.
|
||||
Chaloupka, G. Jackeli, and G. Khaliullin, <em>Kitaev-Heisenberg Model on
|
||||
a Honeycomb Lattice: Possible Exotic Phases in Iridium Oxides
|
||||
A₂IrO₃</em>, Phys. Rev. Lett. <strong>105</strong>, 027204 (2010).</div>
|
||||
</div>
|
||||
<div id="ref-Chaloupka2013" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">32. </div><div
|
||||
class="csl-right-inline">Chaloupka, J., Jackeli, G. & Khaliullin, G.
|
||||
<a href="https://doi.org/10.1103/PhysRevLett.110.097204">Zigzag magnetic
|
||||
order in the iridium oxide Na₂IrO₃</a>. <em>Phys. Rev. Lett.</em>
|
||||
<div class="csl-left-margin">[32] </div><div class="csl-right-inline">J.
|
||||
Chaloupka, G. Jackeli, and G. Khaliullin, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.110.097204">Zigzag Magnetic
|
||||
Order in the Iridium Oxide Na₂IrO₃</a></em>, Phys. Rev. Lett.
|
||||
<strong>110</strong>, 097204 (2013).</div>
|
||||
</div>
|
||||
<div id="ref-Chaloupka2015" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">33. </div><div
|
||||
class="csl-right-inline">Chaloupka, J. & Khaliullin, G. Hidden
|
||||
symmetries of the extended Kitaev-Heisenberg model: Implications for
|
||||
honeycomb lattice iridates A₂IrO₃. <em>Phys. Rev. B</em>
|
||||
<strong>92</strong>, 024413 (2015).</div>
|
||||
<div class="csl-left-margin">[33] </div><div class="csl-right-inline">J.
|
||||
Chaloupka and G. Khaliullin, <em>Hidden Symmetries of the Extended
|
||||
Kitaev-Heisenberg Model: Implications for Honeycomb Lattice Iridates
|
||||
A₂IrO₃</em>, Phys. Rev. B <strong>92</strong>, 024413 (2015).</div>
|
||||
</div>
|
||||
<div id="ref-Winter2016" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">34. </div><div
|
||||
class="csl-right-inline">Winter, S. M., Li, Y., Jeschke, H. O. &
|
||||
Valentí, R. <a
|
||||
href="https://doi.org/10.1103/PhysRevB.93.214431">Challenges in design
|
||||
of Kitaev materials: Magnetic interactions from competing energy
|
||||
scales</a>. <em>Phys. Rev. B</em> <strong>93</strong>, 214431
|
||||
(2016).</div>
|
||||
<div class="csl-left-margin">[34] </div><div class="csl-right-inline">S.
|
||||
M. Winter, Y. Li, H. O. Jeschke, and R. Valentí, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.93.214431">Challenges in Design
|
||||
of Kitaev Materials: Magnetic Interactions from Competing Energy
|
||||
Scales</a></em>, Phys. Rev. B <strong>93</strong>, 214431 (2016).</div>
|
||||
</div>
|
||||
<div id="ref-Jackeli2009" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">35. </div><div
|
||||
class="csl-right-inline">Jackeli, G. & Khaliullin, G. <a
|
||||
href="https://doi.org/10.1103/PhysRevLett.102.017205">Mott insulators in
|
||||
the strong spin-orbit coupling limit: from Heisenberg to a quantum
|
||||
compass and Kitaev models</a>. <em>Physical Review Letters</em>
|
||||
<div class="csl-left-margin">[35] </div><div class="csl-right-inline">G.
|
||||
Jackeli and G. Khaliullin, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.102.017205">Mott Insulators in
|
||||
the Strong Spin-Orbit Coupling Limit: From Heisenberg to a Quantum
|
||||
Compass and Kitaev Models</a></em>, Physical Review Letters
|
||||
<strong>102</strong>, 017205 (2009).</div>
|
||||
</div>
|
||||
<div id="ref-Kalmeyer1989" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">36. </div><div
|
||||
class="csl-right-inline">Kalmeyer, V. & Laughlin, R. B. <a
|
||||
href="https://doi.org/10.1103/PhysRevB.39.11879">Theory of the spin
|
||||
liquid state of the Heisenberg antiferromagnet</a>. <em>Phys. Rev.
|
||||
B</em> <strong>39</strong>, 11879–11899 (1989).</div>
|
||||
<div class="csl-left-margin">[36] </div><div class="csl-right-inline">V.
|
||||
Kalmeyer and R. B. Laughlin, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.39.11879">Theory of the Spin
|
||||
Liquid State of the Heisenberg Antiferromagnet</a></em>, Phys. Rev. B
|
||||
<strong>39</strong>, 11879 (1989).</div>
|
||||
</div>
|
||||
<div id="ref-manousakisSpinTextonehalfHeisenberg1991" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">37. </div><div
|
||||
class="csl-right-inline">Manousakis, E. <a
|
||||
href="https://doi.org/10.1103/RevModPhys.63.1">The spin-\textonehalf{}
|
||||
Heisenberg antiferromagnet on a square lattice and its application to
|
||||
the cuprous oxides</a>. <em>Rev. Mod. Phys.</em> <strong>63</strong>,
|
||||
1–62 (1991).</div>
|
||||
<div class="csl-left-margin">[37] </div><div class="csl-right-inline">E.
|
||||
Manousakis, <em><a href="https://doi.org/10.1103/RevModPhys.63.1">The
|
||||
Spin-\Textonehalf{} Heisenberg Antiferromagnet on a Square Lattice and
|
||||
Its Application to the Cuprous Oxides</a></em>, Rev. Mod. Phys.
|
||||
<strong>63</strong>, 1 (1991).</div>
|
||||
</div>
|
||||
<div id="ref-Baskaran2008" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">38. </div><div
|
||||
class="csl-right-inline">Baskaran, G., Sen, D. & Shankar, R. <a
|
||||
href="https://doi.org/10.1103/PhysRevB.78.115116">Spin-S Kitaev model:
|
||||
Classical ground states, order from disorder, and exact correlation
|
||||
functions</a>. <em>Phys. Rev. B</em> <strong>78</strong>, 115116
|
||||
<div class="csl-left-margin">[38] </div><div class="csl-right-inline">G.
|
||||
Baskaran, D. Sen, and R. Shankar, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.78.115116">Spin-S Kitaev Model:
|
||||
Classical Ground States, Order from Disorder, and Exact Correlation
|
||||
Functions</a></em>, Phys. Rev. B <strong>78</strong>, 115116
|
||||
(2008).</div>
|
||||
</div>
|
||||
<div id="ref-Yao2009" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">39. </div><div
|
||||
class="csl-right-inline">Yao, H., Zhang, S.-C. & Kivelson, S. A. <a
|
||||
href="https://doi.org/10.1103/PhysRevLett.102.217202">Algebraic spin
|
||||
liquid in an exactly solvable spin model</a>. <em>Phys. Rev. Lett.</em>
|
||||
<div class="csl-left-margin">[39] </div><div class="csl-right-inline">H.
|
||||
Yao, S.-C. Zhang, and S. A. Kivelson, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.102.217202">Algebraic Spin
|
||||
Liquid in an Exactly Solvable Spin Model</a></em>, Phys. Rev. Lett.
|
||||
<strong>102</strong>, 217202 (2009).</div>
|
||||
</div>
|
||||
<div id="ref-Nussinov2009" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">40. </div><div
|
||||
class="csl-right-inline">Nussinov, Z. & Ortiz, G. <a
|
||||
href="https://doi.org/10.1103/PhysRevB.79.214440">Bond algebras and
|
||||
exact solvability of Hamiltonians: spin S=½ multilayer systems</a>.
|
||||
<em>Physical Review B</em> <strong>79</strong>, 214440 (2009).</div>
|
||||
<div class="csl-left-margin">[40] </div><div class="csl-right-inline">Z.
|
||||
Nussinov and G. Ortiz, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.79.214440">Bond Algebras and
|
||||
Exact Solvability of Hamiltonians: Spin S=½ Multilayer Systems</a></em>,
|
||||
Physical Review B <strong>79</strong>, 214440 (2009).</div>
|
||||
</div>
|
||||
<div id="ref-Chua2011" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">41. </div><div
|
||||
class="csl-right-inline">Chua, V., Yao, H. & Fiete, G. A. <a
|
||||
href="https://doi.org/10.1103/PhysRevB.83.180412">Exact chiral spin
|
||||
liquid with stable spin Fermi surface on the kagome lattice</a>.
|
||||
<em>Phys. Rev. B</em> <strong>83</strong>, 180412 (2011).</div>
|
||||
<div class="csl-left-margin">[41] </div><div class="csl-right-inline">V.
|
||||
Chua, H. Yao, and G. A. Fiete, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.83.180412">Exact Chiral Spin
|
||||
Liquid with Stable Spin Fermi Surface on the Kagome Lattice</a></em>,
|
||||
Phys. Rev. B <strong>83</strong>, 180412 (2011).</div>
|
||||
</div>
|
||||
<div id="ref-Natori2020" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">42. </div><div
|
||||
class="csl-right-inline">Natori, W. M. H. & Knolle, J. <a
|
||||
<div class="csl-left-margin">[42] </div><div class="csl-right-inline">W.
|
||||
M. H. Natori and J. Knolle, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.125.067201">Dynamics of a
|
||||
two-dimensional quantum spin-orbital liquid: Spectroscopic signatures of
|
||||
fermionic magnons</a>. <em>Phys. Rev. Lett.</em> <strong>125</strong>,
|
||||
Two-Dimensional Quantum Spin-Orbital Liquid: Spectroscopic Signatures of
|
||||
Fermionic Magnons</a></em>, Phys. Rev. Lett. <strong>125</strong>,
|
||||
067201 (2020).</div>
|
||||
</div>
|
||||
<div id="ref-Chulliparambil2020" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">43. </div><div
|
||||
class="csl-right-inline">Chulliparambil, S., Seifert, U. F. P., Vojta,
|
||||
M., Janssen, L. & Tu, H.-H. <a
|
||||
href="https://doi.org/10.1103/PhysRevB.102.201111">Microscopic models
|
||||
for Kitaev’s sixteenfold way of anyon theories</a>. <em>Phys. Rev.
|
||||
B</em> <strong>102</strong>, 201111 (2020).</div>
|
||||
<div class="csl-left-margin">[43] </div><div class="csl-right-inline">S.
|
||||
Chulliparambil, U. F. P. Seifert, M. Vojta, L. Janssen, and H.-H. Tu,
|
||||
<em><a href="https://doi.org/10.1103/PhysRevB.102.201111">Microscopic
|
||||
Models for Kitaev’s Sixteenfold Way of Anyon Theories</a></em>, Phys.
|
||||
Rev. B <strong>102</strong>, 201111 (2020).</div>
|
||||
</div>
|
||||
<div id="ref-Chulliparambil2021" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">44. </div><div
|
||||
class="csl-right-inline">Chulliparambil, S., Janssen, L., Vojta, M., Tu,
|
||||
H.-H. & Seifert, U. F. P. <a
|
||||
href="https://doi.org/10.1103/PhysRevB.103.075144">Flux crystals,
|
||||
Majorana metals, and flat bands in exactly solvable spin-orbital
|
||||
liquids</a>. <em>Phys. Rev. B</em> <strong>103</strong>, 075144
|
||||
<div class="csl-left-margin">[44] </div><div class="csl-right-inline">S.
|
||||
Chulliparambil, L. Janssen, M. Vojta, H.-H. Tu, and U. F. P. Seifert,
|
||||
<em><a href="https://doi.org/10.1103/PhysRevB.103.075144">Flux Crystals,
|
||||
Majorana Metals, and Flat Bands in Exactly Solvable Spin-Orbital
|
||||
Liquids</a></em>, Phys. Rev. B <strong>103</strong>, 075144
|
||||
(2021).</div>
|
||||
</div>
|
||||
<div id="ref-Seifert2020" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">45. </div><div
|
||||
class="csl-right-inline">Seifert, U. F. P. <em>et al.</em> <a
|
||||
<div class="csl-left-margin">[45] </div><div class="csl-right-inline">U.
|
||||
F. P. Seifert, X.-Y. Dong, S. Chulliparambil, M. Vojta, H.-H. Tu, and L.
|
||||
Janssen, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.125.257202">Fractionalized
|
||||
fermionic quantum criticality in spin-orbital mott insulators</a>.
|
||||
<em>Phys. Rev. Lett.</em> <strong>125</strong>, 257202 (2020).</div>
|
||||
Fermionic Quantum Criticality in Spin-Orbital Mott Insulators</a></em>,
|
||||
Phys. Rev. Lett. <strong>125</strong>, 257202 (2020).</div>
|
||||
</div>
|
||||
<div id="ref-WangHaoranPRB2021" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">46. </div><div
|
||||
class="csl-right-inline">Wang, H. & Principi, A. <a
|
||||
href="https://doi.org/10.1103/PhysRevB.104.214422">Majorana edge and
|
||||
corner states in square and kagome quantum spin-3/2 liquids</a>.
|
||||
<em>Phys. Rev. B</em> <strong>104</strong>, 214422 (2021).</div>
|
||||
<div class="csl-left-margin">[46] </div><div class="csl-right-inline">H.
|
||||
Wang and A. Principi, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.104.214422">Majorana Edge and
|
||||
Corner States in Square and Kagome Quantum Spin-3/2 Liquids</a></em>,
|
||||
Phys. Rev. B <strong>104</strong>, 214422 (2021).</div>
|
||||
</div>
|
||||
<div id="ref-Wu2009" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">47. </div><div class="csl-right-inline">Wu,
|
||||
C., Arovas, D. & Hung, H.-H. Γ-matrix generalization of the Kitaev
|
||||
model. <em>Physical Review B</em> <strong>79</strong>, 134427
|
||||
(2009).</div>
|
||||
<div class="csl-left-margin">[47] </div><div class="csl-right-inline">C.
|
||||
Wu, D. Arovas, and H.-H. Hung, <em>Γ-Matrix Generalization of the Kitaev
|
||||
Model</em>, Physical Review B <strong>79</strong>, 134427 (2009).</div>
|
||||
</div>
|
||||
</div>
|
||||
</main>
|
||||
|
BIN
assets/thesis/fk_chapter/FK_phase_diagram_2d.png
Normal file
BIN
assets/thesis/fk_chapter/FK_phase_diagram_2d.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 57 KiB |
Loading…
x
Reference in New Issue
Block a user