mirror of
https://github.com/TomHodson/tomhodson.github.com.git
synced 2025-06-26 10:01:18 +02:00
updates!
This commit is contained in:
parent
67b3587136
commit
9000efddb9
@ -1,4 +1,4 @@
|
||||
<nav>
|
||||
<nav aria-label="Site Map" class="site-map"></nav>
|
||||
{% for item in site.data.navigation %}
|
||||
<a href="{{ item.link }}" {% if page.url == item.link %}class="current"{% endif %}>{{ item.name }}</a>
|
||||
{% endfor %}
|
||||
|
@ -14,6 +14,7 @@
|
||||
|
||||
html {
|
||||
width: 100vw;
|
||||
scroll-behavior: smooth;
|
||||
}
|
||||
|
||||
body {
|
||||
@ -50,6 +51,14 @@ a {
|
||||
color: #222;
|
||||
}
|
||||
|
||||
header a {
|
||||
text-decoration: none;
|
||||
}
|
||||
|
||||
nav a {
|
||||
text-decoration: none;
|
||||
}
|
||||
|
||||
a:hover {
|
||||
text-decoration: underline;
|
||||
}
|
||||
|
@ -17,11 +17,18 @@ figcaption {
|
||||
|
||||
// For the table of contents, should probably put this in a container
|
||||
|
||||
// remove underline from toc links
|
||||
nav a {
|
||||
text-decoration: none;
|
||||
//For the animation that plays in the nav as you scroll
|
||||
nav.page-table-of-contents a {
|
||||
transition: all 200ms ease-in-out;
|
||||
color: #000;
|
||||
font-weight:normal;
|
||||
}
|
||||
|
||||
nav.page-table-of-contents li.active > a {
|
||||
color: #000!important;
|
||||
font-weight:bold;
|
||||
}
|
||||
|
||||
// modify the spacing of the various levels
|
||||
li {
|
||||
margin-bottom: 0.2em;
|
||||
@ -67,4 +74,14 @@ header li {
|
||||
display:block;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
nav.overall-table-of-contents > ul {
|
||||
padding-inline-start: 0px;
|
||||
|
||||
|
||||
> li {
|
||||
list-style: none;
|
||||
margin-top: 1em;
|
||||
}
|
||||
}
|
@ -12,167 +12,11 @@ image:
|
||||
<meta name="generator" content="pandoc" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
|
||||
<title>Aknowledgements</title>
|
||||
<!-- <style>
|
||||
html {
|
||||
line-height: 1.5;
|
||||
font-family: Georgia, serif;
|
||||
font-size: 20px;
|
||||
color: #1a1a1a;
|
||||
background-color: #fdfdfd;
|
||||
}
|
||||
body {
|
||||
margin: 0 auto;
|
||||
max-width: 36em;
|
||||
padding-left: 50px;
|
||||
padding-right: 50px;
|
||||
padding-top: 50px;
|
||||
padding-bottom: 50px;
|
||||
hyphens: auto;
|
||||
overflow-wrap: break-word;
|
||||
text-rendering: optimizeLegibility;
|
||||
font-kerning: normal;
|
||||
}
|
||||
@media (max-width: 600px) {
|
||||
body {
|
||||
font-size: 0.9em;
|
||||
padding: 1em;
|
||||
}
|
||||
h1 {
|
||||
font-size: 1.8em;
|
||||
}
|
||||
}
|
||||
@media print {
|
||||
body {
|
||||
background-color: transparent;
|
||||
color: black;
|
||||
font-size: 12pt;
|
||||
}
|
||||
p, h2, h3 {
|
||||
orphans: 3;
|
||||
widows: 3;
|
||||
}
|
||||
h2, h3, h4 {
|
||||
page-break-after: avoid;
|
||||
}
|
||||
}
|
||||
p {
|
||||
margin: 1em 0;
|
||||
}
|
||||
a {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
a:visited {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
img {
|
||||
max-width: 100%;
|
||||
}
|
||||
h1, h2, h3, h4, h5, h6 {
|
||||
margin-top: 1.4em;
|
||||
}
|
||||
h5, h6 {
|
||||
font-size: 1em;
|
||||
font-style: italic;
|
||||
}
|
||||
h6 {
|
||||
font-weight: normal;
|
||||
}
|
||||
ol, ul {
|
||||
padding-left: 1.7em;
|
||||
margin-top: 1em;
|
||||
}
|
||||
li > ol, li > ul {
|
||||
margin-top: 0;
|
||||
}
|
||||
blockquote {
|
||||
margin: 1em 0 1em 1.7em;
|
||||
padding-left: 1em;
|
||||
border-left: 2px solid #e6e6e6;
|
||||
color: #606060;
|
||||
}
|
||||
code {
|
||||
font-family: Menlo, Monaco, 'Lucida Console', Consolas, monospace;
|
||||
font-size: 85%;
|
||||
margin: 0;
|
||||
}
|
||||
pre {
|
||||
margin: 1em 0;
|
||||
overflow: auto;
|
||||
}
|
||||
pre code {
|
||||
padding: 0;
|
||||
overflow: visible;
|
||||
overflow-wrap: normal;
|
||||
}
|
||||
.sourceCode {
|
||||
background-color: transparent;
|
||||
overflow: visible;
|
||||
}
|
||||
hr {
|
||||
background-color: #1a1a1a;
|
||||
border: none;
|
||||
height: 1px;
|
||||
margin: 1em 0;
|
||||
}
|
||||
table {
|
||||
margin: 1em 0;
|
||||
border-collapse: collapse;
|
||||
width: 100%;
|
||||
overflow-x: auto;
|
||||
display: block;
|
||||
font-variant-numeric: lining-nums tabular-nums;
|
||||
}
|
||||
table caption {
|
||||
margin-bottom: 0.75em;
|
||||
}
|
||||
tbody {
|
||||
margin-top: 0.5em;
|
||||
border-top: 1px solid #1a1a1a;
|
||||
border-bottom: 1px solid #1a1a1a;
|
||||
}
|
||||
th {
|
||||
border-top: 1px solid #1a1a1a;
|
||||
padding: 0.25em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
td {
|
||||
padding: 0.125em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
header {
|
||||
margin-bottom: 4em;
|
||||
text-align: center;
|
||||
}
|
||||
#TOC li {
|
||||
list-style: none;
|
||||
}
|
||||
#TOC ul {
|
||||
padding-left: 1.3em;
|
||||
}
|
||||
#TOC > ul {
|
||||
padding-left: 0;
|
||||
}
|
||||
#TOC a:not(:hover) {
|
||||
text-decoration: none;
|
||||
}
|
||||
code{white-space: pre-wrap;}
|
||||
span.smallcaps{font-variant: small-caps;}
|
||||
span.underline{text-decoration: underline;}
|
||||
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
||||
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
||||
ul.task-list{list-style: none;}
|
||||
</style> -->
|
||||
|
||||
<!-- -->
|
||||
|
||||
<!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
|
||||
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3.0.1/es5/tex-mml-chtml.js"></script>
|
||||
-->
|
||||
|
||||
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
|
||||
<script src="/assets/js/thesis_scrollspy.js"></script>
|
||||
|
||||
|
||||
<!--[if lt IE 9]>
|
||||
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
|
||||
<![endif]-->
|
||||
<link rel="stylesheet" href="/assets/css/styles.css">
|
||||
<script src="/assets/js/index.js"></script>
|
||||
</head>
|
||||
@ -181,15 +25,20 @@ image:
|
||||
<!--Capture the table of contents from pandoc as a jekyll variable -->
|
||||
{% capture tableOfContents %}
|
||||
<br>
|
||||
Contents:
|
||||
<nav aria-label="Table of Contents" class="page-table-of-contents">
|
||||
|
||||
</nav>
|
||||
{% endcapture %}
|
||||
|
||||
<!-- Give the table of contents to header as a variable -->
|
||||
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
|
||||
{% include header.html extra=tableOfContents %}
|
||||
|
||||
<main>
|
||||
|
||||
<!-- Table of Contents -->
|
||||
<!-- -->
|
||||
|
||||
<!-- Main Page Body -->
|
||||
<p>I would like to thank my supervisor, Professor Johannes Knolle and
|
||||
co-supervisor Professor Derek Lee for guidance and support during this
|
||||
long process.</p>
|
||||
@ -216,6 +65,10 @@ expertise and patience.</p>
|
||||
<p>All the I-Stemm team, Katerina, Jeremey, John, ….</p>
|
||||
<p>And finally, I’d like the thank the staff of the Camberwell Public
|
||||
Library where the majority of this thesis was written.</p>
|
||||
<p>We thank Angus MacKinnon for helpful discussions, Sophie Nadel for
|
||||
input when preparing the figures.</p>
|
||||
|
||||
|
||||
</main>
|
||||
</body>
|
||||
</html>
|
||||
|
@ -12,189 +12,11 @@ image:
|
||||
<meta name="generator" content="pandoc" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
|
||||
<title>1_Intro</title>
|
||||
<!-- <style>
|
||||
html {
|
||||
line-height: 1.5;
|
||||
font-family: Georgia, serif;
|
||||
font-size: 20px;
|
||||
color: #1a1a1a;
|
||||
background-color: #fdfdfd;
|
||||
}
|
||||
body {
|
||||
margin: 0 auto;
|
||||
max-width: 36em;
|
||||
padding-left: 50px;
|
||||
padding-right: 50px;
|
||||
padding-top: 50px;
|
||||
padding-bottom: 50px;
|
||||
hyphens: auto;
|
||||
overflow-wrap: break-word;
|
||||
text-rendering: optimizeLegibility;
|
||||
font-kerning: normal;
|
||||
}
|
||||
@media (max-width: 600px) {
|
||||
body {
|
||||
font-size: 0.9em;
|
||||
padding: 1em;
|
||||
}
|
||||
h1 {
|
||||
font-size: 1.8em;
|
||||
}
|
||||
}
|
||||
@media print {
|
||||
body {
|
||||
background-color: transparent;
|
||||
color: black;
|
||||
font-size: 12pt;
|
||||
}
|
||||
p, h2, h3 {
|
||||
orphans: 3;
|
||||
widows: 3;
|
||||
}
|
||||
h2, h3, h4 {
|
||||
page-break-after: avoid;
|
||||
}
|
||||
}
|
||||
p {
|
||||
margin: 1em 0;
|
||||
}
|
||||
a {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
a:visited {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
img {
|
||||
max-width: 100%;
|
||||
}
|
||||
h1, h2, h3, h4, h5, h6 {
|
||||
margin-top: 1.4em;
|
||||
}
|
||||
h5, h6 {
|
||||
font-size: 1em;
|
||||
font-style: italic;
|
||||
}
|
||||
h6 {
|
||||
font-weight: normal;
|
||||
}
|
||||
ol, ul {
|
||||
padding-left: 1.7em;
|
||||
margin-top: 1em;
|
||||
}
|
||||
li > ol, li > ul {
|
||||
margin-top: 0;
|
||||
}
|
||||
blockquote {
|
||||
margin: 1em 0 1em 1.7em;
|
||||
padding-left: 1em;
|
||||
border-left: 2px solid #e6e6e6;
|
||||
color: #606060;
|
||||
}
|
||||
code {
|
||||
font-family: Menlo, Monaco, 'Lucida Console', Consolas, monospace;
|
||||
font-size: 85%;
|
||||
margin: 0;
|
||||
}
|
||||
pre {
|
||||
margin: 1em 0;
|
||||
overflow: auto;
|
||||
}
|
||||
pre code {
|
||||
padding: 0;
|
||||
overflow: visible;
|
||||
overflow-wrap: normal;
|
||||
}
|
||||
.sourceCode {
|
||||
background-color: transparent;
|
||||
overflow: visible;
|
||||
}
|
||||
hr {
|
||||
background-color: #1a1a1a;
|
||||
border: none;
|
||||
height: 1px;
|
||||
margin: 1em 0;
|
||||
}
|
||||
table {
|
||||
margin: 1em 0;
|
||||
border-collapse: collapse;
|
||||
width: 100%;
|
||||
overflow-x: auto;
|
||||
display: block;
|
||||
font-variant-numeric: lining-nums tabular-nums;
|
||||
}
|
||||
table caption {
|
||||
margin-bottom: 0.75em;
|
||||
}
|
||||
tbody {
|
||||
margin-top: 0.5em;
|
||||
border-top: 1px solid #1a1a1a;
|
||||
border-bottom: 1px solid #1a1a1a;
|
||||
}
|
||||
th {
|
||||
border-top: 1px solid #1a1a1a;
|
||||
padding: 0.25em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
td {
|
||||
padding: 0.125em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
header {
|
||||
margin-bottom: 4em;
|
||||
text-align: center;
|
||||
}
|
||||
#TOC li {
|
||||
list-style: none;
|
||||
}
|
||||
#TOC ul {
|
||||
padding-left: 1.3em;
|
||||
}
|
||||
#TOC > ul {
|
||||
padding-left: 0;
|
||||
}
|
||||
#TOC a:not(:hover) {
|
||||
text-decoration: none;
|
||||
}
|
||||
code{white-space: pre-wrap;}
|
||||
span.smallcaps{font-variant: small-caps;}
|
||||
span.underline{text-decoration: underline;}
|
||||
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
||||
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
||||
ul.task-list{list-style: none;}
|
||||
div.csl-bib-body { }
|
||||
div.csl-entry {
|
||||
clear: both;
|
||||
}
|
||||
.hanging div.csl-entry {
|
||||
margin-left:2em;
|
||||
text-indent:-2em;
|
||||
}
|
||||
div.csl-left-margin {
|
||||
min-width:2em;
|
||||
float:left;
|
||||
}
|
||||
div.csl-right-inline {
|
||||
margin-left:2em;
|
||||
padding-left:1em;
|
||||
}
|
||||
div.csl-indent {
|
||||
margin-left: 2em;
|
||||
}
|
||||
</style> -->
|
||||
|
||||
<!-- <script
|
||||
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js"
|
||||
type="text/javascript"></script>
|
||||
-->
|
||||
|
||||
<!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
|
||||
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3.0.1/es5/tex-mml-chtml.js"></script>
|
||||
-->
|
||||
|
||||
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
|
||||
<script src="/assets/js/thesis_scrollspy.js"></script>
|
||||
|
||||
|
||||
<!--[if lt IE 9]>
|
||||
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
|
||||
<![endif]-->
|
||||
<link rel="stylesheet" href="/assets/css/styles.css">
|
||||
<script src="/assets/js/index.js"></script>
|
||||
</head>
|
||||
@ -203,7 +25,7 @@ image:
|
||||
<!--Capture the table of contents from pandoc as a jekyll variable -->
|
||||
{% capture tableOfContents %}
|
||||
<br>
|
||||
Contents:
|
||||
<nav aria-label="Table of Contents" class="page-table-of-contents">
|
||||
<ul>
|
||||
<li><a href="#interacting-quantum-many-body-systems"
|
||||
id="toc-interacting-quantum-many-body-systems">Interacting Quantum Many
|
||||
@ -215,12 +37,15 @@ id="toc-quantum-spin-liquids">Quantum Spin Liquids</a></li>
|
||||
<li><a href="#outline" id="toc-outline">Outline</a></li>
|
||||
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
{% endcapture %}
|
||||
|
||||
<!-- Give the table of contents to header as a variable -->
|
||||
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
|
||||
{% include header.html extra=tableOfContents %}
|
||||
|
||||
<main>
|
||||
|
||||
<!-- Table of Contents -->
|
||||
<!-- <nav id="TOC" role="doc-toc">
|
||||
<ul>
|
||||
<li><a href="#interacting-quantum-many-body-systems"
|
||||
@ -235,8 +60,10 @@ id="toc-quantum-spin-liquids">Quantum Spin Liquids</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
-->
|
||||
<h1 id="interacting-quantum-many-body-systems">Interacting Quantum Many
|
||||
Body Systems</h1>
|
||||
|
||||
<!-- Main Page Body -->
|
||||
<section id="interacting-quantum-many-body-systems" class="level1">
|
||||
<h1>Interacting Quantum Many Body Systems</h1>
|
||||
<p>When you take many objects and let them interact together, it is
|
||||
often simpler to describe the behaviour of the group differently from
|
||||
the way one would describe the individual objects. Consider a flock of
|
||||
@ -321,25 +148,39 @@ antiferromagnetism <span class="citation"
|
||||
data-cites="MagnetismCondensedMatter"> [<a
|
||||
href="#ref-MagnetismCondensedMatter"
|
||||
role="doc-biblioref">12</a>]</span>.</p>
|
||||
<p>However, at some point we had to start on the interacting quantum
|
||||
many body systems. The properties of some materials cannot be understood
|
||||
without a taking into account all three effects and these are
|
||||
collectively called strongly correlated materials. The canonical
|
||||
examples are superconductivity <span class="citation"
|
||||
data-cites="MicroscopicTheorySuperconductivity"> [<a
|
||||
<p>The development of Landau-Fermi Liquid theory explained why band
|
||||
theory works so well even in cases where an analysis of the relevant
|
||||
energies suggests that it should not <span class="citation"
|
||||
data-cites="wenQuantumFieldTheory2007"> [<a
|
||||
href="#ref-wenQuantumFieldTheory2007"
|
||||
role="doc-biblioref">13</a>]</span>. Landau Fermi Liquid theory
|
||||
demonstrates that in many cases where electron-electron interactions are
|
||||
significant, the system can still be described in terms on generalised
|
||||
non-interacting quasiparticles.</p>
|
||||
<p>However there are systems where even Landau Fermi Liquid theory
|
||||
fails. An effective theoretical description of these systems must
|
||||
include electron-electron correlations and they are thus called Strongly
|
||||
Correlated Materials <span class="citation"
|
||||
data-cites="morosanStronglyCorrelatedMaterials2012"> [<a
|
||||
href="#ref-morosanStronglyCorrelatedMaterials2012"
|
||||
role="doc-biblioref">14</a>]</span>, Correlated Electron systems or
|
||||
Quantum Materials. The canonical examples are superconductivity <span
|
||||
class="citation" data-cites="MicroscopicTheorySuperconductivity"> [<a
|
||||
href="#ref-MicroscopicTheorySuperconductivity"
|
||||
role="doc-biblioref">13</a>]</span>, the fractional quantum hall
|
||||
role="doc-biblioref">15</a>]</span>, the fractional quantum hall
|
||||
effect <span class="citation"
|
||||
data-cites="feldmanFractionalChargeFractional2021"> [<a
|
||||
href="#ref-feldmanFractionalChargeFractional2021"
|
||||
role="doc-biblioref">14</a>]</span> and the Mott insulators <span
|
||||
role="doc-biblioref">16</a>]</span> and the Mott insulators <span
|
||||
class="citation"
|
||||
data-cites="mottBasisElectronTheory1949 fisherMottInsulatorsSpin1999"> [<a
|
||||
href="#ref-mottBasisElectronTheory1949" role="doc-biblioref">15</a>,<a
|
||||
href="#ref-mottBasisElectronTheory1949" role="doc-biblioref">17</a>,<a
|
||||
href="#ref-fisherMottInsulatorsSpin1999"
|
||||
role="doc-biblioref">16</a>]</span>. We’ll start by looking at the
|
||||
role="doc-biblioref">18</a>]</span>. We’ll start by looking at the
|
||||
latter but shall see that there are many links between three topics.</p>
|
||||
<h1 id="mott-insulators">Mott Insulators</h1>
|
||||
</section>
|
||||
<section id="mott-insulators" class="level1">
|
||||
<h1>Mott Insulators</h1>
|
||||
<p>Mott Insulators are remarkable because their electrical insulator
|
||||
properties come from electron-electron interactions. Electrical
|
||||
conductivity, the bulk movement of electrons, requires both that there
|
||||
@ -375,27 +216,27 @@ many transition metal oxides are erroneously predicted by band theory to
|
||||
be conductive <span class="citation"
|
||||
data-cites="boerSemiconductorsPartiallyCompletely1937"> [<a
|
||||
href="#ref-boerSemiconductorsPartiallyCompletely1937"
|
||||
role="doc-biblioref">17</a>]</span> leading to the suggestion that
|
||||
role="doc-biblioref">19</a>]</span> leading to the suggestion that
|
||||
electron-electron interactions were the cause of this effect <span
|
||||
class="citation" data-cites="mottDiscussionPaperBoer1937"> [<a
|
||||
href="#ref-mottDiscussionPaperBoer1937"
|
||||
role="doc-biblioref">18</a>]</span>. Interest grew with the discovery of
|
||||
role="doc-biblioref">20</a>]</span>. Interest grew with the discovery of
|
||||
high temperature superconductivity in the cuprates in 1986 <span
|
||||
class="citation"
|
||||
data-cites="bednorzPossibleHighTcSuperconductivity1986"> [<a
|
||||
href="#ref-bednorzPossibleHighTcSuperconductivity1986"
|
||||
role="doc-biblioref">19</a>]</span> which is believed to arise as the
|
||||
role="doc-biblioref">21</a>]</span> which is believed to arise as the
|
||||
result of a doped Mott insulator state <span class="citation"
|
||||
data-cites="leeDopingMottInsulator2006"> [<a
|
||||
href="#ref-leeDopingMottInsulator2006"
|
||||
role="doc-biblioref">20</a>]</span>.</p>
|
||||
role="doc-biblioref">22</a>]</span>.</p>
|
||||
<p>The canonical toy model of the Mott insulator is the Hubbard
|
||||
model <span class="citation"
|
||||
data-cites="gutzwillerEffectCorrelationFerromagnetism1963 kanamoriElectronCorrelationFerromagnetism1963 hubbardj.ElectronCorrelationsNarrow1963"> [<a
|
||||
href="#ref-gutzwillerEffectCorrelationFerromagnetism1963"
|
||||
role="doc-biblioref">21</a>–<a
|
||||
role="doc-biblioref">23</a>–<a
|
||||
href="#ref-hubbardj.ElectronCorrelationsNarrow1963"
|
||||
role="doc-biblioref">23</a>]</span> of <span
|
||||
role="doc-biblioref">25</a>]</span> of <span
|
||||
class="math inline">\(1/2\)</span> fermions hopping on the lattice with
|
||||
hopping parameter <span class="math inline">\(t\)</span> and
|
||||
electron-electron repulsion <span class="math inline">\(U\)</span></p>
|
||||
@ -425,7 +266,7 @@ class="math inline">\(\mu = \tfrac{U}{2}\)</span> where there is one
|
||||
electron per lattice site <span class="citation"
|
||||
data-cites="hubbardElectronCorrelationsNarrow1964"> [<a
|
||||
href="#ref-hubbardElectronCorrelationsNarrow1964"
|
||||
role="doc-biblioref">24</a>]</span>. Here the model can be rewritten in
|
||||
role="doc-biblioref">26</a>]</span>. Here the model can be rewritten in
|
||||
a symmetric form <span class="math display">\[ H_{\mathrm{H}} = -t
|
||||
\sum_{\langle i,j \rangle \alpha} c^\dagger_{i\alpha} c_{j\alpha} + U
|
||||
\sum_i (n_{i\uparrow} - \tfrac{1}{2})(n_{i\downarrow} -
|
||||
@ -439,12 +280,12 @@ Originally it was proposed that this antiferromagnetic order was the
|
||||
cause of the gap opening <span class="citation"
|
||||
data-cites="mottMetalInsulatorTransitions1990"> [<a
|
||||
href="#ref-mottMetalInsulatorTransitions1990"
|
||||
role="doc-biblioref">25</a>]</span>. However, Mott insulators have been
|
||||
role="doc-biblioref">27</a>]</span>. However, Mott insulators have been
|
||||
found <span class="citation"
|
||||
data-cites="law1TTaS2QuantumSpin2017 ribakGaplessExcitationsGround2017"> [<a
|
||||
href="#ref-law1TTaS2QuantumSpin2017" role="doc-biblioref">26</a>,<a
|
||||
href="#ref-law1TTaS2QuantumSpin2017" role="doc-biblioref">28</a>,<a
|
||||
href="#ref-ribakGaplessExcitationsGround2017"
|
||||
role="doc-biblioref">27</a>]</span> without magnetic order. Instead the
|
||||
role="doc-biblioref">29</a>]</span> without magnetic order. Instead the
|
||||
local moments may form a highly entangled state known as a quantum spin
|
||||
liquid, which will be discussed shortly.</p>
|
||||
<p>Various theoretical treatments of the Hubbard model have been made,
|
||||
@ -452,18 +293,18 @@ including those based on Fermi liquid theory, mean field treatments, the
|
||||
local density approximation (LDA) <span class="citation"
|
||||
data-cites="slaterMagneticEffectsHartreeFock1951"> [<a
|
||||
href="#ref-slaterMagneticEffectsHartreeFock1951"
|
||||
role="doc-biblioref">28</a>]</span> and dynamical mean-field
|
||||
role="doc-biblioref">30</a>]</span> and dynamical mean-field
|
||||
theory <span class="citation"
|
||||
data-cites="greinerQuantumPhaseTransition2002"> [<a
|
||||
href="#ref-greinerQuantumPhaseTransition2002"
|
||||
role="doc-biblioref">29</a>]</span>. None of these approaches are
|
||||
role="doc-biblioref">31</a>]</span>. None of these approaches are
|
||||
perfect. Strong correlations are poorly described by the Fermi liquid
|
||||
theory and the LDA approaches while mean field approximations do poorly
|
||||
in low dimensional systems. This theoretical difficulty has made the
|
||||
Hubbard model a target for cold atom simulations <span class="citation"
|
||||
data-cites="mazurenkoColdatomFermiHubbard2017"> [<a
|
||||
href="#ref-mazurenkoColdatomFermiHubbard2017"
|
||||
role="doc-biblioref">30</a>]</span>.</p>
|
||||
role="doc-biblioref">32</a>]</span>.</p>
|
||||
<p>From here the discussion will branch two directions. First, we will
|
||||
discuss a limit of the Hubbard model called the Falikov-Kimball Model.
|
||||
Second, we will look at quantum spin liquids and the Kitaev honeycomb
|
||||
@ -487,9 +328,9 @@ c^\dagger_{i}c_{j} + \;U \sum_{i} S_i\;(c^\dagger_{i}c_{i} -
|
||||
transition is still poorly understood <span class="citation"
|
||||
data-cites="belitzAndersonMottTransition1994 baskoMetalInsulatorTransition2006"> [<a
|
||||
href="#ref-belitzAndersonMottTransition1994"
|
||||
role="doc-biblioref">31</a>,<a
|
||||
role="doc-biblioref">33</a>,<a
|
||||
href="#ref-baskoMetalInsulatorTransition2006"
|
||||
role="doc-biblioref">32</a>]</span> the FK model provides a rich test
|
||||
role="doc-biblioref">34</a>]</span> the FK model provides a rich test
|
||||
bed to explore interaction driven MI transition physics. Despite its
|
||||
simplicity, the model has a rich phase diagram in <span
|
||||
class="math inline">\(D \geq 2\)</span> dimensions. It shows an Mott
|
||||
@ -497,23 +338,23 @@ insulator transition even at high temperature, similar to the
|
||||
corresponding Hubbard Model <span class="citation"
|
||||
data-cites="brandtThermodynamicsCorrelationFunctions1989"> [<a
|
||||
href="#ref-brandtThermodynamicsCorrelationFunctions1989"
|
||||
role="doc-biblioref">33</a>]</span>. In 1D, the ground state
|
||||
role="doc-biblioref">35</a>]</span>. In 1D, the ground state
|
||||
phenomenology as a function of filling can be rich <span
|
||||
class="citation" data-cites="gruberGroundStatesSpinless1990"> [<a
|
||||
href="#ref-gruberGroundStatesSpinless1990"
|
||||
role="doc-biblioref">34</a>]</span> but the system is disordered for all
|
||||
role="doc-biblioref">36</a>]</span> but the system is disordered for all
|
||||
<span class="math inline">\(T > 0\)</span> <span class="citation"
|
||||
data-cites="kennedyItinerantElectronModel1986"> [<a
|
||||
href="#ref-kennedyItinerantElectronModel1986"
|
||||
role="doc-biblioref">35</a>]</span>. The model has also been a test-bed
|
||||
role="doc-biblioref">37</a>]</span>. The model has also been a test-bed
|
||||
for many-body methods, interest took off when an exact dynamical
|
||||
mean-field theory solution in the infinite dimensional case was
|
||||
found <span class="citation"
|
||||
data-cites="antipovCriticalExponentsStrongly2014 ribicNonlocalCorrelationsSpectral2016 freericksExactDynamicalMeanfield2003 herrmannNonequilibriumDynamicalCluster2016"> [<a
|
||||
href="#ref-antipovCriticalExponentsStrongly2014"
|
||||
role="doc-biblioref">36</a>–<a
|
||||
role="doc-biblioref">38</a>–<a
|
||||
href="#ref-herrmannNonequilibriumDynamicalCluster2016"
|
||||
role="doc-biblioref">39</a>]</span>.</p>
|
||||
role="doc-biblioref">41</a>]</span>.</p>
|
||||
<p>In Chapter 3 I will introduce a generalized FK model in one
|
||||
dimension. With the addition of long-range interactions in the
|
||||
background field, the model shows a similarly rich phase diagram. I use
|
||||
@ -523,16 +364,18 @@ then compare the behaviour of this transitionally invariant model to an
|
||||
Anderson model of uncorrelated binary disorder about a background charge
|
||||
density wave field which confirms that the fermionic sector only fully
|
||||
localizes for very large system sizes.</p>
|
||||
<h1 id="quantum-spin-liquids">Quantum Spin Liquids</h1>
|
||||
</section>
|
||||
<section id="quantum-spin-liquids" class="level1">
|
||||
<h1>Quantum Spin Liquids</h1>
|
||||
<p>To turn to the other key topic of this thesis, we have discussed the
|
||||
question of the magnetic ordering of local moments in the Mott
|
||||
insulating state. The local moments may form an AFM ground state.
|
||||
Alternatively they may fail to order even at zero temperature <span
|
||||
class="citation"
|
||||
data-cites="law1TTaS2QuantumSpin2017 ribakGaplessExcitationsGround2017"> [<a
|
||||
href="#ref-law1TTaS2QuantumSpin2017" role="doc-biblioref">26</a>,<a
|
||||
href="#ref-law1TTaS2QuantumSpin2017" role="doc-biblioref">28</a>,<a
|
||||
href="#ref-ribakGaplessExcitationsGround2017"
|
||||
role="doc-biblioref">27</a>]</span>, giving rise to what is known as a
|
||||
role="doc-biblioref">29</a>]</span>, giving rise to what is known as a
|
||||
quantum spin liquid (QSL) state.</p>
|
||||
<p>Landau-Ginzburg-Wilson theory characterises phases of matter as
|
||||
inextricably linked to the emergence of long range order via a
|
||||
@ -543,29 +386,29 @@ exhibit fractionalised excitations linked to their ground state having
|
||||
long range entanglement and non-trivial topological properties <span
|
||||
class="citation" data-cites="broholmQuantumSpinLiquids2020"> [<a
|
||||
href="#ref-broholmQuantumSpinLiquids2020"
|
||||
role="doc-biblioref">40</a>]</span>. Quantum spin liquids are the
|
||||
role="doc-biblioref">42</a>]</span>. Quantum spin liquids are the
|
||||
analogous phase of matter for spin systems. Remarkably the existence of
|
||||
QSLs was first suggested by Anderson in 1973 <span class="citation"
|
||||
data-cites="andersonResonatingValenceBonds1973"> [<a
|
||||
href="#ref-andersonResonatingValenceBonds1973"
|
||||
role="doc-biblioref">41</a>]</span>.</p>
|
||||
role="doc-biblioref">43</a>]</span>.</p>
|
||||
<div id="fig:correlation_spin_orbit_PT" class="fignos">
|
||||
<figure>
|
||||
<img src="/assets/thesis/intro_chapter/correlation_spin_orbit_PT.png"
|
||||
data-short-caption="Phase Diagram" style="width:100.0%"
|
||||
alt="Figure 3: From [42]." />
|
||||
alt="Figure 3: From [44]." />
|
||||
<figcaption aria-hidden="true"><span>Figure 3:</span> From <span
|
||||
class="citation" data-cites="TrebstPhysRep2022"> [<a
|
||||
href="#ref-TrebstPhysRep2022"
|
||||
role="doc-biblioref">42</a>]</span>.</figcaption>
|
||||
role="doc-biblioref">44</a>]</span>.</figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
<p>The main route to QSLs, though there are others <span
|
||||
class="citation"
|
||||
data-cites="balentsNodalLiquidTheory1998 balentsDualOrderParameter1999 linExactSymmetryWeaklyinteracting1998"> [<a
|
||||
href="#ref-balentsNodalLiquidTheory1998" role="doc-biblioref">43</a>–<a
|
||||
href="#ref-balentsNodalLiquidTheory1998" role="doc-biblioref">45</a>–<a
|
||||
href="#ref-linExactSymmetryWeaklyinteracting1998"
|
||||
role="doc-biblioref">45</a>]</span>, is via frustration of spin models
|
||||
role="doc-biblioref">47</a>]</span>, is via frustration of spin models
|
||||
that would otherwise order have AFM order. This frustration can come
|
||||
geometrically, triangular lattices for instance cannot support AFM
|
||||
order. It can also come about as a result of spin-orbit coupling.</p>
|
||||
@ -580,16 +423,16 @@ class="math inline">\(\tfrac{1}{2}\)</span> Mott insulating states with
|
||||
strongly anisotropic spin-spin couplings known as Kitaev Materials <span
|
||||
class="citation"
|
||||
data-cites="Jackeli2009 HerrmannsAnRev2018 Winter2017 TrebstPhysRep2022 Takagi2019"> [<a
|
||||
href="#ref-TrebstPhysRep2022" role="doc-biblioref">42</a>,<a
|
||||
href="#ref-Jackeli2009" role="doc-biblioref">46</a>–<a
|
||||
href="#ref-Takagi2019" role="doc-biblioref">49</a>]</span>. Kitaev
|
||||
href="#ref-TrebstPhysRep2022" role="doc-biblioref">44</a>,<a
|
||||
href="#ref-Jackeli2009" role="doc-biblioref">48</a>–<a
|
||||
href="#ref-Takagi2019" role="doc-biblioref">51</a>]</span>. Kitaev
|
||||
materials draw their name from the celebrated Kitaev Honeycomb Model as
|
||||
it is believed they will realise the QSL state via the mechanisms of the
|
||||
Kitaev Model.</p>
|
||||
<p>The Kitaev Honeycomb model <span class="citation"
|
||||
data-cites="kitaevAnyonsExactlySolved2006"> [<a
|
||||
href="#ref-kitaevAnyonsExactlySolved2006"
|
||||
role="doc-biblioref">50</a>]</span> was the first concrete model with a
|
||||
role="doc-biblioref">52</a>]</span> was the first concrete model with a
|
||||
QSL ground state. It is defined on the honeycomb lattice and provides an
|
||||
exactly solvable model whose ground state is a QSL characterized by a
|
||||
static <span class="math inline">\(\mathbb Z_2\)</span> gauge field and
|
||||
@ -601,37 +444,37 @@ its QSL ground state, it supports a rich phase diagram hosting gapless,
|
||||
Abelian and non-Abelian phases <span class="citation"
|
||||
data-cites="knolleDynamicsFractionalizationQuantum2015"> [<a
|
||||
href="#ref-knolleDynamicsFractionalizationQuantum2015"
|
||||
role="doc-biblioref">51</a>]</span> and a finite temperature phase
|
||||
role="doc-biblioref">53</a>]</span> and a finite temperature phase
|
||||
transition to a thermal metal state <span class="citation"
|
||||
data-cites="selfThermallyInducedMetallic2019"> [<a
|
||||
href="#ref-selfThermallyInducedMetallic2019"
|
||||
role="doc-biblioref">52</a>]</span>. It been proposed that its
|
||||
role="doc-biblioref">54</a>]</span>. It been proposed that its
|
||||
non-Abelian excitations could be used to support robust topological
|
||||
quantum computing [<span class="citation"
|
||||
data-cites="kitaev_fault-tolerant_2003"> [<a
|
||||
href="#ref-kitaev_fault-tolerant_2003"
|
||||
role="doc-biblioref">53</a>]</span>; <span class="citation"
|
||||
role="doc-biblioref">55</a>]</span>; <span class="citation"
|
||||
data-cites="freedmanTopologicalQuantumComputation2003"> [<a
|
||||
href="#ref-freedmanTopologicalQuantumComputation2003"
|
||||
role="doc-biblioref">54</a>]</span>;
|
||||
role="doc-biblioref">56</a>]</span>;
|
||||
nayakNonAbelianAnyonsTopological2008].</p>
|
||||
<p>It is by now understood that the Kitaev model on any tri-coordinated
|
||||
<span class="math inline">\(z=3\)</span> graph has conserved plaquette
|
||||
operators and local symmetries <span class="citation"
|
||||
data-cites="Baskaran2007 Baskaran2008"> [<a href="#ref-Baskaran2007"
|
||||
role="doc-biblioref">55</a>,<a href="#ref-Baskaran2008"
|
||||
role="doc-biblioref">56</a>]</span> which allow a mapping onto effective
|
||||
role="doc-biblioref">57</a>,<a href="#ref-Baskaran2008"
|
||||
role="doc-biblioref">58</a>]</span> which allow a mapping onto effective
|
||||
free Majorana fermion problems in a background of static <span
|
||||
class="math inline">\(\mathbb Z_2\)</span> fluxes <span class="citation"
|
||||
data-cites="Nussinov2009 OBrienPRB2016 yaoExactChiralSpin2007 hermanns2015weyl"> [<a
|
||||
href="#ref-Nussinov2009" role="doc-biblioref">57</a>–<a
|
||||
href="#ref-hermanns2015weyl" role="doc-biblioref">60</a>]</span>.
|
||||
href="#ref-Nussinov2009" role="doc-biblioref">59</a>–<a
|
||||
href="#ref-hermanns2015weyl" role="doc-biblioref">62</a>]</span>.
|
||||
However, depending on lattice symmetries, finding the ground state flux
|
||||
sector and understanding the QSL properties can still be
|
||||
challenging <span class="citation"
|
||||
data-cites="eschmann2019thermodynamics Peri2020"> [<a
|
||||
href="#ref-eschmann2019thermodynamics" role="doc-biblioref">61</a>,<a
|
||||
href="#ref-Peri2020" role="doc-biblioref">62</a>]</span>.</p>
|
||||
href="#ref-eschmann2019thermodynamics" role="doc-biblioref">63</a>,<a
|
||||
href="#ref-Peri2020" role="doc-biblioref">64</a>]</span>.</p>
|
||||
<p><strong>paragraph about amorphous lattices</strong></p>
|
||||
<p>In Chapter 4 I will introduce a soluble chiral amorphous quantum spin
|
||||
liquid by extending the Kitaev honeycomb model to random lattices with
|
||||
@ -643,14 +486,18 @@ phases with a remarkably simple ground state flux pattern. Furthermore,
|
||||
I show that the system undergoes a finite-temperature phase transition
|
||||
to a conducting thermal metal state and discuss possible experimental
|
||||
realisations.</p>
|
||||
<h1 id="outline">Outline</h1>
|
||||
</section>
|
||||
<section id="outline" class="level1">
|
||||
<h1>Outline</h1>
|
||||
<p>The next chapter, Chapter 2, will introduce some necessary background
|
||||
to the Falikov-Kimball Model, the Kitaev Honeycomb Model, disorder and
|
||||
localisation.</p>
|
||||
<p>In Chapter 3 I introduce the Long Range Falikov-Kimball Model in
|
||||
greater detail. I will present results that. Chapter 4 focusses on the
|
||||
Amorphous Kitaev Model.</p>
|
||||
<h1 class="unnumbered" id="bibliography">Bibliography</h1>
|
||||
</section>
|
||||
<section id="bibliography" class="level1 unnumbered">
|
||||
<h1 class="unnumbered">Bibliography</h1>
|
||||
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
|
||||
<div id="ref-king2012murmurations" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
@ -735,9 +582,25 @@ role="doc-biblioentry">
|
||||
Blundell, <em>Magnetism in Condensed Matter</em> (OUP Oxford,
|
||||
2001).</div>
|
||||
</div>
|
||||
<div id="ref-wenQuantumFieldTheory2007" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[13] </div><div
|
||||
class="csl-right-inline">X.-G. Wen, <em><a
|
||||
href="https://doi.org/10.1093/acprof:oso/9780199227259.001.0001">Quantum
|
||||
Field Theory of Many-Body Systems: From the Origin of Sound to an Origin
|
||||
of Light and Electrons</a></em> (Oxford University Press, Oxford,
|
||||
2007).</div>
|
||||
</div>
|
||||
<div id="ref-morosanStronglyCorrelatedMaterials2012" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[14] </div><div class="csl-right-inline">E.
|
||||
Morosan, D. Natelson, A. H. Nevidomskyy, and Q. Si, <em><a
|
||||
href="https://doi.org/10.1002/adma.201202018">Strongly Correlated
|
||||
Materials</a></em>, Adv. Mater. <strong>24</strong>, 4896 (2012).</div>
|
||||
</div>
|
||||
<div id="ref-MicroscopicTheorySuperconductivity" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[13] </div><div class="csl-right-inline">J.
|
||||
<div class="csl-left-margin">[15] </div><div class="csl-right-inline">J.
|
||||
Bardeen, L. N. Cooper, and J. R. Schrieffer, <em><a
|
||||
href="https://doi.org/10.1103/PhysRev.106.162">Microscopic Theory of
|
||||
Superconductivity</a></em>, Phys. Rev. <strong>106</strong>, 162
|
||||
@ -745,7 +608,7 @@ Superconductivity</a></em>, Phys. Rev. <strong>106</strong>, 162
|
||||
</div>
|
||||
<div id="ref-feldmanFractionalChargeFractional2021" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[14] </div><div class="csl-right-inline">D.
|
||||
<div class="csl-left-margin">[16] </div><div class="csl-right-inline">D.
|
||||
E. Feldman and B. I. Halperin, <em><a
|
||||
href="https://doi.org/10.1088/1361-6633/ac03aa">Fractional Charge and
|
||||
Fractional Statistics in the Quantum Hall Effects</a></em>, Rep. Prog.
|
||||
@ -753,7 +616,7 @@ Phys. <strong>84</strong>, 076501 (2021).</div>
|
||||
</div>
|
||||
<div id="ref-mottBasisElectronTheory1949" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[15] </div><div class="csl-right-inline">N.
|
||||
<div class="csl-left-margin">[17] </div><div class="csl-right-inline">N.
|
||||
F. Mott, <em><a href="https://doi.org/10.1088/0370-1298/62/7/303">The
|
||||
Basis of the Electron Theory of Metals, with Special Reference to the
|
||||
Transition Metals</a></em>, Proc. Phys. Soc. A <strong>62</strong>, 416
|
||||
@ -761,7 +624,7 @@ Transition Metals</a></em>, Proc. Phys. Soc. A <strong>62</strong>, 416
|
||||
</div>
|
||||
<div id="ref-fisherMottInsulatorsSpin1999" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[16] </div><div class="csl-right-inline">M.
|
||||
<div class="csl-left-margin">[18] </div><div class="csl-right-inline">M.
|
||||
P. A. Fisher, <em><a href="https://doi.org/10.1007/3-540-46637-1_8">Mott
|
||||
Insulators, Spin Liquids and Quantum Disordered
|
||||
Superconductivity</a></em>, in <em>Aspects Topologiques de La Physique
|
||||
@ -772,16 +635,15 @@ edited by A. Comtet, T. Jolicœur, S. Ouvry, and F. David, Vol. 69
|
||||
</div>
|
||||
<div id="ref-boerSemiconductorsPartiallyCompletely1937"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[17] </div><div class="csl-right-inline">J.
|
||||
<div class="csl-left-margin">[19] </div><div class="csl-right-inline">J.
|
||||
H. de Boer and E. J. W. Verwey, <em><a
|
||||
href="https://doi.org/10.1088/0959-5309/49/4S/307">Semi-Conductors with
|
||||
Partially and with Completely Filled <Script>3d-Lattice
|
||||
Bands</Script></a></em>, Proc. Phys. Soc. <strong>49</strong>, 59
|
||||
(1937).</div>
|
||||
Partially and with Completely Filled 3d-Lattice Bands</a></em>, Proc.
|
||||
Phys. Soc. <strong>49</strong>, 59 (1937).</div>
|
||||
</div>
|
||||
<div id="ref-mottDiscussionPaperBoer1937" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[18] </div><div class="csl-right-inline">N.
|
||||
<div class="csl-left-margin">[20] </div><div class="csl-right-inline">N.
|
||||
F. Mott and R. Peierls, <em><a
|
||||
href="https://doi.org/10.1088/0959-5309/49/4S/308">Discussion of the
|
||||
Paper by de Boer and Verwey</a></em>, Proc. Phys. Soc.
|
||||
@ -789,7 +651,7 @@ Paper by de Boer and Verwey</a></em>, Proc. Phys. Soc.
|
||||
</div>
|
||||
<div id="ref-bednorzPossibleHighTcSuperconductivity1986"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[19] </div><div class="csl-right-inline">J.
|
||||
<div class="csl-left-margin">[21] </div><div class="csl-right-inline">J.
|
||||
G. Bednorz and K. A. Müller, <em><a
|
||||
href="https://doi.org/10.1007/BF01303701">Possible highTc
|
||||
Superconductivity in the Ba−La−Cu−O System</a></em>, Z. Physik B -
|
||||
@ -797,7 +659,7 @@ Condensed Matter <strong>64</strong>, 189 (1986).</div>
|
||||
</div>
|
||||
<div id="ref-leeDopingMottInsulator2006" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[20] </div><div class="csl-right-inline">P.
|
||||
<div class="csl-left-margin">[22] </div><div class="csl-right-inline">P.
|
||||
A. Lee, N. Nagaosa, and X.-G. Wen, <em><a
|
||||
href="https://doi.org/10.1103/RevModPhys.78.17">Doping a Mott Insulator:
|
||||
Physics of High-Temperature Superconductivity</a></em>, Rev. Mod. Phys.
|
||||
@ -805,7 +667,7 @@ Physics of High-Temperature Superconductivity</a></em>, Rev. Mod. Phys.
|
||||
</div>
|
||||
<div id="ref-gutzwillerEffectCorrelationFerromagnetism1963"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[21] </div><div class="csl-right-inline">M.
|
||||
<div class="csl-left-margin">[23] </div><div class="csl-right-inline">M.
|
||||
C. Gutzwiller, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.10.159">Effect of Correlation
|
||||
on the Ferromagnetism of Transition Metals</a></em>, Phys. Rev. Lett.
|
||||
@ -813,14 +675,14 @@ on the Ferromagnetism of Transition Metals</a></em>, Phys. Rev. Lett.
|
||||
</div>
|
||||
<div id="ref-kanamoriElectronCorrelationFerromagnetism1963"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[22] </div><div class="csl-right-inline">J.
|
||||
<div class="csl-left-margin">[24] </div><div class="csl-right-inline">J.
|
||||
Kanamori, <em><a href="https://doi.org/10.1143/PTP.30.275">Electron
|
||||
Correlation and Ferromagnetism of Transition Metals</a></em>, Progress
|
||||
of Theoretical Physics <strong>30</strong>, 275 (1963).</div>
|
||||
</div>
|
||||
<div id="ref-hubbardj.ElectronCorrelationsNarrow1963" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[23] </div><div
|
||||
<div class="csl-left-margin">[25] </div><div
|
||||
class="csl-right-inline">Hubbard, J., <em><a
|
||||
href="https://doi.org/10.1098/rspa.1963.0204">Electron Correlations in
|
||||
Narrow Energy Bands</a></em>, Proceedings of the Royal Society of
|
||||
@ -829,7 +691,7 @@ London. Series A. Mathematical and Physical Sciences
|
||||
</div>
|
||||
<div id="ref-hubbardElectronCorrelationsNarrow1964" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[24] </div><div class="csl-right-inline">J.
|
||||
<div class="csl-left-margin">[26] </div><div class="csl-right-inline">J.
|
||||
Hubbard and B. H. Flowers, <em><a
|
||||
href="https://doi.org/10.1098/rspa.1964.0190">Electron Correlations in
|
||||
Narrow Energy Bands III. An Improved Solution</a></em>, Proceedings of
|
||||
@ -838,13 +700,13 @@ Sciences <strong>281</strong>, 401 (1964).</div>
|
||||
</div>
|
||||
<div id="ref-mottMetalInsulatorTransitions1990" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[25] </div><div class="csl-right-inline">N.
|
||||
<div class="csl-left-margin">[27] </div><div class="csl-right-inline">N.
|
||||
Mott, <em><a href="https://doi.org/10.1201/b12795">Metal-Insulator
|
||||
Transitions</a></em> (CRC Press, London, 1990).</div>
|
||||
</div>
|
||||
<div id="ref-law1TTaS2QuantumSpin2017" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[26] </div><div class="csl-right-inline">K.
|
||||
<div class="csl-left-margin">[28] </div><div class="csl-right-inline">K.
|
||||
T. Law and P. A. Lee, <em><a
|
||||
href="https://doi.org/10.1073/pnas.1706769114">1t-TaS2 as a Quantum Spin
|
||||
Liquid</a></em>, Proceedings of the National Academy of Sciences
|
||||
@ -852,24 +714,24 @@ Liquid</a></em>, Proceedings of the National Academy of Sciences
|
||||
</div>
|
||||
<div id="ref-ribakGaplessExcitationsGround2017" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[27] </div><div class="csl-right-inline">A.
|
||||
<div class="csl-left-margin">[29] </div><div class="csl-right-inline">A.
|
||||
Ribak, I. Silber, C. Baines, K. Chashka, Z. Salman, Y. Dagan, and A.
|
||||
Kanigel, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.96.195131">Gapless Excitations in
|
||||
the Ground State of
|
||||
<Script>$1T\text{\ensuremath{-}}{\Mathrm{TaS}}_{2}$</Script></a></em>,
|
||||
Phys. Rev. B <strong>96</strong>, 195131 (2017).</div>
|
||||
$1t\text{\ensuremath{-}}{\Mathrm{TaS}}_{2}$</a></em>, Phys. Rev. B
|
||||
<strong>96</strong>, 195131 (2017).</div>
|
||||
</div>
|
||||
<div id="ref-slaterMagneticEffectsHartreeFock1951" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[28] </div><div class="csl-right-inline">J.
|
||||
<div class="csl-left-margin">[30] </div><div class="csl-right-inline">J.
|
||||
C. Slater, <em><a href="https://doi.org/10.1103/PhysRev.82.538">Magnetic
|
||||
Effects and the Hartree-Fock Equation</a></em>, Phys. Rev.
|
||||
<strong>82</strong>, 538 (1951).</div>
|
||||
</div>
|
||||
<div id="ref-greinerQuantumPhaseTransition2002" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[29] </div><div class="csl-right-inline">M.
|
||||
<div class="csl-left-margin">[31] </div><div class="csl-right-inline">M.
|
||||
Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, <em><a
|
||||
href="https://doi.org/10.1038/415039a">Quantum Phase Transition from a
|
||||
Superfluid to a Mott Insulator in a Gas of Ultracold Atoms</a></em>,
|
||||
@ -877,7 +739,7 @@ Nature <strong>415</strong>, 39 (2002).</div>
|
||||
</div>
|
||||
<div id="ref-mazurenkoColdatomFermiHubbard2017" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[30] </div><div class="csl-right-inline">A.
|
||||
<div class="csl-left-margin">[32] </div><div class="csl-right-inline">A.
|
||||
Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanász-Nagy, R. Schmidt,
|
||||
F. Grusdt, E. Demler, D. Greif, and M. Greiner, <em><a
|
||||
href="https://doi.org/10.1038/nature22362">A Cold-Atom Fermi–Hubbard
|
||||
@ -885,7 +747,7 @@ Antiferromagnet</a></em>, Nature <strong>545</strong>, 462 (2017).</div>
|
||||
</div>
|
||||
<div id="ref-belitzAndersonMottTransition1994" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[31] </div><div class="csl-right-inline">D.
|
||||
<div class="csl-left-margin">[33] </div><div class="csl-right-inline">D.
|
||||
Belitz and T. R. Kirkpatrick, <em><a
|
||||
href="https://doi.org/10.1103/RevModPhys.66.261">The Anderson-Mott
|
||||
Transition</a></em>, Rev. Mod. Phys. <strong>66</strong>, 261
|
||||
@ -893,7 +755,7 @@ Transition</a></em>, Rev. Mod. Phys. <strong>66</strong>, 261
|
||||
</div>
|
||||
<div id="ref-baskoMetalInsulatorTransition2006" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[32] </div><div class="csl-right-inline">D.
|
||||
<div class="csl-left-margin">[34] </div><div class="csl-right-inline">D.
|
||||
M. Basko, I. L. Aleiner, and B. L. Altshuler, <em><a
|
||||
href="https://doi.org/10.1016/j.aop.2005.11.014">Metal–Insulator
|
||||
Transition in a Weakly Interacting Many-Electron System with Localized
|
||||
@ -902,7 +764,7 @@ Single-Particle States</a></em>, Annals of Physics <strong>321</strong>,
|
||||
</div>
|
||||
<div id="ref-brandtThermodynamicsCorrelationFunctions1989"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[33] </div><div class="csl-right-inline">U.
|
||||
<div class="csl-left-margin">[35] </div><div class="csl-right-inline">U.
|
||||
Brandt and C. Mielsch, <em><a
|
||||
href="https://doi.org/10.1007/BF01321824">Thermodynamics and Correlation
|
||||
Functions of the Falicov-Kimball Model in Large Dimensions</a></em>, Z.
|
||||
@ -910,7 +772,7 @@ Physik B - Condensed Matter <strong>75</strong>, 365 (1989).</div>
|
||||
</div>
|
||||
<div id="ref-gruberGroundStatesSpinless1990" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[34] </div><div class="csl-right-inline">C.
|
||||
<div class="csl-left-margin">[36] </div><div class="csl-right-inline">C.
|
||||
Gruber, J. Iwanski, J. Jedrzejewski, and P. Lemberger, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.41.2198">Ground States of the
|
||||
Spinless Falicov-Kimball Model</a></em>, Phys. Rev. B
|
||||
@ -918,7 +780,7 @@ Spinless Falicov-Kimball Model</a></em>, Phys. Rev. B
|
||||
</div>
|
||||
<div id="ref-kennedyItinerantElectronModel1986" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[35] </div><div class="csl-right-inline">T.
|
||||
<div class="csl-left-margin">[37] </div><div class="csl-right-inline">T.
|
||||
Kennedy and E. H. Lieb, <em><a
|
||||
href="https://doi.org/10.1016/0378-4371(86)90188-3">An Itinerant
|
||||
Electron Model with Crystalline or Magnetic Long Range Order</a></em>,
|
||||
@ -927,7 +789,7 @@ Physica A: Statistical Mechanics and Its Applications
|
||||
</div>
|
||||
<div id="ref-antipovCriticalExponentsStrongly2014" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[36] </div><div class="csl-right-inline">A.
|
||||
<div class="csl-left-margin">[38] </div><div class="csl-right-inline">A.
|
||||
E. Antipov, E. Gull, and S. Kirchner, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.112.226401">Critical Exponents
|
||||
of Strongly Correlated Fermion Systems from Diagrammatic Multiscale
|
||||
@ -936,7 +798,7 @@ Methods</a></em>, Phys. Rev. Lett. <strong>112</strong>, 226401
|
||||
</div>
|
||||
<div id="ref-ribicNonlocalCorrelationsSpectral2016" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[37] </div><div class="csl-right-inline">T.
|
||||
<div class="csl-left-margin">[39] </div><div class="csl-right-inline">T.
|
||||
Ribic, G. Rohringer, and K. Held, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.93.195105">Nonlocal Correlations
|
||||
and Spectral Properties of the Falicov-Kimball Model</a></em>, Phys.
|
||||
@ -944,7 +806,7 @@ Rev. B <strong>93</strong>, 195105 (2016).</div>
|
||||
</div>
|
||||
<div id="ref-freericksExactDynamicalMeanfield2003" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[38] </div><div class="csl-right-inline">J.
|
||||
<div class="csl-left-margin">[40] </div><div class="csl-right-inline">J.
|
||||
K. Freericks and V. Zlatić, <em><a
|
||||
href="https://doi.org/10.1103/RevModPhys.75.1333">Exact Dynamical
|
||||
Mean-Field Theory of the Falicov-Kimball Model</a></em>, Rev. Mod. Phys.
|
||||
@ -952,7 +814,7 @@ Mean-Field Theory of the Falicov-Kimball Model</a></em>, Rev. Mod. Phys.
|
||||
</div>
|
||||
<div id="ref-herrmannNonequilibriumDynamicalCluster2016"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[39] </div><div class="csl-right-inline">A.
|
||||
<div class="csl-left-margin">[41] </div><div class="csl-right-inline">A.
|
||||
J. Herrmann, N. Tsuji, M. Eckstein, and P. Werner, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.94.245114">Nonequilibrium
|
||||
Dynamical Cluster Approximation Study of the Falicov-Kimball
|
||||
@ -960,7 +822,7 @@ Model</a></em>, Phys. Rev. B <strong>94</strong>, 245114 (2016).</div>
|
||||
</div>
|
||||
<div id="ref-broholmQuantumSpinLiquids2020" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[40] </div><div class="csl-right-inline">C.
|
||||
<div class="csl-left-margin">[42] </div><div class="csl-right-inline">C.
|
||||
Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, M. R. Norman, and T.
|
||||
Senthil, <em><a href="https://doi.org/10.1126/science.aay0668">Quantum
|
||||
Spin Liquids</a></em>, Science <strong>367</strong>, eaay0668
|
||||
@ -968,7 +830,7 @@ Spin Liquids</a></em>, Science <strong>367</strong>, eaay0668
|
||||
</div>
|
||||
<div id="ref-andersonResonatingValenceBonds1973" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[41] </div><div class="csl-right-inline">P.
|
||||
<div class="csl-left-margin">[43] </div><div class="csl-right-inline">P.
|
||||
W. Anderson, <em><a
|
||||
href="https://doi.org/10.1016/0025-5408(73)90167-0">Resonating Valence
|
||||
Bonds: A New Kind of Insulator?</a></em>, Materials Research Bulletin
|
||||
@ -976,7 +838,7 @@ Bonds: A New Kind of Insulator?</a></em>, Materials Research Bulletin
|
||||
</div>
|
||||
<div id="ref-TrebstPhysRep2022" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[42] </div><div class="csl-right-inline">S.
|
||||
<div class="csl-left-margin">[44] </div><div class="csl-right-inline">S.
|
||||
Trebst and C. Hickey, <em><a
|
||||
href="https://doi.org/10.1016/j.physrep.2021.11.003">Kitaev
|
||||
Materials</a></em>, Physics Reports <strong>950</strong>, 1
|
||||
@ -984,7 +846,7 @@ Materials</a></em>, Physics Reports <strong>950</strong>, 1
|
||||
</div>
|
||||
<div id="ref-balentsNodalLiquidTheory1998" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[43] </div><div class="csl-right-inline">L.
|
||||
<div class="csl-left-margin">[45] </div><div class="csl-right-inline">L.
|
||||
Balents, M. P. A. Fisher, and C. Nayak, <em><a
|
||||
href="https://doi.org/10.1142/S0217979298000570">Nodal Liquid Theory of
|
||||
the Pseudo-Gap Phase of High-Tc Superconductors</a></em>, Int. J. Mod.
|
||||
@ -992,7 +854,7 @@ Phys. B <strong>12</strong>, 1033 (1998).</div>
|
||||
</div>
|
||||
<div id="ref-balentsDualOrderParameter1999" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[44] </div><div class="csl-right-inline">L.
|
||||
<div class="csl-left-margin">[46] </div><div class="csl-right-inline">L.
|
||||
Balents, M. P. A. Fisher, and C. Nayak, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.60.1654">Dual Order Parameter for
|
||||
the Nodal Liquid</a></em>, Phys. Rev. B <strong>60</strong>, 1654
|
||||
@ -1000,14 +862,14 @@ the Nodal Liquid</a></em>, Phys. Rev. B <strong>60</strong>, 1654
|
||||
</div>
|
||||
<div id="ref-linExactSymmetryWeaklyinteracting1998" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[45] </div><div
|
||||
<div class="csl-left-margin">[47] </div><div
|
||||
class="csl-right-inline">H.-H. Lin, L. Balents, and M. P. A. Fisher,
|
||||
<em><a href="https://doi.org/10.1103/PhysRevB.58.1794">Exact SO(8)
|
||||
Symmetry in the Weakly-Interacting Two-Leg Ladder</a></em>, Phys. Rev. B
|
||||
<strong>58</strong>, 1794 (1998).</div>
|
||||
</div>
|
||||
<div id="ref-Jackeli2009" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[46] </div><div class="csl-right-inline">G.
|
||||
<div class="csl-left-margin">[48] </div><div class="csl-right-inline">G.
|
||||
Jackeli and G. Khaliullin, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.102.017205">Mott Insulators in
|
||||
the Strong Spin-Orbit Coupling Limit: From Heisenberg to a Quantum
|
||||
@ -1016,7 +878,7 @@ Compass and Kitaev Models</a></em>, Physical Review Letters
|
||||
</div>
|
||||
<div id="ref-HerrmannsAnRev2018" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[47] </div><div class="csl-right-inline">M.
|
||||
<div class="csl-left-margin">[49] </div><div class="csl-right-inline">M.
|
||||
Hermanns, I. Kimchi, and J. Knolle, <em><a
|
||||
href="https://doi.org/10.1146/annurev-conmatphys-033117-053934">Physics
|
||||
of the Kitaev Model: Fractionalization, Dynamic Correlations, and
|
||||
@ -1024,28 +886,28 @@ Material Connections</a></em>, Annual Review of Condensed Matter Physics
|
||||
<strong>9</strong>, 17 (2018).</div>
|
||||
</div>
|
||||
<div id="ref-Winter2017" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[48] </div><div class="csl-right-inline">S.
|
||||
<div class="csl-left-margin">[50] </div><div class="csl-right-inline">S.
|
||||
M. Winter, A. A. Tsirlin, M. Daghofer, J. van den Brink, Y. Singh, P.
|
||||
Gegenwart, and R. Valentí, <em>Models and Materials for Generalized
|
||||
Kitaev Magnetism</em>, Journal of Physics: Condensed Matter
|
||||
<strong>29</strong>, 493002 (2017).</div>
|
||||
</div>
|
||||
<div id="ref-Takagi2019" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[49] </div><div class="csl-right-inline">H.
|
||||
<div class="csl-left-margin">[51] </div><div class="csl-right-inline">H.
|
||||
Takagi, T. Takayama, G. Jackeli, G. Khaliullin, and S. E. Nagler,
|
||||
<em>Concept and Realization of Kitaev Quantum Spin Liquids</em>, Nature
|
||||
Reviews Physics <strong>1</strong>, 264 (2019).</div>
|
||||
</div>
|
||||
<div id="ref-kitaevAnyonsExactlySolved2006" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[50] </div><div class="csl-right-inline">A.
|
||||
<div class="csl-left-margin">[52] </div><div class="csl-right-inline">A.
|
||||
Kitaev, <em><a href="https://doi.org/10.1016/j.aop.2005.10.005">Anyons
|
||||
in an Exactly Solved Model and Beyond</a></em>, Annals of Physics
|
||||
<strong>321</strong>, 2 (2006).</div>
|
||||
</div>
|
||||
<div id="ref-knolleDynamicsFractionalizationQuantum2015"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[51] </div><div class="csl-right-inline">J.
|
||||
<div class="csl-left-margin">[53] </div><div class="csl-right-inline">J.
|
||||
Knolle, D. L. Kovrizhin, J. T. Chalker, and R. Moessner, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.92.115127">Dynamics of
|
||||
Fractionalization in Quantum Spin Liquids</a></em>, Phys. Rev. B
|
||||
@ -1053,7 +915,7 @@ Fractionalization in Quantum Spin Liquids</a></em>, Phys. Rev. B
|
||||
</div>
|
||||
<div id="ref-selfThermallyInducedMetallic2019" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[52] </div><div class="csl-right-inline">C.
|
||||
<div class="csl-left-margin">[54] </div><div class="csl-right-inline">C.
|
||||
N. Self, J. Knolle, S. Iblisdir, and J. K. Pachos, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.99.045142">Thermally Induced
|
||||
Metallic Phase in a Gapped Quantum Spin Liquid - a Monte Carlo Study of
|
||||
@ -1062,7 +924,7 @@ the Kitaev Model with Parity Projection</a></em>, Phys. Rev. B
|
||||
</div>
|
||||
<div id="ref-kitaev_fault-tolerant_2003" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[53] </div><div class="csl-right-inline">A.
|
||||
<div class="csl-left-margin">[55] </div><div class="csl-right-inline">A.
|
||||
Yu. Kitaev, <em><a
|
||||
href="https://doi.org/10.1016/S0003-4916(02)00018-0">Fault-Tolerant
|
||||
Quantum Computation by Anyons</a></em>, Annals of Physics
|
||||
@ -1070,21 +932,21 @@ Quantum Computation by Anyons</a></em>, Annals of Physics
|
||||
</div>
|
||||
<div id="ref-freedmanTopologicalQuantumComputation2003"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[54] </div><div class="csl-right-inline">M.
|
||||
<div class="csl-left-margin">[56] </div><div class="csl-right-inline">M.
|
||||
Freedman, A. Kitaev, M. Larsen, and Z. Wang, <em><a
|
||||
href="https://doi.org/10.1090/S0273-0979-02-00964-3">Topological Quantum
|
||||
Computation</a></em>, Bull. Amer. Math. Soc. <strong>40</strong>, 31
|
||||
(2003).</div>
|
||||
</div>
|
||||
<div id="ref-Baskaran2007" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[55] </div><div class="csl-right-inline">G.
|
||||
<div class="csl-left-margin">[57] </div><div class="csl-right-inline">G.
|
||||
Baskaran, S. Mandal, and R. Shankar, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.98.247201">Exact Results for
|
||||
Spin Dynamics and Fractionalization in the Kitaev Model</a></em>, Phys.
|
||||
Rev. Lett. <strong>98</strong>, 247201 (2007).</div>
|
||||
</div>
|
||||
<div id="ref-Baskaran2008" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[56] </div><div class="csl-right-inline">G.
|
||||
<div class="csl-left-margin">[58] </div><div class="csl-right-inline">G.
|
||||
Baskaran, D. Sen, and R. Shankar, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.78.115116">Spin-S Kitaev Model:
|
||||
Classical Ground States, Order from Disorder, and Exact Correlation
|
||||
@ -1092,14 +954,14 @@ Functions</a></em>, Phys. Rev. B <strong>78</strong>, 115116
|
||||
(2008).</div>
|
||||
</div>
|
||||
<div id="ref-Nussinov2009" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[57] </div><div class="csl-right-inline">Z.
|
||||
<div class="csl-left-margin">[59] </div><div class="csl-right-inline">Z.
|
||||
Nussinov and G. Ortiz, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.79.214440">Bond Algebras and
|
||||
Exact Solvability of Hamiltonians: Spin S=½ Multilayer Systems</a></em>,
|
||||
Physical Review B <strong>79</strong>, 214440 (2009).</div>
|
||||
</div>
|
||||
<div id="ref-OBrienPRB2016" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[58] </div><div class="csl-right-inline">K.
|
||||
<div class="csl-left-margin">[60] </div><div class="csl-right-inline">K.
|
||||
O’Brien, M. Hermanns, and S. Trebst, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.93.085101">Classification of
|
||||
Gapless Z₂ Spin Liquids in Three-Dimensional Kitaev Models</a></em>,
|
||||
@ -1107,27 +969,27 @@ Phys. Rev. B <strong>93</strong>, 085101 (2016).</div>
|
||||
</div>
|
||||
<div id="ref-yaoExactChiralSpin2007" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[59] </div><div class="csl-right-inline">H.
|
||||
<div class="csl-left-margin">[61] </div><div class="csl-right-inline">H.
|
||||
Yao and S. A. Kivelson, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.99.247203">An Exact Chiral
|
||||
Spin Liquid with Non-Abelian Anyons</a></em>, Phys. Rev. Lett.
|
||||
<strong>99</strong>, 247203 (2007).</div>
|
||||
</div>
|
||||
<div id="ref-hermanns2015weyl" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[60] </div><div class="csl-right-inline">M.
|
||||
<div class="csl-left-margin">[62] </div><div class="csl-right-inline">M.
|
||||
Hermanns, K. O’Brien, and S. Trebst, <em>Weyl Spin Liquids</em>,
|
||||
Physical Review Letters <strong>114</strong>, 157202 (2015).</div>
|
||||
</div>
|
||||
<div id="ref-eschmann2019thermodynamics" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[61] </div><div class="csl-right-inline">T.
|
||||
<div class="csl-left-margin">[63] </div><div class="csl-right-inline">T.
|
||||
Eschmann, P. A. Mishchenko, T. A. Bojesen, Y. Kato, M. Hermanns, Y.
|
||||
Motome, and S. Trebst, <em>Thermodynamics of a Gauge-Frustrated Kitaev
|
||||
Spin Liquid</em>, Physical Review Research <strong>1</strong>, 032011(R)
|
||||
(2019).</div>
|
||||
</div>
|
||||
<div id="ref-Peri2020" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[62] </div><div class="csl-right-inline">V.
|
||||
<div class="csl-left-margin">[64] </div><div class="csl-right-inline">V.
|
||||
Peri, S. Ok, S. S. Tsirkin, T. Neupert, G. Baskaran, M. Greiter, R.
|
||||
Moessner, and R. Thomale, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.101.041114">Non-Abelian Chiral
|
||||
@ -1135,6 +997,9 @@ Spin Liquid on a Simple Non-Archimedean Lattice</a></em>, Phys. Rev. B
|
||||
<strong>101</strong>, 041114 (2020).</div>
|
||||
</div>
|
||||
</div>
|
||||
</section>
|
||||
|
||||
|
||||
</main>
|
||||
</body>
|
||||
</html>
|
||||
|
@ -12,230 +12,11 @@ image:
|
||||
<meta name="generator" content="pandoc" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
|
||||
<title>2.1_FK_Model</title>
|
||||
<!-- <style>
|
||||
html {
|
||||
line-height: 1.5;
|
||||
font-family: Georgia, serif;
|
||||
font-size: 20px;
|
||||
color: #1a1a1a;
|
||||
background-color: #fdfdfd;
|
||||
}
|
||||
body {
|
||||
margin: 0 auto;
|
||||
max-width: 36em;
|
||||
padding-left: 50px;
|
||||
padding-right: 50px;
|
||||
padding-top: 50px;
|
||||
padding-bottom: 50px;
|
||||
hyphens: auto;
|
||||
overflow-wrap: break-word;
|
||||
text-rendering: optimizeLegibility;
|
||||
font-kerning: normal;
|
||||
}
|
||||
@media (max-width: 600px) {
|
||||
body {
|
||||
font-size: 0.9em;
|
||||
padding: 1em;
|
||||
}
|
||||
h1 {
|
||||
font-size: 1.8em;
|
||||
}
|
||||
}
|
||||
@media print {
|
||||
body {
|
||||
background-color: transparent;
|
||||
color: black;
|
||||
font-size: 12pt;
|
||||
}
|
||||
p, h2, h3 {
|
||||
orphans: 3;
|
||||
widows: 3;
|
||||
}
|
||||
h2, h3, h4 {
|
||||
page-break-after: avoid;
|
||||
}
|
||||
}
|
||||
p {
|
||||
margin: 1em 0;
|
||||
}
|
||||
a {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
a:visited {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
img {
|
||||
max-width: 100%;
|
||||
}
|
||||
h1, h2, h3, h4, h5, h6 {
|
||||
margin-top: 1.4em;
|
||||
}
|
||||
h5, h6 {
|
||||
font-size: 1em;
|
||||
font-style: italic;
|
||||
}
|
||||
h6 {
|
||||
font-weight: normal;
|
||||
}
|
||||
ol, ul {
|
||||
padding-left: 1.7em;
|
||||
margin-top: 1em;
|
||||
}
|
||||
li > ol, li > ul {
|
||||
margin-top: 0;
|
||||
}
|
||||
blockquote {
|
||||
margin: 1em 0 1em 1.7em;
|
||||
padding-left: 1em;
|
||||
border-left: 2px solid #e6e6e6;
|
||||
color: #606060;
|
||||
}
|
||||
code {
|
||||
font-family: Menlo, Monaco, 'Lucida Console', Consolas, monospace;
|
||||
font-size: 85%;
|
||||
margin: 0;
|
||||
}
|
||||
pre {
|
||||
margin: 1em 0;
|
||||
overflow: auto;
|
||||
}
|
||||
pre code {
|
||||
padding: 0;
|
||||
overflow: visible;
|
||||
overflow-wrap: normal;
|
||||
}
|
||||
.sourceCode {
|
||||
background-color: transparent;
|
||||
overflow: visible;
|
||||
}
|
||||
hr {
|
||||
background-color: #1a1a1a;
|
||||
border: none;
|
||||
height: 1px;
|
||||
margin: 1em 0;
|
||||
}
|
||||
table {
|
||||
margin: 1em 0;
|
||||
border-collapse: collapse;
|
||||
width: 100%;
|
||||
overflow-x: auto;
|
||||
display: block;
|
||||
font-variant-numeric: lining-nums tabular-nums;
|
||||
}
|
||||
table caption {
|
||||
margin-bottom: 0.75em;
|
||||
}
|
||||
tbody {
|
||||
margin-top: 0.5em;
|
||||
border-top: 1px solid #1a1a1a;
|
||||
border-bottom: 1px solid #1a1a1a;
|
||||
}
|
||||
th {
|
||||
border-top: 1px solid #1a1a1a;
|
||||
padding: 0.25em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
td {
|
||||
padding: 0.125em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
header {
|
||||
margin-bottom: 4em;
|
||||
text-align: center;
|
||||
}
|
||||
#TOC li {
|
||||
list-style: none;
|
||||
}
|
||||
#TOC ul {
|
||||
padding-left: 1.3em;
|
||||
}
|
||||
#TOC > ul {
|
||||
padding-left: 0;
|
||||
}
|
||||
#TOC a:not(:hover) {
|
||||
text-decoration: none;
|
||||
}
|
||||
code{white-space: pre-wrap;}
|
||||
span.smallcaps{font-variant: small-caps;}
|
||||
span.underline{text-decoration: underline;}
|
||||
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
||||
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
||||
ul.task-list{list-style: none;}
|
||||
pre > code.sourceCode { white-space: pre; position: relative; }
|
||||
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
|
||||
pre > code.sourceCode > span:empty { height: 1.2em; }
|
||||
.sourceCode { overflow: visible; }
|
||||
code.sourceCode > span { color: inherit; text-decoration: inherit; }
|
||||
div.sourceCode { margin: 1em 0; }
|
||||
pre.sourceCode { margin: 0; }
|
||||
@media screen {
|
||||
div.sourceCode { overflow: auto; }
|
||||
}
|
||||
@media print {
|
||||
pre > code.sourceCode { white-space: pre-wrap; }
|
||||
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
|
||||
}
|
||||
pre.numberSource code
|
||||
{ counter-reset: source-line 0; }
|
||||
pre.numberSource code > span
|
||||
{ position: relative; left: -4em; counter-increment: source-line; }
|
||||
pre.numberSource code > span > a:first-child::before
|
||||
{ content: counter(source-line);
|
||||
position: relative; left: -1em; text-align: right; vertical-align: baseline;
|
||||
border: none; display: inline-block;
|
||||
-webkit-touch-callout: none; -webkit-user-select: none;
|
||||
-khtml-user-select: none; -moz-user-select: none;
|
||||
-ms-user-select: none; user-select: none;
|
||||
padding: 0 4px; width: 4em;
|
||||
color: #aaaaaa;
|
||||
}
|
||||
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
|
||||
div.sourceCode
|
||||
{ }
|
||||
@media screen {
|
||||
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
|
||||
}
|
||||
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
|
||||
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
|
||||
code span.at { color: #7d9029; } /* Attribute */
|
||||
code span.bn { color: #40a070; } /* BaseN */
|
||||
code span.bu { } /* BuiltIn */
|
||||
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
|
||||
code span.ch { color: #4070a0; } /* Char */
|
||||
code span.cn { color: #880000; } /* Constant */
|
||||
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
|
||||
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
|
||||
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
|
||||
code span.dt { color: #902000; } /* DataType */
|
||||
code span.dv { color: #40a070; } /* DecVal */
|
||||
code span.er { color: #ff0000; font-weight: bold; } /* Error */
|
||||
code span.ex { } /* Extension */
|
||||
code span.fl { color: #40a070; } /* Float */
|
||||
code span.fu { color: #06287e; } /* Function */
|
||||
code span.im { } /* Import */
|
||||
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
|
||||
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
|
||||
code span.op { color: #666666; } /* Operator */
|
||||
code span.ot { color: #007020; } /* Other */
|
||||
code span.pp { color: #bc7a00; } /* Preprocessor */
|
||||
code span.sc { color: #4070a0; } /* SpecialChar */
|
||||
code span.ss { color: #bb6688; } /* SpecialString */
|
||||
code span.st { color: #4070a0; } /* String */
|
||||
code span.va { color: #19177c; } /* Variable */
|
||||
code span.vs { color: #4070a0; } /* VerbatimString */
|
||||
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
|
||||
</style> -->
|
||||
|
||||
<!-- -->
|
||||
|
||||
<!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
|
||||
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3.0.1/es5/tex-mml-chtml.js"></script>
|
||||
-->
|
||||
|
||||
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
|
||||
<script src="/assets/js/thesis_scrollspy.js"></script>
|
||||
|
||||
|
||||
<!--[if lt IE 9]>
|
||||
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
|
||||
<![endif]-->
|
||||
<link rel="stylesheet" href="/assets/css/styles.css">
|
||||
<script src="/assets/js/index.js"></script>
|
||||
</head>
|
||||
@ -244,55 +25,529 @@ image:
|
||||
<!--Capture the table of contents from pandoc as a jekyll variable -->
|
||||
{% capture tableOfContents %}
|
||||
<br>
|
||||
Contents:
|
||||
<nav aria-label="Table of Contents" class="page-table-of-contents">
|
||||
<ul>
|
||||
<li><a href="#the-falikov-kimball-model"
|
||||
id="toc-the-falikov-kimball-model">The Falikov Kimball Model</a>
|
||||
<ul>
|
||||
<li><a href="#the-model" id="toc-the-model">The Model</a>
|
||||
<ul>
|
||||
<li><a href="#particle-hole-symmetry"
|
||||
id="toc-particle-hole-symmetry">Particle Hole Symmetry</a></li>
|
||||
</ul></li>
|
||||
<li><a href="#phase-diagram" id="toc-phase-diagram">Phase
|
||||
Diagram</a></li>
|
||||
<li><a href="#long-range-ising-models"
|
||||
id="toc-long-range-ising-models">Long Range Ising Models</a></li>
|
||||
<li><a href="#the-model" id="toc-the-model">The Model</a></li>
|
||||
<li><a href="#phase-diagrams" id="toc-phase-diagrams">Phase
|
||||
Diagrams</a></li>
|
||||
<li><a href="#long-ranged-ising-model"
|
||||
id="toc-long-ranged-ising-model">Long Ranged Ising model</a></li>
|
||||
</ul></li>
|
||||
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
{% endcapture %}
|
||||
|
||||
<!-- Give the table of contents to header as a variable -->
|
||||
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
|
||||
{% include header.html extra=tableOfContents %}
|
||||
|
||||
<main>
|
||||
|
||||
<!-- Table of Contents -->
|
||||
<!-- <nav id="TOC" role="doc-toc">
|
||||
<ul>
|
||||
<li><a href="#the-falikov-kimball-model"
|
||||
id="toc-the-falikov-kimball-model">The Falikov Kimball Model</a>
|
||||
<ul>
|
||||
<li><a href="#the-model" id="toc-the-model">The Model</a>
|
||||
<ul>
|
||||
<li><a href="#particle-hole-symmetry"
|
||||
id="toc-particle-hole-symmetry">Particle Hole Symmetry</a></li>
|
||||
</ul></li>
|
||||
<li><a href="#phase-diagram" id="toc-phase-diagram">Phase
|
||||
Diagram</a></li>
|
||||
<li><a href="#long-range-ising-models"
|
||||
id="toc-long-range-ising-models">Long Range Ising Models</a></li>
|
||||
<li><a href="#the-model" id="toc-the-model">The Model</a></li>
|
||||
<li><a href="#phase-diagrams" id="toc-phase-diagrams">Phase
|
||||
Diagrams</a></li>
|
||||
<li><a href="#long-ranged-ising-model"
|
||||
id="toc-long-ranged-ising-model">Long Ranged Ising model</a></li>
|
||||
</ul></li>
|
||||
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
-->
|
||||
<h1 id="the-falikov-kimball-model">The Falikov Kimball Model</h1>
|
||||
<h2 id="the-model">The Model</h2>
|
||||
<p>discuss CDW phase of 2d model as motivation for studying 1d phase
|
||||
with long range forces</p>
|
||||
<h3 id="particle-hole-symmetry">Particle Hole Symmetry</h3>
|
||||
<h2 id="phase-diagram">Phase Diagram</h2>
|
||||
<h2 id="long-range-ising-models">Long Range Ising Models</h2>
|
||||
|
||||
<!-- Main Page Body -->
|
||||
<section id="the-falikov-kimball-model" class="level1">
|
||||
<h1>The Falikov Kimball Model</h1>
|
||||
<section id="the-model" class="level2">
|
||||
<h2>The Model</h2>
|
||||
<p>The Falikov-Kimball (FK) model is one of the simplest models of the
|
||||
correlated electron problem. It captures the essence of the interaction
|
||||
between itinerant and localized electrons. It was originally introduced
|
||||
to explain the metal-insulator transition in f-electron systems but in
|
||||
its long history it has been interpreted variously as a model of
|
||||
electrons and ions, binary alloys or of crystal formation <span
|
||||
class="citation"
|
||||
data-cites="hubbardj.ElectronCorrelationsNarrow1963 falicovSimpleModelSemiconductorMetal1969 gruberFalicovKimballModelReview1996 gruberFalicovKimballModel2006"> [<a
|
||||
href="#ref-hubbardj.ElectronCorrelationsNarrow1963"
|
||||
role="doc-biblioref">1</a>–<a href="#ref-gruberFalicovKimballModel2006"
|
||||
role="doc-biblioref">4</a>]</span>. In terms of immobile fermions <span
|
||||
class="math inline">\(d_i\)</span> and light fermions <span
|
||||
class="math inline">\(c_i\)</span> and with chemical potential fixed at
|
||||
half-filling, the model reads</p>
|
||||
<p><span class="math display">\[\begin{aligned}
|
||||
H_{\mathrm{FK}} = & \;U \sum_{i} (d^\dagger_{i}d_{i} -
|
||||
\tfrac{1}{2})\;(c^\dagger_{i}c_{i} - \tfrac{1}{2}) -\;t \sum_{\langle
|
||||
i,j\rangle} c^\dagger_{i}c_{j}.\\
|
||||
\end{aligned}\]</span></p>
|
||||
<p>The connection to the Hubbard model is that we have relabel the up
|
||||
and down spin electron states and removed the hopping term for one
|
||||
species, the equivalent of taking the limit of infinite mass ratio <span
|
||||
class="citation" data-cites="devriesSimplifiedHubbardModel1993"> [<a
|
||||
href="#ref-devriesSimplifiedHubbardModel1993"
|
||||
role="doc-biblioref">5</a>]</span>.</p>
|
||||
<p>Like other exactly solvable models <span class="citation"
|
||||
data-cites="smithDisorderFreeLocalization2017"> [<a
|
||||
href="#ref-smithDisorderFreeLocalization2017"
|
||||
role="doc-biblioref">6</a>]</span> and the Kitaev Model, the FK model
|
||||
possesses extensively many conserved degrees of freedom <span
|
||||
class="math inline">\([d^\dagger_{i}d_{i}, H] = 0\)</span>. The Hilbert
|
||||
space therefore breaks up into a set of sectors in which these operators
|
||||
take a definite value. Crucially, this reduces the interaction term
|
||||
<span class="math inline">\((d^\dagger_{i}d_{i} -
|
||||
\tfrac{1}{2})\;(c^\dagger_{i}c_{i} - \tfrac{1}{2})\)</span> from being
|
||||
quartic in fermion operators to quadratic. This is what makes the FK
|
||||
model exactly solvable, in contrast to the Hubbard model.</p>
|
||||
<p>Due to Pauli exclusion, maximum filling occurs when each lattice site
|
||||
is fully occupied, <span class="math inline">\(\langle n_c + n_d \rangle
|
||||
= 2\)</span>. Here we will focus on the half filled case <span
|
||||
class="math inline">\(\langle n_c + n_d \rangle = 1\)</span>. Doping the
|
||||
model away from the half-filled point leads to rich physics including
|
||||
superconductivity <span class="citation"
|
||||
data-cites="jedrzejewskiFalicovKimballModels2001"> [<a
|
||||
href="#ref-jedrzejewskiFalicovKimballModels2001"
|
||||
role="doc-biblioref">7</a>]</span>.</p>
|
||||
<p>At half-filling and on bipartite lattices, FK the model is
|
||||
particle-hole symmetric. That is, the Hamiltonian anticommutes with the
|
||||
particle hole operator <span
|
||||
class="math inline">\(\mathcal{P}H\mathcal{P}^{-1} = -H\)</span>. As a
|
||||
consequence the energy spectrum is symmetric about <span
|
||||
class="math inline">\(E = 0\)</span> and this is the Fermi energy. The
|
||||
particle hole operator corresponds to the substitution <span
|
||||
class="math inline">\(c^\dagger_i \rightarrow \epsilon_i c_i,
|
||||
d^\dagger_i \rightarrow d_i\)</span> where <span
|
||||
class="math inline">\(\epsilon_i = +1\)</span> for the A sublattice and
|
||||
<span class="math inline">\(-1\)</span> for the even sublattice <span
|
||||
class="citation" data-cites="gruberFalicovKimballModel2005"> [<a
|
||||
href="#ref-gruberFalicovKimballModel2005"
|
||||
role="doc-biblioref">8</a>]</span>. The absence of a hopping term for
|
||||
the heavy electrons means they do not need the factor of <span
|
||||
class="math inline">\(\epsilon_i\)</span>.</p>
|
||||
<div id="fig:simple_DOS" class="fignos">
|
||||
<figure>
|
||||
<img src="/assets/thesis/background_chapter/simple_DOS.svg"
|
||||
data-short-caption="Cubic Lattice dispersion with disorder"
|
||||
style="width:100.0%"
|
||||
alt="Figure 1: The dispersion (upper row) and density of states (lower row) obtained from a cubic lattice model H = \sum_{i} V_i c^\dagger_{i}c_{i} - t \sum_{\langle i,j\rangle} c^\dagger_{i}c_{j} in one dimension. (a) With not external potential. (b) With a static charge density wave background V_i = (-1)^i (c) A static charge density wave background with 2% binary disorder." />
|
||||
<figcaption aria-hidden="true"><span>Figure 1:</span> The dispersion
|
||||
(upper row) and density of states (lower row) obtained from a cubic
|
||||
lattice model <span class="math inline">\(H = \sum_{i} V_i
|
||||
c^\dagger_{i}c_{i} - t \sum_{\langle i,j\rangle}
|
||||
c^\dagger_{i}c_{j}\)</span> in one dimension. (a) With not external
|
||||
potential. (b) With a static charge density wave background <span
|
||||
class="math inline">\(V_i = (-1)^i\)</span> (c) A static charge density
|
||||
wave background with 2% binary disorder.</figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
<p>We will later add a long range interaction between the localised
|
||||
electrons so we will replace the immobile fermions with a classical
|
||||
Ising field <span class="math inline">\(S_i = 1 - 2d^\dagger_id_i =
|
||||
\pm\tfrac{1}{2}\)</span>.</p>
|
||||
<p><span class="math display">\[\begin{aligned}
|
||||
H_{\mathrm{FK}} = & \;U \sum_{i} S_i\;(c^\dagger_{i}c_{i} -
|
||||
\tfrac{1}{2}) -\;t \sum_{\langle i,j\rangle} c^\dagger_{i}c_{j}.\\
|
||||
\end{aligned}\]</span></p>
|
||||
<p>The FK model can be solved exaclty with dynamic mean field theory in
|
||||
the infinite dimensional <span class="citation"
|
||||
data-cites="antipovCriticalExponentsStrongly2014 ribicNonlocalCorrelationsSpectral2016 freericksExactDynamicalMeanfield2003 herrmannNonequilibriumDynamicalCluster2016"> [<a
|
||||
href="#ref-antipovCriticalExponentsStrongly2014"
|
||||
role="doc-biblioref">9</a>–<a
|
||||
href="#ref-herrmannNonequilibriumDynamicalCluster2016"
|
||||
role="doc-biblioref">12</a>]</span>.</p>
|
||||
<ul>
|
||||
<li>displays disorder free localisation</li>
|
||||
</ul>
|
||||
</section>
|
||||
<section id="phase-diagrams" class="level2">
|
||||
<h2>Phase Diagrams</h2>
|
||||
<div id="fig:fk_phase_diagram" class="fignos">
|
||||
<figure>
|
||||
<img src="/assets/thesis/background_chapter/fk_phase_diagram.svg"
|
||||
data-short-caption="Fermi-Hubbard and Falikov-Kimball Temperatue-Interaction Phase Diagrams"
|
||||
style="width:100.0%"
|
||||
alt="Figure 2: Schematic Phase diagrams of the Fermi-Hubbard (left) and Falikov-Kimball model (right) showing temperature (T) and repulsive interaction strength (U). Hubbard model diagram adapted from [13], Falikov-Kimball model from [14,15]" />
|
||||
<figcaption aria-hidden="true"><span>Figure 2:</span> Schematic Phase
|
||||
diagrams of the Fermi-Hubbard (left) and Falikov-Kimball model (right)
|
||||
showing temperature (T) and repulsive interaction strength (U). Hubbard
|
||||
model diagram adapted from <span class="citation"
|
||||
data-cites="micnasSuperconductivityNarrowbandSystems1990"> [<a
|
||||
href="#ref-micnasSuperconductivityNarrowbandSystems1990"
|
||||
role="doc-biblioref">13</a>]</span>, Falikov-Kimball model from <span
|
||||
class="citation"
|
||||
data-cites="antipovInteractionTunedAndersonMott2016 antipovCriticalExponentsStrongly2014a"> [<a
|
||||
href="#ref-antipovInteractionTunedAndersonMott2016"
|
||||
role="doc-biblioref">14</a>,<a
|
||||
href="#ref-antipovCriticalExponentsStrongly2014a"
|
||||
role="doc-biblioref">15</a>]</span></figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
<ul>
|
||||
<li>rich phase diagram in 2d Despite its simplicity, the FK model has a
|
||||
rich phase diagram in <span class="math inline">\(D \geq 2\)</span>
|
||||
dimensions. For example, it shows an interaction-induced gap opening
|
||||
even at high temperatures, similar to the corresponding Hubbard
|
||||
Model <span class="citation"
|
||||
data-cites="brandtThermodynamicsCorrelationFunctions1989"> [<a
|
||||
href="#ref-brandtThermodynamicsCorrelationFunctions1989"
|
||||
role="doc-biblioref">16</a>]</span>.</li>
|
||||
</ul>
|
||||
<p>At half filling and in dimensions greater than one, the FK model
|
||||
exhibits a phase transition at some <span
|
||||
class="math inline">\(U\)</span> dependent critical temperature <span
|
||||
class="math inline">\(T_c(U)\)</span> to a low temperature charge
|
||||
density wave state in which the spins order antiferromagnetically. This
|
||||
corresponds to the heavy electrons occupying one of the two sublattices
|
||||
A and B <span class="citation"
|
||||
data-cites="maskaThermodynamicsTwodimensionalFalicovKimball2006"> [<a
|
||||
href="#ref-maskaThermodynamicsTwodimensionalFalicovKimball2006"
|
||||
role="doc-biblioref">17</a>]</span>. In the disordered region above
|
||||
<span class="math inline">\(T_c(U)\)</span> there is a transition
|
||||
between an Anderson insulator phase at weak interaction and a Mott
|
||||
insulator phase in the strongly interacting regime <span
|
||||
class="citation" data-cites="andersonAbsenceDiffusionCertain1958"> [<a
|
||||
href="#ref-andersonAbsenceDiffusionCertain1958"
|
||||
role="doc-biblioref">18</a>]</span>.</p>
|
||||
<ul>
|
||||
<li>superconductivity when doped</li>
|
||||
</ul>
|
||||
<p>In 1D, the ground state phenomenology as the model is doped away from
|
||||
the half-filled state can be rich <span class="citation"
|
||||
data-cites="gruberGroundStatesSpinless1990"> [<a
|
||||
href="#ref-gruberGroundStatesSpinless1990"
|
||||
role="doc-biblioref">19</a>]</span> but the system is disordered for all
|
||||
<span class="math inline">\(T > 0\)</span> <span class="citation"
|
||||
data-cites="kennedyItinerantElectronModel1986"> [<a
|
||||
href="#ref-kennedyItinerantElectronModel1986"
|
||||
role="doc-biblioref">20</a>]</span>.</p>
|
||||
<p>In the one dimensional FK model there is no ordered CDW phase <span
|
||||
class="citation" data-cites="liebAbsenceMottTransition1968"> [<a
|
||||
href="#ref-liebAbsenceMottTransition1968"
|
||||
role="doc-biblioref">21</a>]</span>. The supression of phase transition
|
||||
is a common phenomena in one dimensional systems. It can be understood
|
||||
via Peierls’ argument <span class="citation"
|
||||
data-cites="peierlsIsingModelFerromagnetism1936 kennedyItinerantElectronModel1986"> [<a
|
||||
href="#ref-kennedyItinerantElectronModel1986"
|
||||
role="doc-biblioref">20</a>,<a
|
||||
href="#ref-peierlsIsingModelFerromagnetism1936"
|
||||
role="doc-biblioref">22</a>]</span> to be a consequence of the low
|
||||
energy penalty for domain walls in one dimensional systems.</p>
|
||||
<p>Following Peierls’ argument, consider the difference in free energy
|
||||
<span class="math inline">\(\Delta F = \Delta E - T\Delta S\)</span>
|
||||
between an ordered state and a state with single domain wall in a
|
||||
discrete order parameter. Short range interactions produce a constant
|
||||
energy penalty for such a domain wall that does not scale with system
|
||||
size. In contrast, the number of such single domain wall states scales
|
||||
linearly so the entropy is <span class="math inline">\(\propto \ln
|
||||
L\)</span>. Thus the entropic contribution dominates (eventually) in the
|
||||
thermodynamic limit and no finite temperature order is possible. In two
|
||||
dimensions and above, the energy penalty of a domain wall scales like
|
||||
<span class="math inline">\(L^{d-1}\)</span> so they can support ordered
|
||||
phases.</p>
|
||||
</section>
|
||||
<section id="long-ranged-ising-model" class="level2">
|
||||
<h2>Long Ranged Ising model</h2>
|
||||
<p>Our extension to the FK model could now be though of as spinless
|
||||
fermions coupled to a long range Ising (LRI) model. The LRI model has
|
||||
been extensively studied and its behaviour may be bear relation to the
|
||||
behaviour of our modified FK model.</p>
|
||||
<p><span class="math display">\[H_{\mathrm{LRI}} = \sum_{ij} J(|i-j|)
|
||||
\tau_i \tau_j = J \sum_{i\neq j} |i - j|^{-\alpha} \tau_i
|
||||
\tau_j\]</span></p>
|
||||
<p>Renormalisation group analyses show that the LRI model has an ordered
|
||||
phase in 1D for $1 < < 2 $ <span class="citation"
|
||||
data-cites="dysonExistencePhasetransitionOnedimensional1969"> [<a
|
||||
href="#ref-dysonExistencePhasetransitionOnedimensional1969"
|
||||
role="doc-biblioref">23</a>]</span>. Peierls’ argument can be
|
||||
extended <span class="citation"
|
||||
data-cites="thoulessLongRangeOrderOneDimensional1969"> [<a
|
||||
href="#ref-thoulessLongRangeOrderOneDimensional1969"
|
||||
role="doc-biblioref">24</a>]</span> to long range interactions to
|
||||
provide intuition for why this is the case. Again considering the energy
|
||||
difference between the ordered state <span
|
||||
class="math inline">\(\ket{\ldots\uparrow\uparrow\uparrow\uparrow\ldots}\)</span>
|
||||
and a domain wall state <span
|
||||
class="math inline">\(\ket{\ldots\uparrow\uparrow\downarrow\downarrow\ldots}\)</span>.
|
||||
In the case of the LRI model, careful counting shows that this energy
|
||||
penalty is: <span class="math display">\[\Delta E \propto
|
||||
\sum_{n=1}^{\infty} n J(n)\]</span></p>
|
||||
<p>because each interaction between spins separated across the domain by
|
||||
a bond length <span class="math inline">\(n\)</span> can be drawn
|
||||
between <span class="math inline">\(n\)</span> equivalent pairs of
|
||||
sites. Ruelle proved rigorously for a very general class of 1D systems,
|
||||
that if <span class="math inline">\(\Delta E\)</span> or its many-body
|
||||
generalisation converges in the thermodynamic limit then the free energy
|
||||
is analytic <span class="citation"
|
||||
data-cites="ruelleStatisticalMechanicsOnedimensional1968"> [<a
|
||||
href="#ref-ruelleStatisticalMechanicsOnedimensional1968"
|
||||
role="doc-biblioref">25</a>]</span>. This rules out a finite order phase
|
||||
transition, though not one of the Kosterlitz-Thouless type. Dyson also
|
||||
proves this though with a slightly different condition on <span
|
||||
class="math inline">\(J(n)\)</span> <span class="citation"
|
||||
data-cites="dysonExistencePhasetransitionOnedimensional1969"> [<a
|
||||
href="#ref-dysonExistencePhasetransitionOnedimensional1969"
|
||||
role="doc-biblioref">23</a>]</span>.</p>
|
||||
<p>With a power law form for <span class="math inline">\(J(n)\)</span>,
|
||||
there are three cases to consider:</p>
|
||||
<ol type="1">
|
||||
<li>$ = 0$ For infinite range interactions the Ising model is exactly
|
||||
solveable and mean field theory is exact <span class="citation"
|
||||
data-cites="lipkinValidityManybodyApproximation1965"> [<a
|
||||
href="#ref-lipkinValidityManybodyApproximation1965"
|
||||
role="doc-biblioref">26</a>]</span>.</li>
|
||||
<li>$ $ For slowly decaying interactions <span
|
||||
class="math inline">\(\sum_n J(n)\)</span> does not converge so the
|
||||
Hamiltonian is non-extensive, a case which won’t be further considered
|
||||
here.</li>
|
||||
<li>$ 1 < < 2 $ A phase transition to an ordered state at a finite
|
||||
temperature.</li>
|
||||
<li>$ = 2 $ The energy of domain walls diverges logarithmically, and
|
||||
this turns out to be a Kostelitz-Thouless transition <span
|
||||
class="citation"
|
||||
data-cites="thoulessLongRangeOrderOneDimensional1969"> [<a
|
||||
href="#ref-thoulessLongRangeOrderOneDimensional1969"
|
||||
role="doc-biblioref">24</a>]</span>.</li>
|
||||
<li>$ 2 < $ For quickly decaying interactions, domain walls have a
|
||||
finite energy penalty, hence Peirels’ argument holds and there is no
|
||||
phase transition.</li>
|
||||
</ol>
|
||||
<div id="fig:alpha_diagram" class="fignos">
|
||||
<figure>
|
||||
<img src="/assets/thesis/background_chapter/alpha_diagram.svg"
|
||||
data-short-caption="Long Range Ising Model Behaviour"
|
||||
style="width:100.0%" alt="Figure 3: " />
|
||||
<figcaption aria-hidden="true"><span>Figure 3:</span> </figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
<div class="sourceCode" id="cb1"><pre
|
||||
class="sourceCode python"><code class="sourceCode python"></code></pre></div>
|
||||
</section>
|
||||
</section>
|
||||
<section id="bibliography" class="level1 unnumbered">
|
||||
<h1 class="unnumbered">Bibliography</h1>
|
||||
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
|
||||
<div id="ref-hubbardj.ElectronCorrelationsNarrow1963" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[1] </div><div
|
||||
class="csl-right-inline">Hubbard, J., <em><a
|
||||
href="https://doi.org/10.1098/rspa.1963.0204">Electron Correlations in
|
||||
Narrow Energy Bands</a></em>, Proceedings of the Royal Society of
|
||||
London. Series A. Mathematical and Physical Sciences
|
||||
<strong>276</strong>, 238 (1963).</div>
|
||||
</div>
|
||||
<div id="ref-falicovSimpleModelSemiconductorMetal1969" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[2] </div><div class="csl-right-inline">L.
|
||||
M. Falicov and J. C. Kimball, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.22.997">Simple Model for
|
||||
Semiconductor-Metal Transitions: Sm${\mathrm{B}}_{6}$ and
|
||||
Transition-Metal Oxides</a></em>, Phys. Rev. Lett. <strong>22</strong>,
|
||||
997 (1969).</div>
|
||||
</div>
|
||||
<div id="ref-gruberFalicovKimballModelReview1996" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[3] </div><div class="csl-right-inline">C.
|
||||
Gruber and N. Macris, <em>The Falicov-Kimball Model: A Review of Exact
|
||||
Results and Extensions</em>, Helvetica Physica Acta <strong>69</strong>,
|
||||
(1996).</div>
|
||||
</div>
|
||||
<div id="ref-gruberFalicovKimballModel2006" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[4] </div><div class="csl-right-inline">C.
|
||||
Gruber and D. Ueltschi, <em>The Falicov-Kimball model</em>, in
|
||||
<em>Encyclopedia of mathematical physics. 1, 1,</em> (Elsevier,
|
||||
Amsterdam, 2006).</div>
|
||||
</div>
|
||||
<div id="ref-devriesSimplifiedHubbardModel1993" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[5] </div><div class="csl-right-inline">P.
|
||||
de Vries, K. Michielsen, and H. De Raedt, <em><a
|
||||
href="https://doi.org/10.1007/BF01308754">The Simplified Hubbard Model
|
||||
in One and Two Dimensions</a></em>, Z. Physik B - Condensed Matter
|
||||
<strong>92</strong>, 353 (1993).</div>
|
||||
</div>
|
||||
<div id="ref-smithDisorderFreeLocalization2017" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[6] </div><div class="csl-right-inline">A.
|
||||
Smith, J. Knolle, D. L. Kovrizhin, and R. Moessner, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.118.266601">Disorder-Free
|
||||
Localization</a></em>, Phys. Rev. Lett. <strong>118</strong>, 266601
|
||||
(2017).</div>
|
||||
</div>
|
||||
<div id="ref-jedrzejewskiFalicovKimballModels2001" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[7] </div><div class="csl-right-inline">J.
|
||||
Jedrzejewski and R. Lemanski, <em><a
|
||||
href="http://adsabs.harvard.edu/abs/2001AcPPB..32.3243J">Falicov--Kimball
|
||||
Models of Collective Phenomena in Solids (A Concise Guide)</a></em>,
|
||||
Acta Physica Polonica B <strong>32</strong>, 3243 (2001).</div>
|
||||
</div>
|
||||
<div id="ref-gruberFalicovKimballModel2005" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[8] </div><div class="csl-right-inline">C.
|
||||
Gruber and D. Ueltschi, <em><a
|
||||
href="http://arxiv.org/abs/math-ph/0502041">The Falicov-Kimball
|
||||
Model</a></em>, arXiv:math-Ph/0502041 (2005).</div>
|
||||
</div>
|
||||
<div id="ref-antipovCriticalExponentsStrongly2014" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[9] </div><div class="csl-right-inline">A.
|
||||
E. Antipov, E. Gull, and S. Kirchner, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.112.226401">Critical Exponents
|
||||
of Strongly Correlated Fermion Systems from Diagrammatic Multiscale
|
||||
Methods</a></em>, Phys. Rev. Lett. <strong>112</strong>, 226401
|
||||
(2014).</div>
|
||||
</div>
|
||||
<div id="ref-ribicNonlocalCorrelationsSpectral2016" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[10] </div><div class="csl-right-inline">T.
|
||||
Ribic, G. Rohringer, and K. Held, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.93.195105">Nonlocal Correlations
|
||||
and Spectral Properties of the Falicov-Kimball Model</a></em>, Phys.
|
||||
Rev. B <strong>93</strong>, 195105 (2016).</div>
|
||||
</div>
|
||||
<div id="ref-freericksExactDynamicalMeanfield2003" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[11] </div><div class="csl-right-inline">J.
|
||||
K. Freericks and V. Zlatić, <em><a
|
||||
href="https://doi.org/10.1103/RevModPhys.75.1333">Exact Dynamical
|
||||
Mean-Field Theory of the Falicov-Kimball Model</a></em>, Rev. Mod. Phys.
|
||||
<strong>75</strong>, 1333 (2003).</div>
|
||||
</div>
|
||||
<div id="ref-herrmannNonequilibriumDynamicalCluster2016"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[12] </div><div class="csl-right-inline">A.
|
||||
J. Herrmann, N. Tsuji, M. Eckstein, and P. Werner, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.94.245114">Nonequilibrium
|
||||
Dynamical Cluster Approximation Study of the Falicov-Kimball
|
||||
Model</a></em>, Phys. Rev. B <strong>94</strong>, 245114 (2016).</div>
|
||||
</div>
|
||||
<div id="ref-micnasSuperconductivityNarrowbandSystems1990"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[13] </div><div class="csl-right-inline">R.
|
||||
Micnas, J. Ranninger, and S. Robaszkiewicz, <em><a
|
||||
href="https://doi.org/10.1103/RevModPhys.62.113">Superconductivity in
|
||||
Narrow-Band Systems with Local Nonretarded Attractive
|
||||
Interactions</a></em>, Rev. Mod. Phys. <strong>62</strong>, 113
|
||||
(1990).</div>
|
||||
</div>
|
||||
<div id="ref-antipovInteractionTunedAndersonMott2016" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[14] </div><div class="csl-right-inline">A.
|
||||
E. Antipov, Y. Javanmard, P. Ribeiro, and S. Kirchner, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.117.146601">Interaction-Tuned
|
||||
Anderson Versus Mott Localization</a></em>, Phys. Rev. Lett.
|
||||
<strong>117</strong>, 146601 (2016).</div>
|
||||
</div>
|
||||
<div id="ref-antipovCriticalExponentsStrongly2014a" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[15] </div><div class="csl-right-inline">A.
|
||||
E. Antipov, E. Gull, and S. Kirchner, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.112.226401">Critical Exponents
|
||||
of Strongly Correlated Fermion Systems from Diagrammatic Multiscale
|
||||
Methods</a></em>, Phys. Rev. Lett. <strong>112</strong>, 226401
|
||||
(2014).</div>
|
||||
</div>
|
||||
<div id="ref-brandtThermodynamicsCorrelationFunctions1989"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[16] </div><div class="csl-right-inline">U.
|
||||
Brandt and C. Mielsch, <em><a
|
||||
href="https://doi.org/10.1007/BF01321824">Thermodynamics and Correlation
|
||||
Functions of the Falicov-Kimball Model in Large Dimensions</a></em>, Z.
|
||||
Physik B - Condensed Matter <strong>75</strong>, 365 (1989).</div>
|
||||
</div>
|
||||
<div id="ref-maskaThermodynamicsTwodimensionalFalicovKimball2006"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[17] </div><div class="csl-right-inline">M.
|
||||
M. Maśka and K. Czajka, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.74.035109">Thermodynamics of the
|
||||
Two-Dimensional Falicov-Kimball Model: A Classical Monte Carlo
|
||||
Study</a></em>, Phys. Rev. B <strong>74</strong>, 035109 (2006).</div>
|
||||
</div>
|
||||
<div id="ref-andersonAbsenceDiffusionCertain1958" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[18] </div><div class="csl-right-inline">P.
|
||||
W. Anderson, <em><a
|
||||
href="https://doi.org/10.1103/PhysRev.109.1492">Absence of Diffusion in
|
||||
Certain Random Lattices</a></em>, Phys. Rev. <strong>109</strong>, 1492
|
||||
(1958).</div>
|
||||
</div>
|
||||
<div id="ref-gruberGroundStatesSpinless1990" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[19] </div><div class="csl-right-inline">C.
|
||||
Gruber, J. Iwanski, J. Jedrzejewski, and P. Lemberger, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.41.2198">Ground States of the
|
||||
Spinless Falicov-Kimball Model</a></em>, Phys. Rev. B
|
||||
<strong>41</strong>, 2198 (1990).</div>
|
||||
</div>
|
||||
<div id="ref-kennedyItinerantElectronModel1986" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[20] </div><div class="csl-right-inline">T.
|
||||
Kennedy and E. H. Lieb, <em><a
|
||||
href="https://doi.org/10.1016/0378-4371(86)90188-3">An Itinerant
|
||||
Electron Model with Crystalline or Magnetic Long Range Order</a></em>,
|
||||
Physica A: Statistical Mechanics and Its Applications
|
||||
<strong>138</strong>, 320 (1986).</div>
|
||||
</div>
|
||||
<div id="ref-liebAbsenceMottTransition1968" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[21] </div><div class="csl-right-inline">E.
|
||||
H. Lieb and F. Y. Wu, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.20.1445">Absence of Mott
|
||||
Transition in an Exact Solution of the Short-Range, One-Band Model in
|
||||
One Dimension</a></em>, Phys. Rev. Lett. <strong>20</strong>, 1445
|
||||
(1968).</div>
|
||||
</div>
|
||||
<div id="ref-peierlsIsingModelFerromagnetism1936" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[22] </div><div class="csl-right-inline">R.
|
||||
Peierls, <em><a href="https://doi.org/10.1017/S0305004100019174">On
|
||||
Ising’s Model of Ferromagnetism</a></em>, Mathematical Proceedings of
|
||||
the Cambridge Philosophical Society <strong>32</strong>, 477
|
||||
(1936).</div>
|
||||
</div>
|
||||
<div id="ref-dysonExistencePhasetransitionOnedimensional1969"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[23] </div><div class="csl-right-inline">F.
|
||||
J. Dyson, <em><a href="https://doi.org/10.1007/BF01645907">Existence of
|
||||
a Phase-Transition in a One-Dimensional Ising Ferromagnet</a></em>,
|
||||
Commun.Math. Phys. <strong>12</strong>, 91 (1969).</div>
|
||||
</div>
|
||||
<div id="ref-thoulessLongRangeOrderOneDimensional1969" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[24] </div><div class="csl-right-inline">D.
|
||||
J. Thouless, <em><a
|
||||
href="https://doi.org/10.1103/PhysRev.187.732">Long-Range Order in
|
||||
One-Dimensional Ising Systems</a></em>, Phys. Rev. <strong>187</strong>,
|
||||
732 (1969).</div>
|
||||
</div>
|
||||
<div id="ref-ruelleStatisticalMechanicsOnedimensional1968"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[25] </div><div class="csl-right-inline">D.
|
||||
Ruelle, <em><a
|
||||
href="https://mathscinet.ams.org/mathscinet-getitem?mr=0234697">Statistical
|
||||
Mechanics of a One-Dimensional Lattice Gas</a></em>, Comm. Math. Phys.
|
||||
<strong>9</strong>, 267 (1968).</div>
|
||||
</div>
|
||||
<div id="ref-lipkinValidityManybodyApproximation1965" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[26] </div><div class="csl-right-inline">H.
|
||||
J. Lipkin, N. Meshkov, and A. J. Glick, <em><a
|
||||
href="https://doi.org/10.1016/0029-5582(65)90862-X">Validity of
|
||||
Many-Body Approximation Methods for a Solvable Model. (I). Exact
|
||||
Solutions and Perturbation Theory</a></em>, Nuclear Physics
|
||||
<strong>62</strong>, 188 (1965).</div>
|
||||
</div>
|
||||
</div>
|
||||
</section>
|
||||
|
||||
|
||||
</main>
|
||||
</body>
|
||||
</html>
|
||||
|
@ -12,252 +12,11 @@ image:
|
||||
<meta name="generator" content="pandoc" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
|
||||
<title>2.2_HKM_Model</title>
|
||||
<!-- <style>
|
||||
html {
|
||||
line-height: 1.5;
|
||||
font-family: Georgia, serif;
|
||||
font-size: 20px;
|
||||
color: #1a1a1a;
|
||||
background-color: #fdfdfd;
|
||||
}
|
||||
body {
|
||||
margin: 0 auto;
|
||||
max-width: 36em;
|
||||
padding-left: 50px;
|
||||
padding-right: 50px;
|
||||
padding-top: 50px;
|
||||
padding-bottom: 50px;
|
||||
hyphens: auto;
|
||||
overflow-wrap: break-word;
|
||||
text-rendering: optimizeLegibility;
|
||||
font-kerning: normal;
|
||||
}
|
||||
@media (max-width: 600px) {
|
||||
body {
|
||||
font-size: 0.9em;
|
||||
padding: 1em;
|
||||
}
|
||||
h1 {
|
||||
font-size: 1.8em;
|
||||
}
|
||||
}
|
||||
@media print {
|
||||
body {
|
||||
background-color: transparent;
|
||||
color: black;
|
||||
font-size: 12pt;
|
||||
}
|
||||
p, h2, h3 {
|
||||
orphans: 3;
|
||||
widows: 3;
|
||||
}
|
||||
h2, h3, h4 {
|
||||
page-break-after: avoid;
|
||||
}
|
||||
}
|
||||
p {
|
||||
margin: 1em 0;
|
||||
}
|
||||
a {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
a:visited {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
img {
|
||||
max-width: 100%;
|
||||
}
|
||||
h1, h2, h3, h4, h5, h6 {
|
||||
margin-top: 1.4em;
|
||||
}
|
||||
h5, h6 {
|
||||
font-size: 1em;
|
||||
font-style: italic;
|
||||
}
|
||||
h6 {
|
||||
font-weight: normal;
|
||||
}
|
||||
ol, ul {
|
||||
padding-left: 1.7em;
|
||||
margin-top: 1em;
|
||||
}
|
||||
li > ol, li > ul {
|
||||
margin-top: 0;
|
||||
}
|
||||
blockquote {
|
||||
margin: 1em 0 1em 1.7em;
|
||||
padding-left: 1em;
|
||||
border-left: 2px solid #e6e6e6;
|
||||
color: #606060;
|
||||
}
|
||||
code {
|
||||
font-family: Menlo, Monaco, 'Lucida Console', Consolas, monospace;
|
||||
font-size: 85%;
|
||||
margin: 0;
|
||||
}
|
||||
pre {
|
||||
margin: 1em 0;
|
||||
overflow: auto;
|
||||
}
|
||||
pre code {
|
||||
padding: 0;
|
||||
overflow: visible;
|
||||
overflow-wrap: normal;
|
||||
}
|
||||
.sourceCode {
|
||||
background-color: transparent;
|
||||
overflow: visible;
|
||||
}
|
||||
hr {
|
||||
background-color: #1a1a1a;
|
||||
border: none;
|
||||
height: 1px;
|
||||
margin: 1em 0;
|
||||
}
|
||||
table {
|
||||
margin: 1em 0;
|
||||
border-collapse: collapse;
|
||||
width: 100%;
|
||||
overflow-x: auto;
|
||||
display: block;
|
||||
font-variant-numeric: lining-nums tabular-nums;
|
||||
}
|
||||
table caption {
|
||||
margin-bottom: 0.75em;
|
||||
}
|
||||
tbody {
|
||||
margin-top: 0.5em;
|
||||
border-top: 1px solid #1a1a1a;
|
||||
border-bottom: 1px solid #1a1a1a;
|
||||
}
|
||||
th {
|
||||
border-top: 1px solid #1a1a1a;
|
||||
padding: 0.25em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
td {
|
||||
padding: 0.125em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
header {
|
||||
margin-bottom: 4em;
|
||||
text-align: center;
|
||||
}
|
||||
#TOC li {
|
||||
list-style: none;
|
||||
}
|
||||
#TOC ul {
|
||||
padding-left: 1.3em;
|
||||
}
|
||||
#TOC > ul {
|
||||
padding-left: 0;
|
||||
}
|
||||
#TOC a:not(:hover) {
|
||||
text-decoration: none;
|
||||
}
|
||||
code{white-space: pre-wrap;}
|
||||
span.smallcaps{font-variant: small-caps;}
|
||||
span.underline{text-decoration: underline;}
|
||||
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
||||
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
||||
ul.task-list{list-style: none;}
|
||||
pre > code.sourceCode { white-space: pre; position: relative; }
|
||||
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
|
||||
pre > code.sourceCode > span:empty { height: 1.2em; }
|
||||
.sourceCode { overflow: visible; }
|
||||
code.sourceCode > span { color: inherit; text-decoration: inherit; }
|
||||
div.sourceCode { margin: 1em 0; }
|
||||
pre.sourceCode { margin: 0; }
|
||||
@media screen {
|
||||
div.sourceCode { overflow: auto; }
|
||||
}
|
||||
@media print {
|
||||
pre > code.sourceCode { white-space: pre-wrap; }
|
||||
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
|
||||
}
|
||||
pre.numberSource code
|
||||
{ counter-reset: source-line 0; }
|
||||
pre.numberSource code > span
|
||||
{ position: relative; left: -4em; counter-increment: source-line; }
|
||||
pre.numberSource code > span > a:first-child::before
|
||||
{ content: counter(source-line);
|
||||
position: relative; left: -1em; text-align: right; vertical-align: baseline;
|
||||
border: none; display: inline-block;
|
||||
-webkit-touch-callout: none; -webkit-user-select: none;
|
||||
-khtml-user-select: none; -moz-user-select: none;
|
||||
-ms-user-select: none; user-select: none;
|
||||
padding: 0 4px; width: 4em;
|
||||
color: #aaaaaa;
|
||||
}
|
||||
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
|
||||
div.sourceCode
|
||||
{ }
|
||||
@media screen {
|
||||
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
|
||||
}
|
||||
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
|
||||
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
|
||||
code span.at { color: #7d9029; } /* Attribute */
|
||||
code span.bn { color: #40a070; } /* BaseN */
|
||||
code span.bu { } /* BuiltIn */
|
||||
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
|
||||
code span.ch { color: #4070a0; } /* Char */
|
||||
code span.cn { color: #880000; } /* Constant */
|
||||
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
|
||||
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
|
||||
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
|
||||
code span.dt { color: #902000; } /* DataType */
|
||||
code span.dv { color: #40a070; } /* DecVal */
|
||||
code span.er { color: #ff0000; font-weight: bold; } /* Error */
|
||||
code span.ex { } /* Extension */
|
||||
code span.fl { color: #40a070; } /* Float */
|
||||
code span.fu { color: #06287e; } /* Function */
|
||||
code span.im { } /* Import */
|
||||
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
|
||||
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
|
||||
code span.op { color: #666666; } /* Operator */
|
||||
code span.ot { color: #007020; } /* Other */
|
||||
code span.pp { color: #bc7a00; } /* Preprocessor */
|
||||
code span.sc { color: #4070a0; } /* SpecialChar */
|
||||
code span.ss { color: #bb6688; } /* SpecialString */
|
||||
code span.st { color: #4070a0; } /* String */
|
||||
code span.va { color: #19177c; } /* Variable */
|
||||
code span.vs { color: #4070a0; } /* VerbatimString */
|
||||
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
|
||||
div.csl-bib-body { }
|
||||
div.csl-entry {
|
||||
clear: both;
|
||||
}
|
||||
.hanging div.csl-entry {
|
||||
margin-left:2em;
|
||||
text-indent:-2em;
|
||||
}
|
||||
div.csl-left-margin {
|
||||
min-width:2em;
|
||||
float:left;
|
||||
}
|
||||
div.csl-right-inline {
|
||||
margin-left:2em;
|
||||
padding-left:1em;
|
||||
}
|
||||
div.csl-indent {
|
||||
margin-left: 2em;
|
||||
}
|
||||
</style> -->
|
||||
|
||||
<!-- <script
|
||||
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js"
|
||||
type="text/javascript"></script>
|
||||
-->
|
||||
|
||||
<!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
|
||||
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3.0.1/es5/tex-mml-chtml.js"></script>
|
||||
-->
|
||||
|
||||
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
|
||||
<script src="/assets/js/thesis_scrollspy.js"></script>
|
||||
|
||||
|
||||
<!--[if lt IE 9]>
|
||||
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
|
||||
<![endif]-->
|
||||
<link rel="stylesheet" href="/assets/css/styles.css">
|
||||
<script src="/assets/js/index.js"></script>
|
||||
</head>
|
||||
@ -266,7 +25,7 @@ image:
|
||||
<!--Capture the table of contents from pandoc as a jekyll variable -->
|
||||
{% capture tableOfContents %}
|
||||
<br>
|
||||
Contents:
|
||||
<nav aria-label="Table of Contents" class="page-table-of-contents">
|
||||
<ul>
|
||||
<li><a href="#the-kitaev-honeycomb-model"
|
||||
id="toc-the-kitaev-honeycomb-model">The Kitaev Honeycomb Model</a>
|
||||
@ -284,12 +43,15 @@ Diagram</a></li>
|
||||
</ul></li>
|
||||
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
{% endcapture %}
|
||||
|
||||
<!-- Give the table of contents to header as a variable -->
|
||||
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
|
||||
{% include header.html extra=tableOfContents %}
|
||||
|
||||
<main>
|
||||
|
||||
<!-- Table of Contents -->
|
||||
<!-- <nav id="TOC" role="doc-toc">
|
||||
<ul>
|
||||
<li><a href="#the-kitaev-honeycomb-model"
|
||||
@ -310,7 +72,10 @@ Diagram</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
-->
|
||||
<h1 id="the-kitaev-honeycomb-model">The Kitaev Honeycomb Model</h1>
|
||||
|
||||
<!-- Main Page Body -->
|
||||
<section id="the-kitaev-honeycomb-model" class="level1">
|
||||
<h1>The Kitaev Honeycomb Model</h1>
|
||||
<p><strong>papers</strong> Jos on dynamics
|
||||
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.115127</p>
|
||||
<p><strong>intro</strong> - strong spin orbit coupling leads to
|
||||
@ -323,7 +88,8 @@ with long range entanglement (not simple paramagnet)</p>
|
||||
<li>experimental probes include inelastic neutron scattering, Raman
|
||||
scattering</li>
|
||||
</ul>
|
||||
<h2 id="the-model">The Model</h2>
|
||||
<section id="the-model" class="level2">
|
||||
<h2>The Model</h2>
|
||||
<div id="fig:intro_figure_by_hand" class="fignos">
|
||||
<figure>
|
||||
<img
|
||||
@ -356,15 +122,24 @@ role="doc-biblioref">1</a>]</span></li>
|
||||
<li>has extensively many conserved fluxes</li>
|
||||
<li></li>
|
||||
</ul>
|
||||
<h2 id="a-mapping-to-majorana-fermions">A mapping to Majorana
|
||||
Fermions</h2>
|
||||
<h2 id="gauge-fields">Gauge Fields</h2>
|
||||
<h2 id="anyons-topology-and-the-chern-number">Anyons, Topology and the
|
||||
Chern number</h2>
|
||||
<h2 id="phase-diagram">Phase Diagram</h2>
|
||||
</section>
|
||||
<section id="a-mapping-to-majorana-fermions" class="level2">
|
||||
<h2>A mapping to Majorana Fermions</h2>
|
||||
</section>
|
||||
<section id="gauge-fields" class="level2">
|
||||
<h2>Gauge Fields</h2>
|
||||
</section>
|
||||
<section id="anyons-topology-and-the-chern-number" class="level2">
|
||||
<h2>Anyons, Topology and the Chern number</h2>
|
||||
</section>
|
||||
<section id="phase-diagram" class="level2">
|
||||
<h2>Phase Diagram</h2>
|
||||
<div class="sourceCode" id="cb1"><pre
|
||||
class="sourceCode python"><code class="sourceCode python"></code></pre></div>
|
||||
<h1 class="unnumbered" id="bibliography">Bibliography</h1>
|
||||
</section>
|
||||
</section>
|
||||
<section id="bibliography" class="level1 unnumbered">
|
||||
<h1 class="unnumbered">Bibliography</h1>
|
||||
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
|
||||
<div id="ref-kugelJahnTellerEffectMagnetism1982" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
@ -375,6 +150,9 @@ Effect and Magnetism: Transition Metal Compounds</a></em>, Sov. Phys.
|
||||
Usp. <strong>25</strong>, 231 (1982).</div>
|
||||
</div>
|
||||
</div>
|
||||
</section>
|
||||
|
||||
|
||||
</main>
|
||||
</body>
|
||||
</html>
|
||||
|
@ -12,230 +12,11 @@ image:
|
||||
<meta name="generator" content="pandoc" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
|
||||
<title>2.3_Disorder</title>
|
||||
<!-- <style>
|
||||
html {
|
||||
line-height: 1.5;
|
||||
font-family: Georgia, serif;
|
||||
font-size: 20px;
|
||||
color: #1a1a1a;
|
||||
background-color: #fdfdfd;
|
||||
}
|
||||
body {
|
||||
margin: 0 auto;
|
||||
max-width: 36em;
|
||||
padding-left: 50px;
|
||||
padding-right: 50px;
|
||||
padding-top: 50px;
|
||||
padding-bottom: 50px;
|
||||
hyphens: auto;
|
||||
overflow-wrap: break-word;
|
||||
text-rendering: optimizeLegibility;
|
||||
font-kerning: normal;
|
||||
}
|
||||
@media (max-width: 600px) {
|
||||
body {
|
||||
font-size: 0.9em;
|
||||
padding: 1em;
|
||||
}
|
||||
h1 {
|
||||
font-size: 1.8em;
|
||||
}
|
||||
}
|
||||
@media print {
|
||||
body {
|
||||
background-color: transparent;
|
||||
color: black;
|
||||
font-size: 12pt;
|
||||
}
|
||||
p, h2, h3 {
|
||||
orphans: 3;
|
||||
widows: 3;
|
||||
}
|
||||
h2, h3, h4 {
|
||||
page-break-after: avoid;
|
||||
}
|
||||
}
|
||||
p {
|
||||
margin: 1em 0;
|
||||
}
|
||||
a {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
a:visited {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
img {
|
||||
max-width: 100%;
|
||||
}
|
||||
h1, h2, h3, h4, h5, h6 {
|
||||
margin-top: 1.4em;
|
||||
}
|
||||
h5, h6 {
|
||||
font-size: 1em;
|
||||
font-style: italic;
|
||||
}
|
||||
h6 {
|
||||
font-weight: normal;
|
||||
}
|
||||
ol, ul {
|
||||
padding-left: 1.7em;
|
||||
margin-top: 1em;
|
||||
}
|
||||
li > ol, li > ul {
|
||||
margin-top: 0;
|
||||
}
|
||||
blockquote {
|
||||
margin: 1em 0 1em 1.7em;
|
||||
padding-left: 1em;
|
||||
border-left: 2px solid #e6e6e6;
|
||||
color: #606060;
|
||||
}
|
||||
code {
|
||||
font-family: Menlo, Monaco, 'Lucida Console', Consolas, monospace;
|
||||
font-size: 85%;
|
||||
margin: 0;
|
||||
}
|
||||
pre {
|
||||
margin: 1em 0;
|
||||
overflow: auto;
|
||||
}
|
||||
pre code {
|
||||
padding: 0;
|
||||
overflow: visible;
|
||||
overflow-wrap: normal;
|
||||
}
|
||||
.sourceCode {
|
||||
background-color: transparent;
|
||||
overflow: visible;
|
||||
}
|
||||
hr {
|
||||
background-color: #1a1a1a;
|
||||
border: none;
|
||||
height: 1px;
|
||||
margin: 1em 0;
|
||||
}
|
||||
table {
|
||||
margin: 1em 0;
|
||||
border-collapse: collapse;
|
||||
width: 100%;
|
||||
overflow-x: auto;
|
||||
display: block;
|
||||
font-variant-numeric: lining-nums tabular-nums;
|
||||
}
|
||||
table caption {
|
||||
margin-bottom: 0.75em;
|
||||
}
|
||||
tbody {
|
||||
margin-top: 0.5em;
|
||||
border-top: 1px solid #1a1a1a;
|
||||
border-bottom: 1px solid #1a1a1a;
|
||||
}
|
||||
th {
|
||||
border-top: 1px solid #1a1a1a;
|
||||
padding: 0.25em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
td {
|
||||
padding: 0.125em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
header {
|
||||
margin-bottom: 4em;
|
||||
text-align: center;
|
||||
}
|
||||
#TOC li {
|
||||
list-style: none;
|
||||
}
|
||||
#TOC ul {
|
||||
padding-left: 1.3em;
|
||||
}
|
||||
#TOC > ul {
|
||||
padding-left: 0;
|
||||
}
|
||||
#TOC a:not(:hover) {
|
||||
text-decoration: none;
|
||||
}
|
||||
code{white-space: pre-wrap;}
|
||||
span.smallcaps{font-variant: small-caps;}
|
||||
span.underline{text-decoration: underline;}
|
||||
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
||||
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
||||
ul.task-list{list-style: none;}
|
||||
pre > code.sourceCode { white-space: pre; position: relative; }
|
||||
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
|
||||
pre > code.sourceCode > span:empty { height: 1.2em; }
|
||||
.sourceCode { overflow: visible; }
|
||||
code.sourceCode > span { color: inherit; text-decoration: inherit; }
|
||||
div.sourceCode { margin: 1em 0; }
|
||||
pre.sourceCode { margin: 0; }
|
||||
@media screen {
|
||||
div.sourceCode { overflow: auto; }
|
||||
}
|
||||
@media print {
|
||||
pre > code.sourceCode { white-space: pre-wrap; }
|
||||
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
|
||||
}
|
||||
pre.numberSource code
|
||||
{ counter-reset: source-line 0; }
|
||||
pre.numberSource code > span
|
||||
{ position: relative; left: -4em; counter-increment: source-line; }
|
||||
pre.numberSource code > span > a:first-child::before
|
||||
{ content: counter(source-line);
|
||||
position: relative; left: -1em; text-align: right; vertical-align: baseline;
|
||||
border: none; display: inline-block;
|
||||
-webkit-touch-callout: none; -webkit-user-select: none;
|
||||
-khtml-user-select: none; -moz-user-select: none;
|
||||
-ms-user-select: none; user-select: none;
|
||||
padding: 0 4px; width: 4em;
|
||||
color: #aaaaaa;
|
||||
}
|
||||
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
|
||||
div.sourceCode
|
||||
{ }
|
||||
@media screen {
|
||||
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
|
||||
}
|
||||
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
|
||||
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
|
||||
code span.at { color: #7d9029; } /* Attribute */
|
||||
code span.bn { color: #40a070; } /* BaseN */
|
||||
code span.bu { } /* BuiltIn */
|
||||
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
|
||||
code span.ch { color: #4070a0; } /* Char */
|
||||
code span.cn { color: #880000; } /* Constant */
|
||||
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
|
||||
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
|
||||
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
|
||||
code span.dt { color: #902000; } /* DataType */
|
||||
code span.dv { color: #40a070; } /* DecVal */
|
||||
code span.er { color: #ff0000; font-weight: bold; } /* Error */
|
||||
code span.ex { } /* Extension */
|
||||
code span.fl { color: #40a070; } /* Float */
|
||||
code span.fu { color: #06287e; } /* Function */
|
||||
code span.im { } /* Import */
|
||||
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
|
||||
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
|
||||
code span.op { color: #666666; } /* Operator */
|
||||
code span.ot { color: #007020; } /* Other */
|
||||
code span.pp { color: #bc7a00; } /* Preprocessor */
|
||||
code span.sc { color: #4070a0; } /* SpecialChar */
|
||||
code span.ss { color: #bb6688; } /* SpecialString */
|
||||
code span.st { color: #4070a0; } /* String */
|
||||
code span.va { color: #19177c; } /* Variable */
|
||||
code span.vs { color: #4070a0; } /* VerbatimString */
|
||||
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
|
||||
</style> -->
|
||||
|
||||
<!-- -->
|
||||
|
||||
<!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
|
||||
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3.0.1/es5/tex-mml-chtml.js"></script>
|
||||
-->
|
||||
|
||||
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
|
||||
<script src="/assets/js/thesis_scrollspy.js"></script>
|
||||
|
||||
|
||||
<!--[if lt IE 9]>
|
||||
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
|
||||
<![endif]-->
|
||||
<link rel="stylesheet" href="/assets/css/styles.css">
|
||||
<script src="/assets/js/index.js"></script>
|
||||
</head>
|
||||
@ -244,10 +25,10 @@ image:
|
||||
<!--Capture the table of contents from pandoc as a jekyll variable -->
|
||||
{% capture tableOfContents %}
|
||||
<br>
|
||||
Contents:
|
||||
<nav aria-label="Table of Contents" class="page-table-of-contents">
|
||||
<ul>
|
||||
<li><a href="#disorder-localisation"
|
||||
id="toc-disorder-localisation">Disorder & Localisation</a>
|
||||
<li><a href="#disorder-and-localisation"
|
||||
id="toc-disorder-and-localisation">Disorder and Localisation</a>
|
||||
<ul>
|
||||
<li><a href="#localisation-anderson-many-body-and-disorder-free"
|
||||
id="toc-localisation-anderson-many-body-and-disorder-free">Localisation:
|
||||
@ -256,18 +37,23 @@ Anderson, Many Body and Disorder-Free</a></li>
|
||||
id="toc-disorder-and-spin-liquids">Disorder and Spin liquids</a></li>
|
||||
<li><a href="#amorphous-magnetism"
|
||||
id="toc-amorphous-magnetism">Amorphous Magnetism</a></li>
|
||||
<li><a href="#localisation" id="toc-localisation">Localisation</a></li>
|
||||
</ul></li>
|
||||
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
{% endcapture %}
|
||||
|
||||
<!-- Give the table of contents to header as a variable -->
|
||||
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
|
||||
{% include header.html extra=tableOfContents %}
|
||||
|
||||
<main>
|
||||
|
||||
<!-- Table of Contents -->
|
||||
<!-- <nav id="TOC" role="doc-toc">
|
||||
<ul>
|
||||
<li><a href="#disorder-localisation"
|
||||
id="toc-disorder-localisation">Disorder & Localisation</a>
|
||||
<li><a href="#disorder-and-localisation"
|
||||
id="toc-disorder-and-localisation">Disorder and Localisation</a>
|
||||
<ul>
|
||||
<li><a href="#localisation-anderson-many-body-and-disorder-free"
|
||||
id="toc-localisation-anderson-many-body-and-disorder-free">Localisation:
|
||||
@ -276,17 +62,210 @@ Anderson, Many Body and Disorder-Free</a></li>
|
||||
id="toc-disorder-and-spin-liquids">Disorder and Spin liquids</a></li>
|
||||
<li><a href="#amorphous-magnetism"
|
||||
id="toc-amorphous-magnetism">Amorphous Magnetism</a></li>
|
||||
<li><a href="#localisation" id="toc-localisation">Localisation</a></li>
|
||||
</ul></li>
|
||||
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
-->
|
||||
<h1 id="disorder-localisation">Disorder & Localisation</h1>
|
||||
<h2 id="localisation-anderson-many-body-and-disorder-free">Localisation:
|
||||
Anderson, Many Body and Disorder-Free</h2>
|
||||
<h2 id="disorder-and-spin-liquids">Disorder and Spin liquids</h2>
|
||||
<h2 id="amorphous-magnetism">Amorphous Magnetism</h2>
|
||||
|
||||
<!-- Main Page Body -->
|
||||
<section id="disorder-and-localisation" class="level1">
|
||||
<h1>Disorder and Localisation</h1>
|
||||
<section id="localisation-anderson-many-body-and-disorder-free"
|
||||
class="level2">
|
||||
<h2>Localisation: Anderson, Many Body and Disorder-Free</h2>
|
||||
</section>
|
||||
<section id="disorder-and-spin-liquids" class="level2">
|
||||
<h2>Disorder and Spin liquids</h2>
|
||||
</section>
|
||||
<section id="amorphous-magnetism" class="level2">
|
||||
<h2>Amorphous Magnetism</h2>
|
||||
<div class="sourceCode" id="cb1"><pre
|
||||
class="sourceCode python"><code class="sourceCode python"></code></pre></div>
|
||||
</section>
|
||||
<section id="localisation" class="level2">
|
||||
<h2>Localisation</h2>
|
||||
<p>The discovery of localisation in quantum systems surprising at the
|
||||
time given the seeming ubiquity of extended Bloch states. Later, when
|
||||
thermalisation in quantum systems gained interest, localisation
|
||||
phenomena again stood out as counterexamples to the eigenstate
|
||||
thermalisation hypothesis <span class="citation"
|
||||
data-cites="abaninRecentProgressManybody2017 srednickiChaosQuantumThermalization1994"> [<a
|
||||
href="#ref-abaninRecentProgressManybody2017"
|
||||
role="doc-biblioref">1</a>,<a
|
||||
href="#ref-srednickiChaosQuantumThermalization1994"
|
||||
role="doc-biblioref">2</a>]</span>, allowing quantum systems to avoid to
|
||||
retain memory of their initial conditions in the face of thermal
|
||||
noise.</p>
|
||||
<p>The simplest and first discovered kind is Anderson localisation,
|
||||
first studied in 1958 <span class="citation"
|
||||
data-cites="andersonAbsenceDiffusionCertain1958"> [<a
|
||||
href="#ref-andersonAbsenceDiffusionCertain1958"
|
||||
role="doc-biblioref">3</a>]</span> in the context of non-interacting
|
||||
fermions subject to a static or quenched disorder potential <span
|
||||
class="math inline">\(V_j\)</span> drawn uniformly from the interval
|
||||
<span class="math inline">\([-W,W]\)</span></p>
|
||||
<p><span class="math display">\[
|
||||
H = -t\sum_{\langle jk \rangle} c^\dagger_j c_k + \sum_j V_j c_j^\dagger
|
||||
c_j
|
||||
\]</span></p>
|
||||
<p>this model exhibits exponentially localised eigenfunctions <span
|
||||
class="math inline">\(\psi(x) = f(x) e^{-x/\lambda}\)</span> which
|
||||
cannot contribute to transport processes. Initially it was thought that
|
||||
in one dimensional disordered models, all states would be localised,
|
||||
however it was later shown that in the presence of correlated disorder,
|
||||
bands of extended states can exist <span class="citation"
|
||||
data-cites="izrailevLocalizationMobilityEdge1999 croyAndersonLocalization1D2011 izrailevAnomalousLocalizationLowDimensional2012"> [<a
|
||||
href="#ref-izrailevLocalizationMobilityEdge1999"
|
||||
role="doc-biblioref">4</a>–<a
|
||||
href="#ref-izrailevAnomalousLocalizationLowDimensional2012"
|
||||
role="doc-biblioref">6</a>]</span>.</p>
|
||||
<p>Later localisation was found in interacting many-body systems with
|
||||
quenched disorder:</p>
|
||||
<p><span class="math display">\[
|
||||
H = -t\sum_{\langle jk \rangle} c^\dagger_j c_k + \sum_j V_j c_j^\dagger
|
||||
c_j + U\sum_{jk} n_j n_k
|
||||
\]</span></p>
|
||||
<p>where the number operators <span class="math inline">\(n_j =
|
||||
c^\dagger_j c_j\)</span>. Here, in contrast to the Anderson model,
|
||||
localisation phenomena can be proven robust to weak perturbations of the
|
||||
Hamiltonian. This is called many-body localisation (MBL) <span
|
||||
class="citation" data-cites="imbrieManyBodyLocalizationQuantum2016"> [<a
|
||||
href="#ref-imbrieManyBodyLocalizationQuantum2016"
|
||||
role="doc-biblioref">7</a>]</span>.</p>
|
||||
<p>Both MBL and Anderson localisation depend crucially on the presence
|
||||
of quenched disorder. This has led to ongoing interest in the
|
||||
possibility of disorder-free localisation, in which the disorder
|
||||
necessary to generate localisation is generated entirely from the
|
||||
dynamics of the model. This contracts with typical models of disordered
|
||||
systems in which disorder is explicitly introduced into the Hamilton or
|
||||
the initial state.</p>
|
||||
<p>The concept of disorder-free localisation was first proposed in the
|
||||
context of Helium mixtures <span class="citation"
|
||||
data-cites="kagan1984localization"> [<a
|
||||
href="#ref-kagan1984localization" role="doc-biblioref">8</a>]</span> and
|
||||
then extended to heavy-light mixtures in which multiple species with
|
||||
large mass ratios interact. The idea is that the heavier particles act
|
||||
as an effective disorder potential for the lighter ones, inducing
|
||||
localisation. Two such models <span class="citation"
|
||||
data-cites="yaoQuasiManyBodyLocalizationTranslationInvariant2016 schiulazDynamicsManybodyLocalized2015"> [<a
|
||||
href="#ref-yaoQuasiManyBodyLocalizationTranslationInvariant2016"
|
||||
role="doc-biblioref">9</a>,<a
|
||||
href="#ref-schiulazDynamicsManybodyLocalized2015"
|
||||
role="doc-biblioref">10</a>]</span> instead find that the models
|
||||
thermalise exponentially slowly in system size, which Ref. <span
|
||||
class="citation"
|
||||
data-cites="yaoQuasiManyBodyLocalizationTranslationInvariant2016"> [<a
|
||||
href="#ref-yaoQuasiManyBodyLocalizationTranslationInvariant2016"
|
||||
role="doc-biblioref">9</a>]</span> dubs Quasi-MBL.</p>
|
||||
<p>True disorder-free localisation does occur in exactly solvable models
|
||||
with extensively many conserved quantities <span class="citation"
|
||||
data-cites="smithDisorderFreeLocalization2017"> [<a
|
||||
href="#ref-smithDisorderFreeLocalization2017"
|
||||
role="doc-biblioref">11</a>]</span>. As conserved quantities have no
|
||||
time dynamics this can be thought of as taking the separation of
|
||||
timescales to the infinite limit.</p>
|
||||
<p>-link to the FK model</p>
|
||||
<p>-link to the Kitaev Model</p>
|
||||
<p>-link to the physics of amorphous systems</p>
|
||||
</section>
|
||||
</section>
|
||||
<section id="bibliography" class="level1 unnumbered">
|
||||
<h1 class="unnumbered">Bibliography</h1>
|
||||
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
|
||||
<div id="ref-abaninRecentProgressManybody2017" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[1] </div><div class="csl-right-inline">D.
|
||||
A. Abanin and Z. Papić, <em><a
|
||||
href="https://doi.org/10.1002/andp.201700169">Recent Progress in
|
||||
Many-Body Localization</a></em>, ANNALEN DER PHYSIK
|
||||
<strong>529</strong>, 1700169 (2017).</div>
|
||||
</div>
|
||||
<div id="ref-srednickiChaosQuantumThermalization1994" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[2] </div><div class="csl-right-inline">M.
|
||||
Srednicki, <em><a href="https://doi.org/10.1103/PhysRevE.50.888">Chaos
|
||||
and Quantum Thermalization</a></em>, Phys. Rev. E <strong>50</strong>,
|
||||
888 (1994).</div>
|
||||
</div>
|
||||
<div id="ref-andersonAbsenceDiffusionCertain1958" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[3] </div><div class="csl-right-inline">P.
|
||||
W. Anderson, <em><a
|
||||
href="https://doi.org/10.1103/PhysRev.109.1492">Absence of Diffusion in
|
||||
Certain Random Lattices</a></em>, Phys. Rev. <strong>109</strong>, 1492
|
||||
(1958).</div>
|
||||
</div>
|
||||
<div id="ref-izrailevLocalizationMobilityEdge1999" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[4] </div><div class="csl-right-inline">F.
|
||||
M. Izrailev and A. A. Krokhin, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.82.4062">Localization and the
|
||||
Mobility Edge in One-Dimensional Potentials with Correlated
|
||||
Disorder</a></em>, Phys. Rev. Lett. <strong>82</strong>, 4062
|
||||
(1999).</div>
|
||||
</div>
|
||||
<div id="ref-croyAndersonLocalization1D2011" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[5] </div><div class="csl-right-inline">A.
|
||||
Croy, P. Cain, and M. Schreiber, <em><a
|
||||
href="https://doi.org/10.1140/epjb/e2011-20212-1">Anderson Localization
|
||||
in 1d Systems with Correlated Disorder</a></em>, Eur. Phys. J. B
|
||||
<strong>82</strong>, 107 (2011).</div>
|
||||
</div>
|
||||
<div id="ref-izrailevAnomalousLocalizationLowDimensional2012"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[6] </div><div class="csl-right-inline">F.
|
||||
M. Izrailev, A. A. Krokhin, and N. M. Makarov, <em><a
|
||||
href="https://doi.org/10.1016/j.physrep.2011.11.002">Anomalous
|
||||
Localization in Low-Dimensional Systems with Correlated
|
||||
Disorder</a></em>, Physics Reports <strong>512</strong>, 125
|
||||
(2012).</div>
|
||||
</div>
|
||||
<div id="ref-imbrieManyBodyLocalizationQuantum2016" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[7] </div><div class="csl-right-inline">J.
|
||||
Z. Imbrie, <em><a href="https://doi.org/10.1007/s10955-016-1508-x">On
|
||||
Many-Body Localization for Quantum Spin Chains</a></em>, J Stat Phys
|
||||
<strong>163</strong>, 998 (2016).</div>
|
||||
</div>
|
||||
<div id="ref-kagan1984localization" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[8] </div><div class="csl-right-inline">Y.
|
||||
Kagan and L. Maksimov, <em>Localization in a System of Interacting
|
||||
Particles Diffusing in a Regular Crystal</em>, Zhurnal Eksperimental’noi
|
||||
i Teoreticheskoi Fiziki <strong>87</strong>, 348 (1984).</div>
|
||||
</div>
|
||||
<div id="ref-yaoQuasiManyBodyLocalizationTranslationInvariant2016"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[9] </div><div class="csl-right-inline">N.
|
||||
Y. Yao, C. R. Laumann, J. I. Cirac, M. D. Lukin, and J. E. Moore,
|
||||
<em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.117.240601">Quasi-Many-Body
|
||||
Localization in Translation-Invariant Systems</a></em>, Phys. Rev. Lett.
|
||||
<strong>117</strong>, 240601 (2016).</div>
|
||||
</div>
|
||||
<div id="ref-schiulazDynamicsManybodyLocalized2015" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[10] </div><div class="csl-right-inline">M.
|
||||
Schiulaz, A. Silva, and M. Müller, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.91.184202">Dynamics in Many-Body
|
||||
Localized Quantum Systems Without Disorder</a></em>, Phys. Rev. B
|
||||
<strong>91</strong>, 184202 (2015).</div>
|
||||
</div>
|
||||
<div id="ref-smithDisorderFreeLocalization2017" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[11] </div><div class="csl-right-inline">A.
|
||||
Smith, J. Knolle, D. L. Kovrizhin, and R. Moessner, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.118.266601">Disorder-Free
|
||||
Localization</a></em>, Phys. Rev. Lett. <strong>118</strong>, 266601
|
||||
(2017).</div>
|
||||
</div>
|
||||
</div>
|
||||
</section>
|
||||
|
||||
|
||||
</main>
|
||||
</body>
|
||||
</html>
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -12,252 +12,11 @@ image:
|
||||
<meta name="generator" content="pandoc" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
|
||||
<title>3.2_LRFK_Methods</title>
|
||||
<!-- <style>
|
||||
html {
|
||||
line-height: 1.5;
|
||||
font-family: Georgia, serif;
|
||||
font-size: 20px;
|
||||
color: #1a1a1a;
|
||||
background-color: #fdfdfd;
|
||||
}
|
||||
body {
|
||||
margin: 0 auto;
|
||||
max-width: 36em;
|
||||
padding-left: 50px;
|
||||
padding-right: 50px;
|
||||
padding-top: 50px;
|
||||
padding-bottom: 50px;
|
||||
hyphens: auto;
|
||||
overflow-wrap: break-word;
|
||||
text-rendering: optimizeLegibility;
|
||||
font-kerning: normal;
|
||||
}
|
||||
@media (max-width: 600px) {
|
||||
body {
|
||||
font-size: 0.9em;
|
||||
padding: 1em;
|
||||
}
|
||||
h1 {
|
||||
font-size: 1.8em;
|
||||
}
|
||||
}
|
||||
@media print {
|
||||
body {
|
||||
background-color: transparent;
|
||||
color: black;
|
||||
font-size: 12pt;
|
||||
}
|
||||
p, h2, h3 {
|
||||
orphans: 3;
|
||||
widows: 3;
|
||||
}
|
||||
h2, h3, h4 {
|
||||
page-break-after: avoid;
|
||||
}
|
||||
}
|
||||
p {
|
||||
margin: 1em 0;
|
||||
}
|
||||
a {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
a:visited {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
img {
|
||||
max-width: 100%;
|
||||
}
|
||||
h1, h2, h3, h4, h5, h6 {
|
||||
margin-top: 1.4em;
|
||||
}
|
||||
h5, h6 {
|
||||
font-size: 1em;
|
||||
font-style: italic;
|
||||
}
|
||||
h6 {
|
||||
font-weight: normal;
|
||||
}
|
||||
ol, ul {
|
||||
padding-left: 1.7em;
|
||||
margin-top: 1em;
|
||||
}
|
||||
li > ol, li > ul {
|
||||
margin-top: 0;
|
||||
}
|
||||
blockquote {
|
||||
margin: 1em 0 1em 1.7em;
|
||||
padding-left: 1em;
|
||||
border-left: 2px solid #e6e6e6;
|
||||
color: #606060;
|
||||
}
|
||||
code {
|
||||
font-family: Menlo, Monaco, 'Lucida Console', Consolas, monospace;
|
||||
font-size: 85%;
|
||||
margin: 0;
|
||||
}
|
||||
pre {
|
||||
margin: 1em 0;
|
||||
overflow: auto;
|
||||
}
|
||||
pre code {
|
||||
padding: 0;
|
||||
overflow: visible;
|
||||
overflow-wrap: normal;
|
||||
}
|
||||
.sourceCode {
|
||||
background-color: transparent;
|
||||
overflow: visible;
|
||||
}
|
||||
hr {
|
||||
background-color: #1a1a1a;
|
||||
border: none;
|
||||
height: 1px;
|
||||
margin: 1em 0;
|
||||
}
|
||||
table {
|
||||
margin: 1em 0;
|
||||
border-collapse: collapse;
|
||||
width: 100%;
|
||||
overflow-x: auto;
|
||||
display: block;
|
||||
font-variant-numeric: lining-nums tabular-nums;
|
||||
}
|
||||
table caption {
|
||||
margin-bottom: 0.75em;
|
||||
}
|
||||
tbody {
|
||||
margin-top: 0.5em;
|
||||
border-top: 1px solid #1a1a1a;
|
||||
border-bottom: 1px solid #1a1a1a;
|
||||
}
|
||||
th {
|
||||
border-top: 1px solid #1a1a1a;
|
||||
padding: 0.25em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
td {
|
||||
padding: 0.125em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
header {
|
||||
margin-bottom: 4em;
|
||||
text-align: center;
|
||||
}
|
||||
#TOC li {
|
||||
list-style: none;
|
||||
}
|
||||
#TOC ul {
|
||||
padding-left: 1.3em;
|
||||
}
|
||||
#TOC > ul {
|
||||
padding-left: 0;
|
||||
}
|
||||
#TOC a:not(:hover) {
|
||||
text-decoration: none;
|
||||
}
|
||||
code{white-space: pre-wrap;}
|
||||
span.smallcaps{font-variant: small-caps;}
|
||||
span.underline{text-decoration: underline;}
|
||||
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
||||
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
||||
ul.task-list{list-style: none;}
|
||||
pre > code.sourceCode { white-space: pre; position: relative; }
|
||||
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
|
||||
pre > code.sourceCode > span:empty { height: 1.2em; }
|
||||
.sourceCode { overflow: visible; }
|
||||
code.sourceCode > span { color: inherit; text-decoration: inherit; }
|
||||
div.sourceCode { margin: 1em 0; }
|
||||
pre.sourceCode { margin: 0; }
|
||||
@media screen {
|
||||
div.sourceCode { overflow: auto; }
|
||||
}
|
||||
@media print {
|
||||
pre > code.sourceCode { white-space: pre-wrap; }
|
||||
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
|
||||
}
|
||||
pre.numberSource code
|
||||
{ counter-reset: source-line 0; }
|
||||
pre.numberSource code > span
|
||||
{ position: relative; left: -4em; counter-increment: source-line; }
|
||||
pre.numberSource code > span > a:first-child::before
|
||||
{ content: counter(source-line);
|
||||
position: relative; left: -1em; text-align: right; vertical-align: baseline;
|
||||
border: none; display: inline-block;
|
||||
-webkit-touch-callout: none; -webkit-user-select: none;
|
||||
-khtml-user-select: none; -moz-user-select: none;
|
||||
-ms-user-select: none; user-select: none;
|
||||
padding: 0 4px; width: 4em;
|
||||
color: #aaaaaa;
|
||||
}
|
||||
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
|
||||
div.sourceCode
|
||||
{ }
|
||||
@media screen {
|
||||
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
|
||||
}
|
||||
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
|
||||
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
|
||||
code span.at { color: #7d9029; } /* Attribute */
|
||||
code span.bn { color: #40a070; } /* BaseN */
|
||||
code span.bu { } /* BuiltIn */
|
||||
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
|
||||
code span.ch { color: #4070a0; } /* Char */
|
||||
code span.cn { color: #880000; } /* Constant */
|
||||
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
|
||||
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
|
||||
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
|
||||
code span.dt { color: #902000; } /* DataType */
|
||||
code span.dv { color: #40a070; } /* DecVal */
|
||||
code span.er { color: #ff0000; font-weight: bold; } /* Error */
|
||||
code span.ex { } /* Extension */
|
||||
code span.fl { color: #40a070; } /* Float */
|
||||
code span.fu { color: #06287e; } /* Function */
|
||||
code span.im { } /* Import */
|
||||
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
|
||||
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
|
||||
code span.op { color: #666666; } /* Operator */
|
||||
code span.ot { color: #007020; } /* Other */
|
||||
code span.pp { color: #bc7a00; } /* Preprocessor */
|
||||
code span.sc { color: #4070a0; } /* SpecialChar */
|
||||
code span.ss { color: #bb6688; } /* SpecialString */
|
||||
code span.st { color: #4070a0; } /* String */
|
||||
code span.va { color: #19177c; } /* Variable */
|
||||
code span.vs { color: #4070a0; } /* VerbatimString */
|
||||
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
|
||||
div.csl-bib-body { }
|
||||
div.csl-entry {
|
||||
clear: both;
|
||||
}
|
||||
.hanging div.csl-entry {
|
||||
margin-left:2em;
|
||||
text-indent:-2em;
|
||||
}
|
||||
div.csl-left-margin {
|
||||
min-width:2em;
|
||||
float:left;
|
||||
}
|
||||
div.csl-right-inline {
|
||||
margin-left:2em;
|
||||
padding-left:1em;
|
||||
}
|
||||
div.csl-indent {
|
||||
margin-left: 2em;
|
||||
}
|
||||
</style> -->
|
||||
|
||||
<!-- <script
|
||||
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js"
|
||||
type="text/javascript"></script>
|
||||
-->
|
||||
|
||||
<!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
|
||||
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3.0.1/es5/tex-mml-chtml.js"></script>
|
||||
-->
|
||||
|
||||
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
|
||||
<script src="/assets/js/thesis_scrollspy.js"></script>
|
||||
|
||||
|
||||
<!--[if lt IE 9]>
|
||||
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
|
||||
<![endif]-->
|
||||
<link rel="stylesheet" href="/assets/css/styles.css">
|
||||
<script src="/assets/js/index.js"></script>
|
||||
</head>
|
||||
@ -266,11 +25,12 @@ image:
|
||||
<!--Capture the table of contents from pandoc as a jekyll variable -->
|
||||
{% capture tableOfContents %}
|
||||
<br>
|
||||
Contents:
|
||||
<nav aria-label="Table of Contents" class="page-table-of-contents">
|
||||
<ul>
|
||||
<li><a href="#sec:FK-Methods" id="toc-sec:FK-Methods">Methods</a>
|
||||
<ul>
|
||||
<li><a href="#markov-chain-monte-carlo"
|
||||
id="toc-markov-chain-monte-carlo">Markov Chain Monte Carlo</a>
|
||||
<ul>
|
||||
id="toc-markov-chain-monte-carlo">Markov Chain Monte Carlo</a></li>
|
||||
<li><a href="#sampling" id="toc-sampling">Sampling</a></li>
|
||||
<li><a href="#markov-chains" id="toc-markov-chains">Markov
|
||||
Chains</a></li>
|
||||
@ -288,9 +48,6 @@ id="toc-metropolis-hastings">Metropolis-Hastings</a></li>
|
||||
<li><a href="#convergence-auto-correlation-and-binning"
|
||||
id="toc-convergence-auto-correlation-and-binning">Convergence,
|
||||
Auto-correlation and Binning</a></li>
|
||||
<li><a href="#applying-mcmc-to-the-fk-model"
|
||||
id="toc-applying-mcmc-to-the-fk-model">Applying MCMC to the FK
|
||||
model</a></li>
|
||||
<li><a href="#proposal-distributions"
|
||||
id="toc-proposal-distributions">Proposal Distributions</a></li>
|
||||
<li><a href="#perturbation-mcmc" id="toc-perturbation-mcmc">Perturbation
|
||||
@ -348,17 +105,21 @@ Trick</a></li>
|
||||
</ul></li>
|
||||
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
{% endcapture %}
|
||||
|
||||
<!-- Give the table of contents to header as a variable -->
|
||||
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
|
||||
{% include header.html extra=tableOfContents %}
|
||||
|
||||
<main>
|
||||
|
||||
<!-- Table of Contents -->
|
||||
<!-- <nav id="TOC" role="doc-toc">
|
||||
<ul>
|
||||
<li><a href="#markov-chain-monte-carlo"
|
||||
id="toc-markov-chain-monte-carlo">Markov Chain Monte Carlo</a>
|
||||
<li><a href="#sec:FK-Methods" id="toc-sec:FK-Methods">Methods</a>
|
||||
<ul>
|
||||
<li><a href="#markov-chain-monte-carlo"
|
||||
id="toc-markov-chain-monte-carlo">Markov Chain Monte Carlo</a></li>
|
||||
<li><a href="#sampling" id="toc-sampling">Sampling</a></li>
|
||||
<li><a href="#markov-chains" id="toc-markov-chains">Markov
|
||||
Chains</a></li>
|
||||
@ -376,9 +137,6 @@ id="toc-metropolis-hastings">Metropolis-Hastings</a></li>
|
||||
<li><a href="#convergence-auto-correlation-and-binning"
|
||||
id="toc-convergence-auto-correlation-and-binning">Convergence,
|
||||
Auto-correlation and Binning</a></li>
|
||||
<li><a href="#applying-mcmc-to-the-fk-model"
|
||||
id="toc-applying-mcmc-to-the-fk-model">Applying MCMC to the FK
|
||||
model</a></li>
|
||||
<li><a href="#proposal-distributions"
|
||||
id="toc-proposal-distributions">Proposal Distributions</a></li>
|
||||
<li><a href="#perturbation-mcmc" id="toc-perturbation-mcmc">Perturbation
|
||||
@ -438,8 +196,15 @@ Trick</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
-->
|
||||
<h1 id="markov-chain-monte-carlo">Markov Chain Monte Carlo</h1>
|
||||
<h2 id="sampling">Sampling</h2>
|
||||
|
||||
<!-- Main Page Body -->
|
||||
<section id="sec:FK-Methods" class="level1">
|
||||
<h1>Methods</h1>
|
||||
<section id="markov-chain-monte-carlo" class="level2">
|
||||
<h2>Markov Chain Monte Carlo</h2>
|
||||
</section>
|
||||
<section id="sampling" class="level2">
|
||||
<h2>Sampling</h2>
|
||||
<p>Markov Chain Monte Carlo (MCMC) is a useful method whenever we have a
|
||||
probability distribution that we want to sample from but there is not
|
||||
direct sampling way to do so.</p>
|
||||
@ -477,7 +242,9 @@ of problem happens in many other disciplines too, particularly when
|
||||
fitting statistical models using Bayesian inference <span
|
||||
class="citation" data-cites="BMCP2021"> [<a href="#ref-BMCP2021"
|
||||
role="doc-biblioref">2</a>]</span>.</p>
|
||||
<h2 id="markov-chains">Markov Chains</h2>
|
||||
</section>
|
||||
<section id="markov-chains" class="level2">
|
||||
<h2>Markov Chains</h2>
|
||||
<p>So what can we do? Well it turns out that if we’re willing to give up
|
||||
in the requirement that the samples be uncorrelated then we can use MCMC
|
||||
instead.</p>
|
||||
@ -501,7 +268,9 @@ are many solutions <span class="citation"
|
||||
data-cites="kellyReversibilityStochasticNetworks1981"> [<a
|
||||
href="#ref-kellyReversibilityStochasticNetworks1981"
|
||||
role="doc-biblioref">6</a>]</span>.</p>
|
||||
<h2 id="application-to-the-fk-model">Application to the FK Model</h2>
|
||||
</section>
|
||||
<section id="application-to-the-fk-model" class="level2">
|
||||
<h2>Application to the FK Model</h2>
|
||||
<p>We will work in the grand canonical ensemble of fixed temperature,
|
||||
chemical potential and volume.</p>
|
||||
<p>Since the spin configurations are classical, the Hamiltonian can be
|
||||
@ -533,7 +302,8 @@ to the quantum subsystem. <span class="math display">\[\begin{aligned}
|
||||
\mathcal{Z} = \sum_{\vec{S}} e^{-\beta H_S[\vec{S}] - \beta
|
||||
F_c[\vec{S}]} = \sum_{\vec{S}} e^{-\beta E[\vec{S}]}
|
||||
\end{aligned}\]</span></p>
|
||||
<h3 id="markov-chain-monte-carlo-1">Markov Chain Monte Carlo</h3>
|
||||
<section id="markov-chain-monte-carlo-1" class="level3">
|
||||
<h3>Markov Chain Monte Carlo</h3>
|
||||
<p>Markov Chain Monte Carlo (MCMC) is a technique for evaluating thermal
|
||||
expectation values <span class="math inline">\(\expval{O}\)</span> with
|
||||
respect to some physical system defined by a set of states <span
|
||||
@ -579,8 +349,10 @@ class="math inline">\(\expval{O^2} - \expval{O}^2\)</span> form it would
|
||||
have if the estimates were uncorrelated. Methods of estimating the true
|
||||
variance of <span class="math inline">\(\expval{O}\)</span> and decided
|
||||
how many steps are needed will be considered later.</p>
|
||||
<h2 id="the-metropolis-hasting-algorithm">The Metropolis-Hasting
|
||||
Algorithm</h2>
|
||||
</section>
|
||||
</section>
|
||||
<section id="the-metropolis-hasting-algorithm" class="level2">
|
||||
<h2>The Metropolis-Hasting Algorithm</h2>
|
||||
<p>Markov chains are defined by a transition function $(x_{i+1} x_i) $
|
||||
giving the probability that a chain in state <span
|
||||
class="math inline">\(x_i\)</span> at time <span
|
||||
@ -631,7 +403,9 @@ eigenvector equal to <span class="math inline">\(P_i = P(x_i)\)</span>
|
||||
with eigenvalue 1 and all other eigenvalues with magnitude less than
|
||||
one. The convergence time depends on the magnitude of the second largest
|
||||
eigenvalue.</p>
|
||||
<h2 id="metropolis-hastings">Metropolis-Hastings</h2>
|
||||
</section>
|
||||
<section id="metropolis-hastings" class="level2">
|
||||
<h2>Metropolis-Hastings</h2>
|
||||
<p>In order to actually choose new states according to <span
|
||||
class="math inline">\(\mathcal{T}\)</span> one chooses states from a
|
||||
proposal distribution <span class="math inline">\(q(x_i \to
|
||||
@ -678,83 +452,13 @@ class="math inline">\(f(x,x') < 1\)</span>.</p>
|
||||
class="math inline">\(f(x,x')\)</span> is as close as possible to
|
||||
one, the rate of rejections can be reduced and the algorithm sped
|
||||
up.</p>
|
||||
<h2 id="convergence-auto-correlation-and-binning">Convergence,
|
||||
Auto-correlation and Binning</h2>
|
||||
</section>
|
||||
<section id="convergence-auto-correlation-and-binning" class="level2">
|
||||
<h2>Convergence, Auto-correlation and Binning</h2>
|
||||
<p>%Thinning, burn in, multiple runs</p>
|
||||
<h2 id="applying-mcmc-to-the-fk-model">Applying MCMC to the FK
|
||||
model</h2>
|
||||
<p>MCMC can be applied to sample over the classical degrees of freedom
|
||||
of the model. We take the full Hamiltonian and split it into a classical
|
||||
and a quantum part: <span class="math display">\[\begin{aligned}
|
||||
H_{\mathrm{FK}} &= -\sum_{<ij>} c^\dagger_{i}c_{j} + U
|
||||
\sum_{i} (c^\dagger_{i}c_{i} - 1/2)( n_i - 1/2) \\
|
||||
&+ \sum_{ij} J_{ij} (n_i - 1/2) (n_j - 1/2) - \mu \sum_i
|
||||
(c^\dagger_{i}c_{i} + n_i)\\
|
||||
H_q &= -\sum_{<ij>} c^\dagger_{i}c_{j} + \sum_{i}
|
||||
\left(U(n_i - 1/2) - \mu\right) c^\dagger_{i}c_{i}\\
|
||||
H_c &= \sum_i \mu n_i - \frac{U}{2}(n_i - 1/2) +
|
||||
\sum_{ij}J_{ij}(n_i - 1/2)(n_j - 1/2)
|
||||
\end{aligned}
|
||||
\]</span> % There are <span class="math inline">\(2^N\)</span> possible
|
||||
ion configurations <span class="math inline">\(\{ n_i \}\)</span>, we
|
||||
define <span class="math inline">\(n^k_i\)</span> to be the occupation
|
||||
of the ith site of the kth configuration. The quantum part of the free
|
||||
energy can then be defined through the quantum partition function <span
|
||||
class="math inline">\(\mathcal{Z}^k\)</span> associated with each ionic
|
||||
state <span class="math inline">\(n^k_i\)</span>: <span
|
||||
class="math display">\[\begin{aligned}
|
||||
F^k &= -1/\beta \ln{\mathcal{Z}^k} \\
|
||||
\end{aligned}\]</span> % Such that the overall partition function is:
|
||||
<span class="math display">\[\begin{aligned}
|
||||
\mathcal{Z} &= \sum_k e^{- \beta H^k} Z^k \\
|
||||
&= \sum_k e^{-\beta (H^k + F^k)} \\
|
||||
\end{aligned}\]</span> % Because fermions are limited to occupation
|
||||
numbers of 0 or 1 <span class="math inline">\(Z^k\)</span> simplifies
|
||||
nicely. If <span class="math inline">\(m^j_i = \{0,1\}\)</span> is
|
||||
defined as the occupation of the level with energy <span
|
||||
class="math inline">\(\epsilon^k_i\)</span> then the partition function
|
||||
is a sum over all the occupation states labelled by j: <span
|
||||
class="math display">\[\begin{aligned}
|
||||
Z^k &= \Tr e^{-\beta F^k} = \sum_j e^{-\beta \sum_i m^j_i
|
||||
\epsilon^k_i}\\
|
||||
&= \sum_j \prod_i e^{- \beta m^j_i \epsilon^k_i}= \prod_i
|
||||
\sum_j e^{- \beta m^j_i \epsilon^k_i}\\
|
||||
&= \prod_i (1 + e^{- \beta \epsilon^k_i})\\
|
||||
F^k &= -1/\beta \sum_k \ln{(1 + e^{- \beta \epsilon^k_i})}
|
||||
\end{aligned}\]</span> % Observables can then be calculated from the
|
||||
partition function, for examples the occupation numbers:</p>
|
||||
<p><span class="math display">\[\begin{aligned}
|
||||
\tex{N} &= \frac{1}{\beta} \frac{1}{Z} \frac{\partial Z}{\partial
|
||||
\mu} = - \frac{\partial F}{\partial \mu}\\
|
||||
&= \frac{1}{\beta} \frac{1}{Z} \frac{\partial}{\partial \mu}
|
||||
\sum_k e^{-\beta (H^k + F^k)}\\
|
||||
&= 1/Z \sum_k (N^k_{\mathrm{ion}} + N^k_{\mathrm{electron}})
|
||||
e^{-\beta (H^k + F^k)}\\
|
||||
\end{aligned}\]</span> % with the definitions:</p>
|
||||
<p><span class="math display">\[\begin{aligned}
|
||||
N^k_{\mathrm{ion}} &= - \frac{\partial H^k}{\partial \mu} = \sum_i
|
||||
n^k_i\\
|
||||
N^k_{\mathrm{electron}} &= - \frac{\partial F^k}{\partial \mu} =
|
||||
\sum_i \left(1 + e^{\beta \epsilon^k_i}\right)^{-1}\\
|
||||
\end{aligned}\]</span> % The MCMC algorithm consists of performing a
|
||||
random walk over the states <span class="math inline">\(\{ n^k_i
|
||||
\}\)</span>. In the simplest case the proposal distribution corresponds
|
||||
to flipping a random site from occupied to unoccupied or vice versa,
|
||||
since this proposal is symmetric the acceptance function becomes: <span
|
||||
class="math display">\[\begin{aligned}
|
||||
P(k) &= \mathcal{Z}^{-1} e^{-\beta(H^k + F^k)} \\
|
||||
\mathcal{A}(k \to k') &= \min\left(1,
|
||||
\frac{P(k')}{P(k)}\right) = \min\left(1, e^{\beta(H^{k'} +
|
||||
F^{k'})-\beta(H^k + F^k)}\right)
|
||||
\end{aligned}\]</span> % At each step <span
|
||||
class="math inline">\(F^k\)</span> is calculated by diagonalising the
|
||||
tri-diagonal matrix representation of <span
|
||||
class="math inline">\(H_q\)</span> with open boundary conditions.
|
||||
Observables are simply averages over the their value at each step of the
|
||||
random walk. The full spectrum and eigenbasis is too large to save to
|
||||
disk so usually running averages of key observables are taken as the
|
||||
walk progresses.</p>
|
||||
<h2 id="proposal-distributions">Proposal Distributions</h2>
|
||||
</section>
|
||||
<section id="proposal-distributions" class="level2">
|
||||
<h2>Proposal Distributions</h2>
|
||||
<p>In a MCMC method a key property is the proportion of the time that
|
||||
proposals are accepted, the acceptance rate. If this rate is too low the
|
||||
random walk is trying to take overly large steps in energy space which
|
||||
@ -773,7 +477,9 @@ at a time.</p>
|
||||
occasionally proposing a flip of the entire state. This works because
|
||||
near half-filling, flipping the occupations of all the sites will
|
||||
produce a state at or near the energy of the current one.</p>
|
||||
<h2 id="perturbation-mcmc">Perturbation MCMC</h2>
|
||||
</section>
|
||||
<section id="perturbation-mcmc" class="level2">
|
||||
<h2>Perturbation MCMC</h2>
|
||||
<p>The matrix diagonalisation is the most computationally expensive step
|
||||
of the process, a speed up can be obtained by modifying the proposal
|
||||
distribution to depend on the classical part of the energy, a trick
|
||||
@ -796,7 +502,9 @@ data-cites="huangAcceleratedMonteCarlo2017"> [<a
|
||||
href="#ref-huangAcceleratedMonteCarlo2017"
|
||||
role="doc-biblioref">10</a>]</span> does this with restricted Boltzmann
|
||||
machines whose form is very similar to a classical spin model.</p>
|
||||
<h2 id="scaling">Scaling</h2>
|
||||
</section>
|
||||
<section id="scaling" class="level2">
|
||||
<h2>Scaling</h2>
|
||||
<p>In order to reduce the effects of the boundary conditions and the
|
||||
finite size of the system we redefine and normalise the coupling matrix
|
||||
to have 0 derivative at its furthest extent rather than cutting off
|
||||
@ -808,7 +516,9 @@ J(x) &= \frac{J_0 J'(x)}{\sum_y J'(y)}
|
||||
\end{aligned}\]</span> % The scaling ensures that, in the ordered phase,
|
||||
the overall potential felt by each site due to the rest of the system is
|
||||
independent of system size.</p>
|
||||
<h2 id="binder-cumulants">Binder Cumulants</h2>
|
||||
</section>
|
||||
<section id="binder-cumulants" class="level2">
|
||||
<h2>Binder Cumulants</h2>
|
||||
<p>The Binder cumulant is defined as: <span class="math display">\[U_B =
|
||||
1 - \frac{\tex{\mu_4}}{3\tex{\mu_2}^2}\]</span> % where <span
|
||||
class="math display">\[\mu_n = \tex{(m - \tex{m})^n}\]</span> % are the
|
||||
@ -822,9 +532,11 @@ data-cites="binderFiniteSizeScaling1981 musialMonteCarloSimulations2002"> [<a
|
||||
href="#ref-binderFiniteSizeScaling1981" role="doc-biblioref">11</a>,<a
|
||||
href="#ref-musialMonteCarloSimulations2002"
|
||||
role="doc-biblioref"><strong>musialMonteCarloSimulations2002?</strong></a>]</span>.</p>
|
||||
<h2 id="markov-chain-monte-carlo-in-practice">Markov Chain Monte-Carlo
|
||||
in Practice</h2>
|
||||
<h3 id="quick-intro-to-mcmc">Quick Intro to MCMC</h3>
|
||||
</section>
|
||||
<section id="markov-chain-monte-carlo-in-practice" class="level2">
|
||||
<h2>Markov Chain Monte-Carlo in Practice</h2>
|
||||
<section id="quick-intro-to-mcmc" class="level3">
|
||||
<h3>Quick Intro to MCMC</h3>
|
||||
<p>The main paper relies on extensively to evaluate thermal expectation
|
||||
values within the model by walking over states of the classical spin
|
||||
system <span class="math inline">\(S_i\)</span>. For a classical system,
|
||||
@ -898,7 +610,9 @@ time) the probability <span class="math inline">\(p_t(\s;\s_0)\)</span>
|
||||
approaches the thermal distribution <span class="math inline">\(P(\s;
|
||||
\beta) = \mathcal{Z}^{-1} e^{-\beta F(\s)}\)</span>. This turns out to
|
||||
be quite easy to achieve using the Metropolis-Hasting algorithm.</p>
|
||||
<h3 id="convergence-time">Convergence Time</h3>
|
||||
</section>
|
||||
<section id="convergence-time" class="level3">
|
||||
<h3>Convergence Time</h3>
|
||||
<p>Considering <span class="math inline">\(p(\s)\)</span> as a vector
|
||||
<span class="math inline">\(\vec{p}\)</span> whose jth entry is the
|
||||
probability of the jth state <span class="math inline">\(p_j =
|
||||
@ -928,7 +642,9 @@ class="math inline">\(\lambda_1\)</span>. In practice this means that
|
||||
one throws away the data from the beginning of the random walk in order
|
||||
reduce the dependence on the initial conditions and be close enough to
|
||||
the target distribution.</p>
|
||||
<h3 id="auto-correlation-time">Auto-correlation Time</h3>
|
||||
</section>
|
||||
<section id="auto-correlation-time" class="level3">
|
||||
<h3>Auto-correlation Time</h3>
|
||||
<div id="fig:m_autocorr" class="fignos">
|
||||
<figure>
|
||||
<img src="../figure_code/fk_chapter/lsr/figs/m_autocorr.png"
|
||||
@ -1002,8 +718,9 @@ convergence time and the auto-correlation time as much as possible. In
|
||||
order to explain how, we need to introduce the Metropolis-Hasting (MH)
|
||||
algorithm and how it gives an explicit form for the transition
|
||||
function.</p>
|
||||
<h3 id="the-metropolis-hastings-algorithm">The Metropolis-Hastings
|
||||
Algorithm</h3>
|
||||
</section>
|
||||
<section id="the-metropolis-hastings-algorithm" class="level3">
|
||||
<h3>The Metropolis-Hastings Algorithm</h3>
|
||||
<p>MH breaks up the transition function into a proposal distribution
|
||||
<span class="math inline">\(q(\s \to \s')\)</span> and an acceptance
|
||||
function <span class="math inline">\(\mathcal{A}(\s \to
|
||||
@ -1047,7 +764,10 @@ class="sourceCode python"><code class="sourceCode python"><span id="cb2-1"><a hr
|
||||
<p>This has the effect of always accepting proposed states that are
|
||||
lower in energy and sometimes accepting those that are higher in energy
|
||||
than the current state.</p>
|
||||
<h2 id="two-step-trick">Two Step Trick</h2>
|
||||
</section>
|
||||
</section>
|
||||
<section id="two-step-trick" class="level2">
|
||||
<h2>Two Step Trick</h2>
|
||||
<p>Here, we incorporate a modification to the standard
|
||||
Metropolis-Hastings algorithm <span class="citation"
|
||||
data-cites="hastingsMonteCarloSampling1970"> [<a
|
||||
@ -1106,8 +826,9 @@ sampled from while offering sufficient flexibility that they can be
|
||||
adjusted to match the target distribution. Our proposed method is
|
||||
considerably simpler and does not require training while still reaping
|
||||
some of the benefits of reduced computation.</p>
|
||||
<h2 id="detailed-balance-for-the-two-step-method">Detailed Balance for
|
||||
the two step method</h2>
|
||||
</section>
|
||||
<section id="detailed-balance-for-the-two-step-method" class="level2">
|
||||
<h2>Detailed Balance for the two step method</h2>
|
||||
<p>Given a MCMC algorithm with target distribution <span
|
||||
class="math inline">\(\pi(a)\)</span> and transition function <span
|
||||
class="math inline">\(\mathcal{T}\)</span> the detailed balance
|
||||
@ -1158,7 +879,8 @@ r_c\right) \min\left(1, r_q\right)}{ \min\left(1, 1/r_c\right)
|
||||
<p>which simplifies to <span class="math inline">\(r_c r_q\)</span> as
|
||||
<span class="math inline">\(\min(1,r)/\min(1,1/r) = r\)</span> for <span
|
||||
class="math inline">\(r > 0\)</span>.</p>
|
||||
<h3 id="two-step-trick-1">Two Step Trick</h3>
|
||||
<section id="two-step-trick-1" class="level3">
|
||||
<h3>Two Step Trick</h3>
|
||||
<p>Our method already relies heavily on the split between the classical
|
||||
and quantum sector to derive a sign problem free MCMC algorithm but it
|
||||
turns out that there is a further trick we can play with it. The free
|
||||
@ -1182,8 +904,9 @@ class="sourceCode python"><code class="sourceCode python"><span id="cb4-1"><a hr
|
||||
<span id="cb4-13"><a href="#cb4-13" aria-hidden="true" tabindex="-1"></a> </span>
|
||||
<span id="cb4-14"><a href="#cb4-14" aria-hidden="true" tabindex="-1"></a> states[i] <span class="op">=</span> current_state</span>
|
||||
<span id="cb4-15"><a href="#cb4-15" aria-hidden="true" tabindex="-1"></a> </span></code></pre></div>
|
||||
<h3 id="tuning-the-proposal-distribution">Tuning the proposal
|
||||
distribution</h3>
|
||||
</section>
|
||||
<section id="tuning-the-proposal-distribution" class="level3">
|
||||
<h3>Tuning the proposal distribution</h3>
|
||||
<div id="fig:autocorr_multiple_proposals" class="fignos">
|
||||
<figure>
|
||||
<img
|
||||
@ -1227,8 +950,12 @@ the best choice. However for some simulations at very high temperature
|
||||
flipping more spins is warranted. Tuning the proposal distribution
|
||||
automatically seems like something that would not yield enough benefit
|
||||
for the additional complexity it would require.</p>
|
||||
<h2 id="diagnostics-of-localisation">Diagnostics of Localisation</h2>
|
||||
<h3 id="inverse-participation-ratio">Inverse Participation Ratio</h3>
|
||||
</section>
|
||||
</section>
|
||||
<section id="diagnostics-of-localisation" class="level2">
|
||||
<h2>Diagnostics of Localisation</h2>
|
||||
<section id="inverse-participation-ratio" class="level3">
|
||||
<h3>Inverse Participation Ratio</h3>
|
||||
<p>The inverse participation ratio is defined for a normalised wave
|
||||
function <span class="math inline">\(\psi_i = \psi(x_i), \sum_i
|
||||
\abs{\psi_i}^2 = 1\)</span> as its fourth moment <span class="citation"
|
||||
@ -1287,7 +1014,10 @@ with <span class="math inline">\(M\)</span> dimensions each taking <span
|
||||
class="math inline">\(N\)</span> distinct values.</p>
|
||||
<p>Detailed and Global balance equation Mixing times Cluster updates and
|
||||
Critical slowing down Effective Sample Size</p>
|
||||
<h2 id="markov-chain-monte-carlo-2">Markov Chain Monte-Carlo</h2>
|
||||
</section>
|
||||
</section>
|
||||
<section id="markov-chain-monte-carlo-2" class="level2">
|
||||
<h2>Markov Chain Monte-Carlo</h2>
|
||||
<p>Dimensionality can be both a blessing and a curse. In I’ll discuss
|
||||
the fact that statistical physics can be somewhat boring in one
|
||||
dimension where most simple models have no phase transitions. This
|
||||
@ -1398,7 +1128,9 @@ probability <span class="math inline">\(p_t(\s;\s_0)\)</span> approaches
|
||||
the thermal distribution <span class="math inline">\(P(\s; \beta) =
|
||||
\Z^{-1} e^{-\beta F(\s)}\)</span>. This turns out to be quite easy to
|
||||
achieve using the Metropolis-Hasting algorithm.</p>
|
||||
<h2 id="convergence-time-1">Convergence Time</h2>
|
||||
</section>
|
||||
<section id="convergence-time-1" class="level2">
|
||||
<h2>Convergence Time</h2>
|
||||
<p>Considering <span class="math inline">\(p(\s)\)</span> as a vector
|
||||
<span class="math inline">\(\vec{p}\)</span> whose jth entry is the
|
||||
probability of the jth state <span class="math inline">\(p_j =
|
||||
@ -1427,7 +1159,9 @@ class="math inline">\(\lambda_1\)</span>. In practice this means that
|
||||
one throws away the data from the beginning of the random walk in order
|
||||
reduce the dependence on the initial conditions and be close enough to
|
||||
the target distribution.</p>
|
||||
<h2 id="auto-correlation-time-1">Auto-correlation Time</h2>
|
||||
</section>
|
||||
<section id="auto-correlation-time-1" class="level2">
|
||||
<h2>Auto-correlation Time</h2>
|
||||
<div id="fig:m_autocorr" class="fignos">
|
||||
<figure>
|
||||
<img src="figs/lsr/m_autocorr.png"
|
||||
@ -1497,8 +1231,9 @@ convergence time and the auto-correlation time as much as possible. In
|
||||
order to explain how, we need to introduce the Metropolis-Hasting (MH)
|
||||
algorithm and how it gives an explicit form for the transition
|
||||
function.</p>
|
||||
<h2 id="the-metropolis-hastings-algorithm-1">The Metropolis-Hastings
|
||||
Algorithm</h2>
|
||||
</section>
|
||||
<section id="the-metropolis-hastings-algorithm-1" class="level2">
|
||||
<h2>The Metropolis-Hastings Algorithm</h2>
|
||||
<p>MH breaks up the transition function into a proposal distribution
|
||||
<span class="math inline">\(q(\s \to \s')\)</span> and an acceptance
|
||||
function <span class="math inline">\(\A(\s \to \s')\)</span>. <span
|
||||
@ -1542,8 +1277,9 @@ class="sourceCode python"><code class="sourceCode python"><span id="cb5-1"><a hr
|
||||
<p>This has the effect of always accepting proposed states that are
|
||||
lower in energy and sometimes accepting those that are higher in energy
|
||||
than the current state.</p>
|
||||
<h2 id="choosing-the-proposal-distribution">Choosing the proposal
|
||||
distribution</h2>
|
||||
</section>
|
||||
<section id="choosing-the-proposal-distribution" class="level2">
|
||||
<h2>Choosing the proposal distribution</h2>
|
||||
<p><img src="figs/lsr/autocorr_multiple_proposals.png" title="fig:"
|
||||
id="fig:comparison"
|
||||
alt="t = 1, \alpha = 1.25, J = U = 5 [fig:comparison]" /> Simulations
|
||||
@ -1581,7 +1317,9 @@ simulations at very high temperature flipping more spins is warranted.
|
||||
Tuning the proposal distribution automatically seems like something that
|
||||
would not yield enough benefit for the additional complexity it would
|
||||
require.</p>
|
||||
<h2 id="two-step-trick-2">Two Step Trick</h2>
|
||||
</section>
|
||||
<section id="two-step-trick-2" class="level2">
|
||||
<h2>Two Step Trick</h2>
|
||||
<p>Our method already relies heavily on the split between the classical
|
||||
and quantum sector to derive a sign problem free MCMC algorithm but it
|
||||
turns out that there is a further trick we can play with it. The free
|
||||
@ -1604,10 +1342,10 @@ class="sourceCode python"><code class="sourceCode python"><span id="cb6-1"><a hr
|
||||
<span id="cb6-12"><a href="#cb6-12" aria-hidden="true" tabindex="-1"></a> </span>
|
||||
<span id="cb6-13"><a href="#cb6-13" aria-hidden="true" tabindex="-1"></a> states[i] <span class="op">=</span> current_state</span>
|
||||
<span id="cb6-14"><a href="#cb6-14" aria-hidden="true" tabindex="-1"></a> </span></code></pre></div>
|
||||
<div class="sourceCode" id="cb7"><pre
|
||||
class="sourceCode python"><code class="sourceCode python"></code></pre></div>
|
||||
<p></ij></ij></p>
|
||||
<h1 class="unnumbered" id="bibliography">Bibliography</h1>
|
||||
</section>
|
||||
</section>
|
||||
<section id="bibliography" class="level1 unnumbered">
|
||||
<h1 class="unnumbered">Bibliography</h1>
|
||||
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
|
||||
<div id="ref-devroyeRandomSampling1986" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
@ -1745,6 +1483,7 @@ Certain Random Lattices</a></em>, Phys. Rev. <strong>109</strong>, 1492
|
||||
(1958).</div>
|
||||
</div>
|
||||
</div>
|
||||
</section>
|
||||
<section class="footnotes footnotes-end-of-document"
|
||||
role="doc-endnotes">
|
||||
<hr />
|
||||
@ -1779,6 +1518,8 @@ involving a sum over the auto-correlation function.<a href="#fnref4"
|
||||
class="footnote-back" role="doc-backlink">↩︎</a></p></li>
|
||||
</ol>
|
||||
</section>
|
||||
|
||||
|
||||
</main>
|
||||
</body>
|
||||
</html>
|
||||
|
@ -12,252 +12,11 @@ image:
|
||||
<meta name="generator" content="pandoc" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
|
||||
<title>3.3_LRFK_Results</title>
|
||||
<!-- <style>
|
||||
html {
|
||||
line-height: 1.5;
|
||||
font-family: Georgia, serif;
|
||||
font-size: 20px;
|
||||
color: #1a1a1a;
|
||||
background-color: #fdfdfd;
|
||||
}
|
||||
body {
|
||||
margin: 0 auto;
|
||||
max-width: 36em;
|
||||
padding-left: 50px;
|
||||
padding-right: 50px;
|
||||
padding-top: 50px;
|
||||
padding-bottom: 50px;
|
||||
hyphens: auto;
|
||||
overflow-wrap: break-word;
|
||||
text-rendering: optimizeLegibility;
|
||||
font-kerning: normal;
|
||||
}
|
||||
@media (max-width: 600px) {
|
||||
body {
|
||||
font-size: 0.9em;
|
||||
padding: 1em;
|
||||
}
|
||||
h1 {
|
||||
font-size: 1.8em;
|
||||
}
|
||||
}
|
||||
@media print {
|
||||
body {
|
||||
background-color: transparent;
|
||||
color: black;
|
||||
font-size: 12pt;
|
||||
}
|
||||
p, h2, h3 {
|
||||
orphans: 3;
|
||||
widows: 3;
|
||||
}
|
||||
h2, h3, h4 {
|
||||
page-break-after: avoid;
|
||||
}
|
||||
}
|
||||
p {
|
||||
margin: 1em 0;
|
||||
}
|
||||
a {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
a:visited {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
img {
|
||||
max-width: 100%;
|
||||
}
|
||||
h1, h2, h3, h4, h5, h6 {
|
||||
margin-top: 1.4em;
|
||||
}
|
||||
h5, h6 {
|
||||
font-size: 1em;
|
||||
font-style: italic;
|
||||
}
|
||||
h6 {
|
||||
font-weight: normal;
|
||||
}
|
||||
ol, ul {
|
||||
padding-left: 1.7em;
|
||||
margin-top: 1em;
|
||||
}
|
||||
li > ol, li > ul {
|
||||
margin-top: 0;
|
||||
}
|
||||
blockquote {
|
||||
margin: 1em 0 1em 1.7em;
|
||||
padding-left: 1em;
|
||||
border-left: 2px solid #e6e6e6;
|
||||
color: #606060;
|
||||
}
|
||||
code {
|
||||
font-family: Menlo, Monaco, 'Lucida Console', Consolas, monospace;
|
||||
font-size: 85%;
|
||||
margin: 0;
|
||||
}
|
||||
pre {
|
||||
margin: 1em 0;
|
||||
overflow: auto;
|
||||
}
|
||||
pre code {
|
||||
padding: 0;
|
||||
overflow: visible;
|
||||
overflow-wrap: normal;
|
||||
}
|
||||
.sourceCode {
|
||||
background-color: transparent;
|
||||
overflow: visible;
|
||||
}
|
||||
hr {
|
||||
background-color: #1a1a1a;
|
||||
border: none;
|
||||
height: 1px;
|
||||
margin: 1em 0;
|
||||
}
|
||||
table {
|
||||
margin: 1em 0;
|
||||
border-collapse: collapse;
|
||||
width: 100%;
|
||||
overflow-x: auto;
|
||||
display: block;
|
||||
font-variant-numeric: lining-nums tabular-nums;
|
||||
}
|
||||
table caption {
|
||||
margin-bottom: 0.75em;
|
||||
}
|
||||
tbody {
|
||||
margin-top: 0.5em;
|
||||
border-top: 1px solid #1a1a1a;
|
||||
border-bottom: 1px solid #1a1a1a;
|
||||
}
|
||||
th {
|
||||
border-top: 1px solid #1a1a1a;
|
||||
padding: 0.25em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
td {
|
||||
padding: 0.125em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
header {
|
||||
margin-bottom: 4em;
|
||||
text-align: center;
|
||||
}
|
||||
#TOC li {
|
||||
list-style: none;
|
||||
}
|
||||
#TOC ul {
|
||||
padding-left: 1.3em;
|
||||
}
|
||||
#TOC > ul {
|
||||
padding-left: 0;
|
||||
}
|
||||
#TOC a:not(:hover) {
|
||||
text-decoration: none;
|
||||
}
|
||||
code{white-space: pre-wrap;}
|
||||
span.smallcaps{font-variant: small-caps;}
|
||||
span.underline{text-decoration: underline;}
|
||||
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
||||
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
||||
ul.task-list{list-style: none;}
|
||||
pre > code.sourceCode { white-space: pre; position: relative; }
|
||||
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
|
||||
pre > code.sourceCode > span:empty { height: 1.2em; }
|
||||
.sourceCode { overflow: visible; }
|
||||
code.sourceCode > span { color: inherit; text-decoration: inherit; }
|
||||
div.sourceCode { margin: 1em 0; }
|
||||
pre.sourceCode { margin: 0; }
|
||||
@media screen {
|
||||
div.sourceCode { overflow: auto; }
|
||||
}
|
||||
@media print {
|
||||
pre > code.sourceCode { white-space: pre-wrap; }
|
||||
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
|
||||
}
|
||||
pre.numberSource code
|
||||
{ counter-reset: source-line 0; }
|
||||
pre.numberSource code > span
|
||||
{ position: relative; left: -4em; counter-increment: source-line; }
|
||||
pre.numberSource code > span > a:first-child::before
|
||||
{ content: counter(source-line);
|
||||
position: relative; left: -1em; text-align: right; vertical-align: baseline;
|
||||
border: none; display: inline-block;
|
||||
-webkit-touch-callout: none; -webkit-user-select: none;
|
||||
-khtml-user-select: none; -moz-user-select: none;
|
||||
-ms-user-select: none; user-select: none;
|
||||
padding: 0 4px; width: 4em;
|
||||
color: #aaaaaa;
|
||||
}
|
||||
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
|
||||
div.sourceCode
|
||||
{ }
|
||||
@media screen {
|
||||
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
|
||||
}
|
||||
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
|
||||
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
|
||||
code span.at { color: #7d9029; } /* Attribute */
|
||||
code span.bn { color: #40a070; } /* BaseN */
|
||||
code span.bu { } /* BuiltIn */
|
||||
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
|
||||
code span.ch { color: #4070a0; } /* Char */
|
||||
code span.cn { color: #880000; } /* Constant */
|
||||
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
|
||||
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
|
||||
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
|
||||
code span.dt { color: #902000; } /* DataType */
|
||||
code span.dv { color: #40a070; } /* DecVal */
|
||||
code span.er { color: #ff0000; font-weight: bold; } /* Error */
|
||||
code span.ex { } /* Extension */
|
||||
code span.fl { color: #40a070; } /* Float */
|
||||
code span.fu { color: #06287e; } /* Function */
|
||||
code span.im { } /* Import */
|
||||
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
|
||||
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
|
||||
code span.op { color: #666666; } /* Operator */
|
||||
code span.ot { color: #007020; } /* Other */
|
||||
code span.pp { color: #bc7a00; } /* Preprocessor */
|
||||
code span.sc { color: #4070a0; } /* SpecialChar */
|
||||
code span.ss { color: #bb6688; } /* SpecialString */
|
||||
code span.st { color: #4070a0; } /* String */
|
||||
code span.va { color: #19177c; } /* Variable */
|
||||
code span.vs { color: #4070a0; } /* VerbatimString */
|
||||
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
|
||||
div.csl-bib-body { }
|
||||
div.csl-entry {
|
||||
clear: both;
|
||||
}
|
||||
.hanging div.csl-entry {
|
||||
margin-left:2em;
|
||||
text-indent:-2em;
|
||||
}
|
||||
div.csl-left-margin {
|
||||
min-width:2em;
|
||||
float:left;
|
||||
}
|
||||
div.csl-right-inline {
|
||||
margin-left:2em;
|
||||
padding-left:1em;
|
||||
}
|
||||
div.csl-indent {
|
||||
margin-left: 2em;
|
||||
}
|
||||
</style> -->
|
||||
|
||||
<!-- <script
|
||||
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js"
|
||||
type="text/javascript"></script>
|
||||
-->
|
||||
|
||||
<!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
|
||||
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3.0.1/es5/tex-mml-chtml.js"></script>
|
||||
-->
|
||||
|
||||
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
|
||||
<script src="/assets/js/thesis_scrollspy.js"></script>
|
||||
|
||||
|
||||
<!--[if lt IE 9]>
|
||||
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
|
||||
<![endif]-->
|
||||
<link rel="stylesheet" href="/assets/css/styles.css">
|
||||
<script src="/assets/js/index.js"></script>
|
||||
</head>
|
||||
@ -266,44 +25,49 @@ image:
|
||||
<!--Capture the table of contents from pandoc as a jekyll variable -->
|
||||
{% capture tableOfContents %}
|
||||
<br>
|
||||
Contents:
|
||||
<nav aria-label="Table of Contents" class="page-table-of-contents">
|
||||
<ul>
|
||||
<li><a href="#the-phase-diagram" id="toc-the-phase-diagram">The Phase
|
||||
<li><a href="#sec:FK-results" id="toc-sec:FK-results">Results</a>
|
||||
<ul>
|
||||
<li><a href="#phase-diagram" id="toc-phase-diagram">Phase
|
||||
Diagram</a></li>
|
||||
<li><a href="#localisation-properties"
|
||||
id="toc-localisation-properties">Localisation Properties</a></li>
|
||||
<li><a href="#discussion-conclusion"
|
||||
id="toc-discussion-conclusion">Discussion & Conclusion</a></li>
|
||||
<li><a href="#acknowledgments"
|
||||
id="toc-acknowledgments">Acknowledgments</a></li>
|
||||
<li><a href="#uncorrelated-disorder-model"
|
||||
id="toc-uncorrelated-disorder-model"><span id="app:disorder_model"
|
||||
label="app:disorder_model"></span> UNCORRELATED DISORDER MODEL</a></li>
|
||||
</ul></li>
|
||||
<li><a href="#discussion-and-conclusion-secamk-conclusion"
|
||||
id="toc-discussion-and-conclusion-secamk-conclusion">Discussion and
|
||||
Conclusion {sec:AMK-Conclusion}</a></li>
|
||||
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
{% endcapture %}
|
||||
|
||||
<!-- Give the table of contents to header as a variable -->
|
||||
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
|
||||
{% include header.html extra=tableOfContents %}
|
||||
|
||||
<main>
|
||||
|
||||
<!-- Table of Contents -->
|
||||
<!-- <nav id="TOC" role="doc-toc">
|
||||
<ul>
|
||||
<li><a href="#the-phase-diagram" id="toc-the-phase-diagram">The Phase
|
||||
<li><a href="#sec:FK-results" id="toc-sec:FK-results">Results</a>
|
||||
<ul>
|
||||
<li><a href="#phase-diagram" id="toc-phase-diagram">Phase
|
||||
Diagram</a></li>
|
||||
<li><a href="#localisation-properties"
|
||||
id="toc-localisation-properties">Localisation Properties</a></li>
|
||||
<li><a href="#discussion-conclusion"
|
||||
id="toc-discussion-conclusion">Discussion & Conclusion</a></li>
|
||||
<li><a href="#acknowledgments"
|
||||
id="toc-acknowledgments">Acknowledgments</a></li>
|
||||
<li><a href="#uncorrelated-disorder-model"
|
||||
id="toc-uncorrelated-disorder-model"><span id="app:disorder_model"
|
||||
label="app:disorder_model"></span> UNCORRELATED DISORDER MODEL</a></li>
|
||||
</ul></li>
|
||||
<li><a href="#discussion-and-conclusion-secamk-conclusion"
|
||||
id="toc-discussion-and-conclusion-secamk-conclusion">Discussion and
|
||||
Conclusion {sec:AMK-Conclusion}</a></li>
|
||||
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
-->
|
||||
|
||||
<!-- Main Page Body -->
|
||||
<section id="sec:FK-results" class="level1">
|
||||
<h1>Results</h1>
|
||||
<div id="fig:phase_diagram" class="fignos">
|
||||
<figure>
|
||||
<img src="pdf_figs/phase_diagram.svg"
|
||||
@ -342,7 +106,17 @@ parameter values <span class="math inline">\(U = 5,\;J = 5,\;\alpha =
|
||||
1.25\)</span> except where explicitly varied.</figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
<h1 id="the-phase-diagram">The Phase Diagram</h1>
|
||||
<div id="fig:binder" class="fignos">
|
||||
<figure>
|
||||
<img src="/assets/thesis/fk_chapter/binder.png"
|
||||
data-short-caption="no title" style="width:100.0%"
|
||||
alt="Figure 2: Hello I am the figure caption!" />
|
||||
<figcaption aria-hidden="true"><span>Figure 2:</span> Hello I am the
|
||||
figure caption!</figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
<section id="phase-diagram" class="level2">
|
||||
<h2>Phase Diagram</h2>
|
||||
<p>Figs. [<a href="#fig:phase_diagram" data-reference-type="ref"
|
||||
data-reference="fig:phase_diagram">1</a>a] and [<a
|
||||
href="#fig:phase_diagram" data-reference-type="ref"
|
||||
@ -385,7 +159,9 @@ induced by the translational symmetry breaking in the CDW state below
|
||||
href="#fig:band_opening" data-reference-type="ref"
|
||||
data-reference="fig:band_opening">3</a>a]. The Anderson phase is gapless
|
||||
but, as we explain below, shows localised fermionic eigenstates.</p>
|
||||
<h1 id="localisation-properties">Localisation Properties</h1>
|
||||
</section>
|
||||
<section id="localisation-properties" class="level2">
|
||||
<h2>Localisation Properties</h2>
|
||||
<p>The MCMC formulation suggests viewing the spin configurations as a
|
||||
form of annealed binary disorder whose probability distribution is given
|
||||
by the Boltzmann weight <span class="math inline">\(e^{-\beta
|
||||
@ -453,8 +229,8 @@ temperatures?</p>
|
||||
<div id="fig:indiv_IPR" class="fignos">
|
||||
<figure>
|
||||
<img src="pdf_figs/indiv_IPR.svg"
|
||||
alt="Figure 2: Energy resolved DOS(\omega) and \tau (the scaling exponent of IPR(\omega) against system size N). The left column shows the Anderson phase U = 2 at high T = 2.5 and the CDW phase at low T = 1.5 temperature. IPRs are evaluated for one of the in-gap states \omega_0/U = 0.057 and the center of the band \omega_1 U = 0.81. The right column shows instead the Mott and CDW phases at U = 5 with \omega_0/U = 0.24 and \omega_1/U = 0.571. For all the plots J = 5,\;\alpha = 1.25 and the fits for \tau use system sizes greater than 60. The measured \tau_0,\tau_1 for each figure are: (a) (0.06\pm0.01, 0.02\pm0.01 (b) 0.04\pm0.02, 0.00\pm0.01 (c) 0.05\pm0.03, 0.30\pm0.03 (d) 0.06\pm0.04, 0.15\pm0.05 We show later that the apparent scaling of the IPR with system size can be explained by the changing defect density with system size rather than due to delocalisation of the states." />
|
||||
<figcaption aria-hidden="true"><span>Figure 2:</span> Energy resolved
|
||||
alt="Figure 3: Energy resolved DOS(\omega) and \tau (the scaling exponent of IPR(\omega) against system size N). The left column shows the Anderson phase U = 2 at high T = 2.5 and the CDW phase at low T = 1.5 temperature. IPRs are evaluated for one of the in-gap states \omega_0/U = 0.057 and the center of the band \omega_1 U = 0.81. The right column shows instead the Mott and CDW phases at U = 5 with \omega_0/U = 0.24 and \omega_1/U = 0.571. For all the plots J = 5,\;\alpha = 1.25 and the fits for \tau use system sizes greater than 60. The measured \tau_0,\tau_1 for each figure are: (a) (0.06\pm0.01, 0.02\pm0.01 (b) 0.04\pm0.02, 0.00\pm0.01 (c) 0.05\pm0.03, 0.30\pm0.03 (d) 0.06\pm0.04, 0.15\pm0.05 We show later that the apparent scaling of the IPR with system size can be explained by the changing defect density with system size rather than due to delocalisation of the states." />
|
||||
<figcaption aria-hidden="true"><span>Figure 3:</span> Energy resolved
|
||||
DOS(<span class="math inline">\(\omega\)</span>) and <span
|
||||
class="math inline">\(\tau\)</span> (the scaling exponent of IPR(<span
|
||||
class="math inline">\(\omega\)</span>) against system size <span
|
||||
@ -485,8 +261,8 @@ states.</figcaption>
|
||||
<div id="fig:band_opening" class="fignos">
|
||||
<figure>
|
||||
<img src="pdf_figs/gap_openingboth.svg"
|
||||
alt="Figure 3: The DOS (a and c) and scaling exponent \tau (b and d) as a function of energy and temperature. (a) and (b) show the system transitioning from the CDW phase to the gapless Anderson insulating one at U=2 while (c) and (d) show the CDW to gapped Mott phase transition at U=5. Regions where the DOS is close to zero are shown a white. The scaling exponent \tau is obtained from fits to IPR(N) = A N^{-\lambda} for a range of system sizes. U = 5,\;J = 5,\;\alpha = 1.25" />
|
||||
<figcaption aria-hidden="true"><span>Figure 3:</span> The DOS (a and c)
|
||||
alt="Figure 4: The DOS (a and c) and scaling exponent \tau (b and d) as a function of energy and temperature. (a) and (b) show the system transitioning from the CDW phase to the gapless Anderson insulating one at U=2 while (c) and (d) show the CDW to gapped Mott phase transition at U=5. Regions where the DOS is close to zero are shown a white. The scaling exponent \tau is obtained from fits to IPR(N) = A N^{-\lambda} for a range of system sizes. U = 5,\;J = 5,\;\alpha = 1.25" />
|
||||
<figcaption aria-hidden="true"><span>Figure 4:</span> The DOS (a and c)
|
||||
and scaling exponent <span class="math inline">\(\tau\)</span> (b and d)
|
||||
as a function of energy and temperature. (a) and (b) show the system
|
||||
transitioning from the CDW phase to the gapless Anderson insulating one
|
||||
@ -511,8 +287,8 @@ alt="The DOS (a) and scaling exponent \tau (b) as a function of energy for the C
|
||||
<div id="fig:indiv_IPR_disorder" class="fignos">
|
||||
<figure>
|
||||
<img src="pdf_figs/indiv_IPR_disorder.svg"
|
||||
alt="Figure 4: A comparison of the full FK model to a simple binary disorder model (DM) with a CDW wave background perturbed by uncorrelated defects at density 0 < \rho < 1 matched to the largest corresponding FK model. As in Fig 2, the Energy resolved DOS(\omega) and \tau are shown. The DOSs match well and this data makes clear that the apparent scaling of IPR with system size is a finite size effect due to weak localisation [2], hence all the states are indeed localised as one would expect in 1D. The disorder model \tau_0,\tau_1 for each figure are: (a) 0.01\pm0.05, -0.02\pm0.06 (b) 0.01\pm0.04, -0.01\pm0.04 (c) 0.05\pm0.06, 0.04\pm0.06 (d) -0.03\pm0.06, 0.01\pm0.06. The lines are fit on system sizes N > 400" />
|
||||
<figcaption aria-hidden="true"><span>Figure 4:</span> A comparison of
|
||||
alt="Figure 5: A comparison of the full FK model to a simple binary disorder model (DM) with a CDW wave background perturbed by uncorrelated defects at density 0 < \rho < 1 matched to the largest corresponding FK model. As in Fig 2, the Energy resolved DOS(\omega) and \tau are shown. The DOSs match well and this data makes clear that the apparent scaling of IPR with system size is a finite size effect due to weak localisation [2], hence all the states are indeed localised as one would expect in 1D. The disorder model \tau_0,\tau_1 for each figure are: (a) 0.01\pm0.05, -0.02\pm0.06 (b) 0.01\pm0.04, -0.01\pm0.04 (c) 0.05\pm0.06, 0.04\pm0.06 (d) -0.03\pm0.06, 0.01\pm0.06. The lines are fit on system sizes N > 400" />
|
||||
<figcaption aria-hidden="true"><span>Figure 5:</span> A comparison of
|
||||
the full FK model to a simple binary disorder model (DM) with a CDW wave
|
||||
background perturbed by uncorrelated defects at density <span
|
||||
class="math inline">\(0 < \rho < 1\)</span> matched to the largest
|
||||
@ -624,7 +400,11 @@ interactions, here manifest as a peculiar binary potential, and
|
||||
localization can be very intricate and the added advantage of our 1D
|
||||
model is that we can explore very large system sizes for a complete
|
||||
understanding.</p>
|
||||
<h1 id="discussion-conclusion">Discussion & Conclusion</h1>
|
||||
</section>
|
||||
</section>
|
||||
<section id="discussion-and-conclusion-secamk-conclusion"
|
||||
class="level1">
|
||||
<h1>Discussion and Conclusion {sec:AMK-Conclusion}</h1>
|
||||
<p>The FK model is one of the simplest non-trivial models of interacting
|
||||
fermions. We studied its thermodynamic and localisation properties
|
||||
brought down in dimensionality to 1D by adding a novel long-ranged
|
||||
@ -666,17 +446,7 @@ thermal domain wall defects. Finally, the rich physics of our model
|
||||
should be realizable in systems with long-range interactions, such as
|
||||
trapped ion quantum simulators, where one can also explore the fully
|
||||
interacting regime with a dynamical background field.</p>
|
||||
<h1 id="acknowledgments">Acknowledgments</h1>
|
||||
<p>We wish to acknowledge the support of Alexander Belcik who was
|
||||
involved with the initial stages of the project. We thank Angus
|
||||
MacKinnon for helpful discussions, Sophie Nadel for input when preparing
|
||||
the figures and acknowledge support from the Imperial-TUM flagship
|
||||
partnership. This work was supported in part by the Engineering and
|
||||
Physical Sciences Research Council (EPSRC) <a
|
||||
href="https://gtr.ukri.org/project/145404DD-ABAD-4CFB-A2D8-152A6AFCCEB7#/tabOverview">Project
|
||||
No. 2120140</a>.</p>
|
||||
<h1 id="uncorrelated-disorder-model"><span id="app:disorder_model"
|
||||
label="app:disorder_model"></span> UNCORRELATED DISORDER MODEL</h1>
|
||||
<p><strong>UNCORRELATED DISORDER MODEL</strong></p>
|
||||
<p>The disorder model referred to in the main text is defined by
|
||||
replacing the spin degree of freedom in the FK model <span
|
||||
class="math inline">\(S_i = \pm \tfrac{1}{2}\)</span> with a disorder
|
||||
@ -698,7 +468,9 @@ H_{\mathrm{DM}} = & \;U \sum_{i} (-1)^i \; d_i \;(c^\dag_{i}c_{i} -
|
||||
\nonumber\end{aligned}\]</span></p>
|
||||
<div class="sourceCode" id="cb1"><pre
|
||||
class="sourceCode python"><code class="sourceCode python"></code></pre></div>
|
||||
<h1 class="unnumbered" id="bibliography">Bibliography</h1>
|
||||
</section>
|
||||
<section id="bibliography" class="level1 unnumbered">
|
||||
<h1 class="unnumbered">Bibliography</h1>
|
||||
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
|
||||
<div id="ref-binderFiniteSizeScaling1981" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
@ -790,6 +562,9 @@ Model</a></em>, J. Phys. A: Math. Gen. <strong>30</strong>, L711
|
||||
(1997).</div>
|
||||
</div>
|
||||
</div>
|
||||
</section>
|
||||
|
||||
|
||||
</main>
|
||||
</body>
|
||||
</html>
|
||||
|
@ -13,189 +13,11 @@ image:
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
|
||||
<meta name="description" content="A short introduction to the weird and wonderful world of exactly solvable quantum models." />
|
||||
<title>The Amorphous Kitaev Model - Introduction part 2</title>
|
||||
<!-- <style>
|
||||
html {
|
||||
line-height: 1.5;
|
||||
font-family: Georgia, serif;
|
||||
font-size: 20px;
|
||||
color: #1a1a1a;
|
||||
background-color: #fdfdfd;
|
||||
}
|
||||
body {
|
||||
margin: 0 auto;
|
||||
max-width: 36em;
|
||||
padding-left: 50px;
|
||||
padding-right: 50px;
|
||||
padding-top: 50px;
|
||||
padding-bottom: 50px;
|
||||
hyphens: auto;
|
||||
overflow-wrap: break-word;
|
||||
text-rendering: optimizeLegibility;
|
||||
font-kerning: normal;
|
||||
}
|
||||
@media (max-width: 600px) {
|
||||
body {
|
||||
font-size: 0.9em;
|
||||
padding: 1em;
|
||||
}
|
||||
h1 {
|
||||
font-size: 1.8em;
|
||||
}
|
||||
}
|
||||
@media print {
|
||||
body {
|
||||
background-color: transparent;
|
||||
color: black;
|
||||
font-size: 12pt;
|
||||
}
|
||||
p, h2, h3 {
|
||||
orphans: 3;
|
||||
widows: 3;
|
||||
}
|
||||
h2, h3, h4 {
|
||||
page-break-after: avoid;
|
||||
}
|
||||
}
|
||||
p {
|
||||
margin: 1em 0;
|
||||
}
|
||||
a {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
a:visited {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
img {
|
||||
max-width: 100%;
|
||||
}
|
||||
h1, h2, h3, h4, h5, h6 {
|
||||
margin-top: 1.4em;
|
||||
}
|
||||
h5, h6 {
|
||||
font-size: 1em;
|
||||
font-style: italic;
|
||||
}
|
||||
h6 {
|
||||
font-weight: normal;
|
||||
}
|
||||
ol, ul {
|
||||
padding-left: 1.7em;
|
||||
margin-top: 1em;
|
||||
}
|
||||
li > ol, li > ul {
|
||||
margin-top: 0;
|
||||
}
|
||||
blockquote {
|
||||
margin: 1em 0 1em 1.7em;
|
||||
padding-left: 1em;
|
||||
border-left: 2px solid #e6e6e6;
|
||||
color: #606060;
|
||||
}
|
||||
code {
|
||||
font-family: Menlo, Monaco, 'Lucida Console', Consolas, monospace;
|
||||
font-size: 85%;
|
||||
margin: 0;
|
||||
}
|
||||
pre {
|
||||
margin: 1em 0;
|
||||
overflow: auto;
|
||||
}
|
||||
pre code {
|
||||
padding: 0;
|
||||
overflow: visible;
|
||||
overflow-wrap: normal;
|
||||
}
|
||||
.sourceCode {
|
||||
background-color: transparent;
|
||||
overflow: visible;
|
||||
}
|
||||
hr {
|
||||
background-color: #1a1a1a;
|
||||
border: none;
|
||||
height: 1px;
|
||||
margin: 1em 0;
|
||||
}
|
||||
table {
|
||||
margin: 1em 0;
|
||||
border-collapse: collapse;
|
||||
width: 100%;
|
||||
overflow-x: auto;
|
||||
display: block;
|
||||
font-variant-numeric: lining-nums tabular-nums;
|
||||
}
|
||||
table caption {
|
||||
margin-bottom: 0.75em;
|
||||
}
|
||||
tbody {
|
||||
margin-top: 0.5em;
|
||||
border-top: 1px solid #1a1a1a;
|
||||
border-bottom: 1px solid #1a1a1a;
|
||||
}
|
||||
th {
|
||||
border-top: 1px solid #1a1a1a;
|
||||
padding: 0.25em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
td {
|
||||
padding: 0.125em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
header {
|
||||
margin-bottom: 4em;
|
||||
text-align: center;
|
||||
}
|
||||
#TOC li {
|
||||
list-style: none;
|
||||
}
|
||||
#TOC ul {
|
||||
padding-left: 1.3em;
|
||||
}
|
||||
#TOC > ul {
|
||||
padding-left: 0;
|
||||
}
|
||||
#TOC a:not(:hover) {
|
||||
text-decoration: none;
|
||||
}
|
||||
code{white-space: pre-wrap;}
|
||||
span.smallcaps{font-variant: small-caps;}
|
||||
span.underline{text-decoration: underline;}
|
||||
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
||||
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
||||
ul.task-list{list-style: none;}
|
||||
div.csl-bib-body { }
|
||||
div.csl-entry {
|
||||
clear: both;
|
||||
}
|
||||
.hanging div.csl-entry {
|
||||
margin-left:2em;
|
||||
text-indent:-2em;
|
||||
}
|
||||
div.csl-left-margin {
|
||||
min-width:2em;
|
||||
float:left;
|
||||
}
|
||||
div.csl-right-inline {
|
||||
margin-left:2em;
|
||||
padding-left:1em;
|
||||
}
|
||||
div.csl-indent {
|
||||
margin-left: 2em;
|
||||
}
|
||||
</style> -->
|
||||
|
||||
<!-- <script
|
||||
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js"
|
||||
type="text/javascript"></script>
|
||||
-->
|
||||
|
||||
<!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
|
||||
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3.0.1/es5/tex-mml-chtml.js"></script>
|
||||
-->
|
||||
|
||||
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
|
||||
<script src="/assets/js/thesis_scrollspy.js"></script>
|
||||
|
||||
|
||||
<!--[if lt IE 9]>
|
||||
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
|
||||
<![endif]-->
|
||||
<link rel="stylesheet" href="/assets/css/styles.css">
|
||||
<script src="/assets/js/index.js"></script>
|
||||
</head>
|
||||
@ -204,7 +26,7 @@ image:
|
||||
<!--Capture the table of contents from pandoc as a jekyll variable -->
|
||||
{% capture tableOfContents %}
|
||||
<br>
|
||||
Contents:
|
||||
<nav aria-label="Table of Contents" class="page-table-of-contents">
|
||||
<ul>
|
||||
<li><a href="#gauge-fields" id="toc-gauge-fields">Gauge Fields</a>
|
||||
<ul>
|
||||
@ -253,12 +75,15 @@ Statistics</a></li>
|
||||
</ul></li>
|
||||
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
{% endcapture %}
|
||||
|
||||
<!-- Give the table of contents to header as a variable -->
|
||||
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
|
||||
{% include header.html extra=tableOfContents %}
|
||||
|
||||
<main>
|
||||
|
||||
<!-- Table of Contents -->
|
||||
<!-- <nav id="TOC" role="doc-toc">
|
||||
<ul>
|
||||
<li><a href="#gauge-fields" id="toc-gauge-fields">Gauge Fields</a>
|
||||
@ -310,7 +135,10 @@ Statistics</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
-->
|
||||
<h2 id="gauge-fields">Gauge Fields</h2>
|
||||
|
||||
<!-- Main Page Body -->
|
||||
<section id="gauge-fields" class="level2">
|
||||
<h2>Gauge Fields</h2>
|
||||
<p>The bond operators <span class="math inline">\(u_{ij}\)</span> are
|
||||
useful because they label a bond sector <span
|
||||
class="math inline">\(\mathcal{\tilde{L}}_u\)</span> in which we can
|
||||
@ -337,7 +165,8 @@ to its neighbour in each plaquette operator. This is consistent with the
|
||||
earlier observation that each <span class="math inline">\(W_p\)</span>
|
||||
takes values <span class="math inline">\(\pm 1\)</span> for even paths
|
||||
and <span class="math inline">\(\pm i\)</span> for odd paths.</p>
|
||||
<h3 id="vortices-and-their-movements">Vortices and their movements</h3>
|
||||
<section id="vortices-and-their-movements" class="level3">
|
||||
<h3>Vortices and their movements</h3>
|
||||
<div id="fig:types_of_dual_loops_animated" class="fignos">
|
||||
<figure>
|
||||
<img
|
||||
@ -381,8 +210,9 @@ a closed loop on the dual lattice. Applying such a bond flip leaves the
|
||||
vortex sector unchanged. We can also do the same thing but move the
|
||||
vortex around one the non-contractible loops of the lattice (fig. <a
|
||||
href="#fig:types_of_dual_loops_animated">1</a> (d)).</p>
|
||||
<h3 id="dual-loops-and-gauge-symmetries">Dual Loops and gauge
|
||||
symmetries</h3>
|
||||
</section>
|
||||
<section id="dual-loops-and-gauge-symmetries" class="level3">
|
||||
<h3>Dual Loops and gauge symmetries</h3>
|
||||
<div id="fig:gauge_symmetries" class="fignos">
|
||||
<figure>
|
||||
<img
|
||||
@ -428,7 +258,9 @@ class="math inline">\(D_j\)</span>s, the non-contractible loops.</p>
|
||||
<p><strong>The plaquette operators and topological fluxes are the gauge
|
||||
invariant quantities which determine the physics of the
|
||||
model</strong></p>
|
||||
<h3 id="composition-of-wilson-loops">Composition of Wilson loops</h3>
|
||||
</section>
|
||||
<section id="composition-of-wilson-loops" class="level3">
|
||||
<h3>Composition of Wilson loops</h3>
|
||||
<div id="fig:plaquette_addition_by_hand" class="fignos">
|
||||
<figure>
|
||||
<img
|
||||
@ -475,8 +307,9 @@ discrete version of Stoke’s theorem.</figcaption>
|
||||
</div>
|
||||
<p>Takeaway: Wilson loops can always be decomposed into products of
|
||||
plaquettes operators unless they are non-contractable.</p>
|
||||
<h3 id="gauge-degeneracy-and-the-euler-equation">Gauge Degeneracy and
|
||||
the Euler Equation</h3>
|
||||
</section>
|
||||
<section id="gauge-degeneracy-and-the-euler-equation" class="level3">
|
||||
<h3>Gauge Degeneracy and the Euler Equation</h3>
|
||||
<div id="fig:state_decomposition_animated" class="fignos">
|
||||
<figure>
|
||||
<img
|
||||
@ -626,8 +459,9 @@ chosen from a tree since loops can be removed by a gauge
|
||||
transformation.</figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
<h3 id="counting-edges-plaquettes-and-vertices">Counting edges,
|
||||
plaquettes and vertices</h3>
|
||||
</section>
|
||||
<section id="counting-edges-plaquettes-and-vertices" class="level3">
|
||||
<h3>Counting edges, plaquettes and vertices</h3>
|
||||
<p>It is useful to know how the trivalent structure of the lattice
|
||||
constrains the number of bonds <span class="math inline">\(B\)</span>,
|
||||
plaquettes <span class="math inline">\(P\)</span> and vertices <span
|
||||
@ -667,7 +501,10 @@ fig. <a href="#fig:flood_fill">7</a> but for the amorphous
|
||||
lattice.</figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
<h2 id="the-projector">The Projector</h2>
|
||||
</section>
|
||||
</section>
|
||||
<section id="the-projector" class="level2">
|
||||
<h2>The Projector</h2>
|
||||
<p>The projection from the extended space to the physical space will not
|
||||
be particularly important for the results presented here. However, the
|
||||
theory remains useful to explain why this is.</p>
|
||||
@ -782,7 +619,8 @@ determined the single particle eigenstates of a bond sector, the true
|
||||
many body ground state has the same energy as either the empty state
|
||||
with <span class="math inline">\(n_i = 0\)</span> or a state with a
|
||||
single fermion in the lowest level.</p>
|
||||
<h3 id="ground-state-degeneracy">Ground State Degeneracy</h3>
|
||||
<section id="ground-state-degeneracy" class="level3">
|
||||
<h3>Ground State Degeneracy</h3>
|
||||
<div id="fig:loops_and_dual_loops" class="fignos">
|
||||
<figure>
|
||||
<img
|
||||
@ -848,7 +686,9 @@ degeneracy in the Abelian phase and a threefold degeneracy in the
|
||||
non-Abelian phase.</figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
<h3 id="quick-breather">Quick Breather</h3>
|
||||
</section>
|
||||
<section id="quick-breather" class="level3">
|
||||
<h3>Quick Breather</h3>
|
||||
<p>Let’s consider where are with the model now. We can map the spin
|
||||
Hamiltonian to a Majorana Hamiltonian in an extended Hilbert space.
|
||||
Along with that mapping comes a gauge field <span
|
||||
@ -877,7 +717,10 @@ fermions in the system grows.</p>
|
||||
basis, we would need to include the full symmetrisation over the gauge
|
||||
fields. However, this was not necessary for any of the results that will
|
||||
be presented here.</p>
|
||||
<h2 id="the-ground-state">The Ground State</h2>
|
||||
</section>
|
||||
</section>
|
||||
<section id="the-ground-state" class="level2">
|
||||
<h2>The Ground State</h2>
|
||||
<p>We have shown that the Hamiltonian is gauge invariant. As a result,
|
||||
only the flux sector and the two topological fluxes affect the spectrum
|
||||
of the Hamiltonian. Thus, we can label the many body ground state by a
|
||||
@ -981,7 +824,8 @@ lattices <span class="citation" data-cites="lieb_flux_1994"> [<a
|
||||
href="#ref-lieb_flux_1994" role="doc-biblioref">5</a>]</span> and is
|
||||
supported by numerical evidence. As noted before, any flux that differs
|
||||
from the ground state is an excitation which we call a vortex.</p>
|
||||
<h3 id="finite-size-effects">Finite size effects</h3>
|
||||
<section id="finite-size-effects" class="level3">
|
||||
<h3>Finite size effects</h3>
|
||||
<p>This guess only works for larger lattices. To rigorously test it, we
|
||||
would want to directly enumerate the <span
|
||||
class="math inline">\(2^N\)</span> vortex sectors for a smaller lattice
|
||||
@ -1026,7 +870,9 @@ class="math inline">\(\phi_0\)</span> correctly predicts the ground
|
||||
state for hundreds of thousands of lattices with up to twenty
|
||||
plaquettes. For larger lattices, we verified that random perturbations
|
||||
around the predicted ground state never yield a lower energy state.</p>
|
||||
<h3 id="chiral-symmetry">Chiral Symmetry</h3>
|
||||
</section>
|
||||
<section id="chiral-symmetry" class="level3">
|
||||
<h3>Chiral Symmetry</h3>
|
||||
<p>The discussion above shows that the ground state has a twofold
|
||||
<strong>chiral</strong> degeneracy which arises because the global sign
|
||||
of the odd plaquettes does not matter.</p>
|
||||
@ -1043,15 +889,19 @@ class="math inline">\(\phi\)</span> fluxes <span class="citation"
|
||||
data-cites="yaoExactChiralSpin2007"> [<a
|
||||
href="#ref-yaoExactChiralSpin2007"
|
||||
role="doc-biblioref">7</a>]</span>.</p>
|
||||
<h2 id="phases-of-the-kitaev-model">Phases of the Kitaev Model</h2>
|
||||
</section>
|
||||
</section>
|
||||
<section id="phases-of-the-kitaev-model" class="level2">
|
||||
<h2>Phases of the Kitaev Model</h2>
|
||||
<p>discuss the Abelian A phase / toric code phase / anisotropic
|
||||
phase</p>
|
||||
<p>the isotropic gapless phase of the standard model</p>
|
||||
<p>The isotropic gapped phase with the addition of a magnetic field</p>
|
||||
<h2 id="what-is-so-great-about-two-dimensions">What is so great about
|
||||
two dimensions?</h2>
|
||||
<h3 id="topology-chirality-and-edge-modes">Topology, chirality and edge
|
||||
modes</h3>
|
||||
</section>
|
||||
<section id="what-is-so-great-about-two-dimensions" class="level2">
|
||||
<h2>What is so great about two dimensions?</h2>
|
||||
<section id="topology-chirality-and-edge-modes" class="level3">
|
||||
<h3>Topology, chirality and edge modes</h3>
|
||||
<p>Most thermodynamic and quantum phases studied can be characterised by
|
||||
a local order parameter. That is, a function or operator that only
|
||||
requires knowledge about some fixed sized patch of the system that does
|
||||
@ -1067,7 +917,9 @@ distinguish it from standard symmetry breaking.</p>
|
||||
defined on a graph that is embedded either into the plane or onto the
|
||||
torus. The extension to surfaces like the torus but with more than one
|
||||
handle is relatively easy.</p>
|
||||
<h3 id="anyonic-statistics">Anyonic Statistics</h3>
|
||||
</section>
|
||||
<section id="anyonic-statistics" class="level3">
|
||||
<h3>Anyonic Statistics</h3>
|
||||
<p><strong>NB: I’m thinking about moving this section to the overall
|
||||
intro, but it’s nice to be able to refer to specifics of the Kitaev
|
||||
model also so I’m not sure. It currently repeats a discussion of the
|
||||
@ -1213,7 +1065,10 @@ href="#ref-hastingsDynamicallyGeneratedLogical2021"
|
||||
role="doc-biblioref">17</a>,<a
|
||||
href="#ref-kitaevFaulttolerantQuantumComputation2003"
|
||||
role="doc-biblioref"><strong>kitaevFaulttolerantQuantumComputation2003?</strong></a>]</span>.</p>
|
||||
<h1 class="unnumbered" id="bibliography">Bibliography</h1>
|
||||
</section>
|
||||
</section>
|
||||
<section id="bibliography" class="level1 unnumbered">
|
||||
<h1 class="unnumbered">Bibliography</h1>
|
||||
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
|
||||
<div id="ref-pedrocchiPhysicalSolutionsKitaev2011" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
@ -1343,6 +1198,9 @@ href="https://doi.org/10.22331/q-2021-10-19-564">Dynamically Generated
|
||||
Logical Qubits</a></em>, Quantum <strong>5</strong>, 564 (2021).</div>
|
||||
</div>
|
||||
</div>
|
||||
</section>
|
||||
|
||||
|
||||
</main>
|
||||
</body>
|
||||
</html>
|
||||
|
@ -13,189 +13,11 @@ image:
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
|
||||
<meta name="description" content="A short introduction to the weird and wonderful world of exactly solvable quantum models." />
|
||||
<title>The Amorphous Kitaev Model - Introduction</title>
|
||||
<!-- <style>
|
||||
html {
|
||||
line-height: 1.5;
|
||||
font-family: Georgia, serif;
|
||||
font-size: 20px;
|
||||
color: #1a1a1a;
|
||||
background-color: #fdfdfd;
|
||||
}
|
||||
body {
|
||||
margin: 0 auto;
|
||||
max-width: 36em;
|
||||
padding-left: 50px;
|
||||
padding-right: 50px;
|
||||
padding-top: 50px;
|
||||
padding-bottom: 50px;
|
||||
hyphens: auto;
|
||||
overflow-wrap: break-word;
|
||||
text-rendering: optimizeLegibility;
|
||||
font-kerning: normal;
|
||||
}
|
||||
@media (max-width: 600px) {
|
||||
body {
|
||||
font-size: 0.9em;
|
||||
padding: 1em;
|
||||
}
|
||||
h1 {
|
||||
font-size: 1.8em;
|
||||
}
|
||||
}
|
||||
@media print {
|
||||
body {
|
||||
background-color: transparent;
|
||||
color: black;
|
||||
font-size: 12pt;
|
||||
}
|
||||
p, h2, h3 {
|
||||
orphans: 3;
|
||||
widows: 3;
|
||||
}
|
||||
h2, h3, h4 {
|
||||
page-break-after: avoid;
|
||||
}
|
||||
}
|
||||
p {
|
||||
margin: 1em 0;
|
||||
}
|
||||
a {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
a:visited {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
img {
|
||||
max-width: 100%;
|
||||
}
|
||||
h1, h2, h3, h4, h5, h6 {
|
||||
margin-top: 1.4em;
|
||||
}
|
||||
h5, h6 {
|
||||
font-size: 1em;
|
||||
font-style: italic;
|
||||
}
|
||||
h6 {
|
||||
font-weight: normal;
|
||||
}
|
||||
ol, ul {
|
||||
padding-left: 1.7em;
|
||||
margin-top: 1em;
|
||||
}
|
||||
li > ol, li > ul {
|
||||
margin-top: 0;
|
||||
}
|
||||
blockquote {
|
||||
margin: 1em 0 1em 1.7em;
|
||||
padding-left: 1em;
|
||||
border-left: 2px solid #e6e6e6;
|
||||
color: #606060;
|
||||
}
|
||||
code {
|
||||
font-family: Menlo, Monaco, 'Lucida Console', Consolas, monospace;
|
||||
font-size: 85%;
|
||||
margin: 0;
|
||||
}
|
||||
pre {
|
||||
margin: 1em 0;
|
||||
overflow: auto;
|
||||
}
|
||||
pre code {
|
||||
padding: 0;
|
||||
overflow: visible;
|
||||
overflow-wrap: normal;
|
||||
}
|
||||
.sourceCode {
|
||||
background-color: transparent;
|
||||
overflow: visible;
|
||||
}
|
||||
hr {
|
||||
background-color: #1a1a1a;
|
||||
border: none;
|
||||
height: 1px;
|
||||
margin: 1em 0;
|
||||
}
|
||||
table {
|
||||
margin: 1em 0;
|
||||
border-collapse: collapse;
|
||||
width: 100%;
|
||||
overflow-x: auto;
|
||||
display: block;
|
||||
font-variant-numeric: lining-nums tabular-nums;
|
||||
}
|
||||
table caption {
|
||||
margin-bottom: 0.75em;
|
||||
}
|
||||
tbody {
|
||||
margin-top: 0.5em;
|
||||
border-top: 1px solid #1a1a1a;
|
||||
border-bottom: 1px solid #1a1a1a;
|
||||
}
|
||||
th {
|
||||
border-top: 1px solid #1a1a1a;
|
||||
padding: 0.25em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
td {
|
||||
padding: 0.125em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
header {
|
||||
margin-bottom: 4em;
|
||||
text-align: center;
|
||||
}
|
||||
#TOC li {
|
||||
list-style: none;
|
||||
}
|
||||
#TOC ul {
|
||||
padding-left: 1.3em;
|
||||
}
|
||||
#TOC > ul {
|
||||
padding-left: 0;
|
||||
}
|
||||
#TOC a:not(:hover) {
|
||||
text-decoration: none;
|
||||
}
|
||||
code{white-space: pre-wrap;}
|
||||
span.smallcaps{font-variant: small-caps;}
|
||||
span.underline{text-decoration: underline;}
|
||||
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
||||
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
||||
ul.task-list{list-style: none;}
|
||||
div.csl-bib-body { }
|
||||
div.csl-entry {
|
||||
clear: both;
|
||||
}
|
||||
.hanging div.csl-entry {
|
||||
margin-left:2em;
|
||||
text-indent:-2em;
|
||||
}
|
||||
div.csl-left-margin {
|
||||
min-width:2em;
|
||||
float:left;
|
||||
}
|
||||
div.csl-right-inline {
|
||||
margin-left:2em;
|
||||
padding-left:1em;
|
||||
}
|
||||
div.csl-indent {
|
||||
margin-left: 2em;
|
||||
}
|
||||
</style> -->
|
||||
|
||||
<!-- <script
|
||||
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js"
|
||||
type="text/javascript"></script>
|
||||
-->
|
||||
|
||||
<!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
|
||||
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3.0.1/es5/tex-mml-chtml.js"></script>
|
||||
-->
|
||||
|
||||
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
|
||||
<script src="/assets/js/thesis_scrollspy.js"></script>
|
||||
|
||||
|
||||
<!--[if lt IE 9]>
|
||||
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
|
||||
<![endif]-->
|
||||
<link rel="stylesheet" href="/assets/css/styles.css">
|
||||
<script src="/assets/js/index.js"></script>
|
||||
</head>
|
||||
@ -204,11 +26,9 @@ image:
|
||||
<!--Capture the table of contents from pandoc as a jekyll variable -->
|
||||
{% capture tableOfContents %}
|
||||
<br>
|
||||
Contents:
|
||||
<nav aria-label="Table of Contents" class="page-table-of-contents">
|
||||
<ul>
|
||||
<li><a href="#contributions"
|
||||
id="toc-contributions">Contributions</a></li>
|
||||
<li><a href="#introduction" id="toc-introduction">Introduction</a>
|
||||
<li><a href="#sec:AMK-Model" id="toc-sec:AMK-Model">The Model</a>
|
||||
<ul>
|
||||
<li><a href="#amorphous-systems" id="toc-amorphous-systems">Amorphous
|
||||
Systems</a></li>
|
||||
@ -239,17 +59,18 @@ id="toc-open-boundary-conditions">Open boundary conditions</a></li>
|
||||
</ul></li>
|
||||
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
{% endcapture %}
|
||||
|
||||
<!-- Give the table of contents to header as a variable -->
|
||||
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
|
||||
{% include header.html extra=tableOfContents %}
|
||||
|
||||
<main>
|
||||
|
||||
<!-- Table of Contents -->
|
||||
<!-- <nav id="TOC" role="doc-toc">
|
||||
<ul>
|
||||
<li><a href="#contributions"
|
||||
id="toc-contributions">Contributions</a></li>
|
||||
<li><a href="#introduction" id="toc-introduction">Introduction</a>
|
||||
<li><a href="#sec:AMK-Model" id="toc-sec:AMK-Model">The Model</a>
|
||||
<ul>
|
||||
<li><a href="#amorphous-systems" id="toc-amorphous-systems">Amorphous
|
||||
Systems</a></li>
|
||||
@ -282,7 +103,9 @@ id="toc-open-boundary-conditions">Open boundary conditions</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
-->
|
||||
<h1 id="contributions">Contributions</h1>
|
||||
|
||||
<!-- Main Page Body -->
|
||||
<p><strong>Contributions</strong></p>
|
||||
<p>The material in this chapter expands on work presented in</p>
|
||||
<p><strong>Insert citation of amorphous Kitaev paper here</strong></p>
|
||||
<p>which was a joint project of the first three authors with advice and
|
||||
@ -301,7 +124,8 @@ rest of the programming for Koala while pair programming and
|
||||
’whiteboard’ing, this included the phase diagram, edge mode and finite
|
||||
temperature analyses as well as the derivation of the projector in the
|
||||
amorphous case.</p>
|
||||
<h1 id="introduction">Introduction</h1>
|
||||
<section id="sec:AMK-Model" class="level1">
|
||||
<h1>The Model</h1>
|
||||
<div id="fig:intro_figure_by_hand" class="fignos">
|
||||
<figure>
|
||||
<img
|
||||
@ -361,7 +185,8 @@ about because the model has extensively many conserved degrees of
|
||||
freedom. These conserved quantities can be factored out as classical
|
||||
degrees of freedom, leaving behind a non-interacting quantum model that
|
||||
is easy to solve.</p>
|
||||
<h2 id="amorphous-systems">Amorphous Systems</h2>
|
||||
<section id="amorphous-systems" class="level2">
|
||||
<h2>Amorphous Systems</h2>
|
||||
<p><strong>Insert discussion of why a generalisation to the amorphous
|
||||
case is interesting</strong></p>
|
||||
<p>This chapter details the physics of the Kitaev model on amorphous
|
||||
@ -391,7 +216,9 @@ that there is a phase transition to a thermal metal state.</p>
|
||||
and the motivations for doing so. It also discusses how a well known
|
||||
quantum error correcting code defined on the Kitaev Honeycomb model
|
||||
could be generalised to the amorphous case.</p>
|
||||
<h2 id="glossary">Glossary</h2>
|
||||
</section>
|
||||
<section id="glossary" class="level2">
|
||||
<h2>Glossary</h2>
|
||||
<ul>
|
||||
<li><p>Lattice: The underlying graph on which the models are defined.
|
||||
Composed of sites (vertices), bonds (edges) and plaquettes
|
||||
@ -465,12 +292,16 @@ class="math inline">\(A_\alpha\)</span> means <span
|
||||
class="math inline">\(J_\alpha >> J_\beta, J_\gamma\)</span>.</li>
|
||||
<li>The B phase: The roughly isotropic region of the phase diagram.</li>
|
||||
</ul>
|
||||
<h2 id="the-kitaev-model">The Kitaev Model</h2>
|
||||
<h3 id="commutation-relations">Commutation relations</h3>
|
||||
</section>
|
||||
<section id="the-kitaev-model" class="level2">
|
||||
<h2>The Kitaev Model</h2>
|
||||
<section id="commutation-relations" class="level3">
|
||||
<h3>Commutation relations</h3>
|
||||
<p>Before diving into the Hamiltonian of the Kitaev model, the following
|
||||
describes the key commutation relations of spins, fermions and
|
||||
Majoranas.</p>
|
||||
<h4 id="spins">Spins</h4>
|
||||
<section id="spins" class="level4">
|
||||
<h4>Spins</h4>
|
||||
<p>Skip this is you are familiar with the algebra of the Pauli matrices.
|
||||
Scalars like <span class="math inline">\(\delta_{ij}\)</span> should be
|
||||
understood to be multiplied by an implicit identity <span
|
||||
@ -502,7 +333,9 @@ be computed relatively easily by applying the above relations yielding:
|
||||
i \epsilon^{\alpha\beta\gamma}\]</span> and <span
|
||||
class="math display">\[[\sigma^\alpha \sigma^\beta, \sigma^\gamma] =
|
||||
0\]</span></p>
|
||||
<h4 id="fermions-and-majoranas">Fermions and Majoranas</h4>
|
||||
</section>
|
||||
<section id="fermions-and-majoranas" class="level4">
|
||||
<h4>Fermions and Majoranas</h4>
|
||||
<p>The fermionic creation and anhilation operators are defined by the
|
||||
canonical anticommutation relations <span
|
||||
class="math display">\[\begin{aligned}
|
||||
@ -540,7 +373,10 @@ alt="Figure 2: A visual introduction to the Kitaev Model." />
|
||||
introduction to the Kitaev Model.</figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
<h3 id="the-hamiltonian">The Hamiltonian</h3>
|
||||
</section>
|
||||
</section>
|
||||
<section id="the-hamiltonian" class="level3">
|
||||
<h3>The Hamiltonian</h3>
|
||||
<p>To start from the fundamentals, the Kitaev Honeycomb model is a model
|
||||
of interacting spin<span class="math inline">\(-1/2\)</span>s on the
|
||||
vertices of a honeycomb lattice. Each bond in the lattice is assigned a
|
||||
@ -649,9 +485,11 @@ of a plaquette operator away from the ground state as
|
||||
Hilbert space into a set of ‘vortex sectors’ labelled by that particular
|
||||
flux configuration <span class="math inline">\(\phi_i = \pm 1,\pm
|
||||
i\)</span>.</p>
|
||||
<h3 id="from-spins-to-majorana-operators">From Spins to Majorana
|
||||
operators</h3>
|
||||
<h4 id="for-a-single-spin">For a single spin</h4>
|
||||
</section>
|
||||
<section id="from-spins-to-majorana-operators" class="level3">
|
||||
<h3>From Spins to Majorana operators</h3>
|
||||
<section id="for-a-single-spin" class="level4">
|
||||
<h4>For a single spin</h4>
|
||||
<p>Let us start by considering only one site and its <span
|
||||
class="math inline">\(\sigma^x, \sigma^y\)</span> and <span
|
||||
class="math inline">\(\sigma^z\)</span> operators which live in a two
|
||||
@ -704,7 +542,9 @@ instead get <span class="math display">\[
|
||||
\tilde{\sigma}^x\tilde{\sigma}^y\tilde{\sigma}^z = iD \]</span></p>
|
||||
<p>This makes sense if we promise to confine ourselves to the physical
|
||||
subspace <span class="math inline">\(D = 1\)</span>.</p>
|
||||
<h4 id="for-multiple-spins">For multiple spins</h4>
|
||||
</section>
|
||||
<section id="for-multiple-spins" class="level4">
|
||||
<h4>For multiple spins</h4>
|
||||
<p>This construction easily generalises to the case of multiple spins.
|
||||
We get a set of 4 Majoranas <span class="math inline">\(b^x_j,\;
|
||||
b^y_j,\;b^z_j,\; c_j\)</span> and a <span class="math inline">\(D_j =
|
||||
@ -756,8 +596,11 @@ degree of degeneracy.</p>
|
||||
<p>In summary, Majorana bond operators <span
|
||||
class="math inline">\(u_{ij}\)</span> are an emergent, classical, <span
|
||||
class="math inline">\(\mathbb{Z_2}\)</span> gauge field!</p>
|
||||
<h3 id="partitioning-the-hilbert-space-into-bond-sectors">Partitioning
|
||||
the Hilbert Space into Bond sectors</h3>
|
||||
</section>
|
||||
</section>
|
||||
<section id="partitioning-the-hilbert-space-into-bond-sectors"
|
||||
class="level3">
|
||||
<h3>Partitioning the Hilbert Space into Bond sectors</h3>
|
||||
<p>Similarly to the story with the plaquette operators from the spin
|
||||
language, we can divide the Hilbert space <span
|
||||
class="math inline">\(\mathcal{L}\)</span> into sectors labelled by a
|
||||
@ -781,7 +624,10 @@ confined entirely within the physical subspace <span
|
||||
class="math inline">\(\mathcal{L}_p\)</span> and, indeed, we will see
|
||||
that they are not. However, it will be helpful to first develop the
|
||||
theory of the Majorana Hamiltonian further.</p>
|
||||
<h2 id="the-majorana-hamiltonian">The Majorana Hamiltonian</h2>
|
||||
</section>
|
||||
</section>
|
||||
<section id="the-majorana-hamiltonian" class="level2">
|
||||
<h2>The Majorana Hamiltonian</h2>
|
||||
<p>We now have a quadratic Hamiltonian <span class="math display">\[
|
||||
\tilde{H} = \frac{i}{4} \sum_{\langle i,j\rangle_\alpha} 2J^{\alpha}
|
||||
u_{ij} c_i c_j\]</span> in which most of the Majorana degrees of freedom
|
||||
@ -833,8 +679,9 @@ can take half the absolute value of the whole set to recover <span
|
||||
class="math inline">\(\sum_m \epsilon_m\)</span> easily.</p>
|
||||
<p>Takeaway: the Majorana Hamiltonian is quadratic within a Bond
|
||||
Sector.</p>
|
||||
<h3 id="mapping-back-from-bond-sectors-to-the-physical-subspace">Mapping
|
||||
back from Bond Sectors to the Physical Subspace</h3>
|
||||
<section id="mapping-back-from-bond-sectors-to-the-physical-subspace"
|
||||
class="level3">
|
||||
<h3>Mapping back from Bond Sectors to the Physical Subspace</h3>
|
||||
<p>At this point, given a particular bond configuration <span
|
||||
class="math inline">\(u_{ij} = \pm 1\)</span>, we can construct a
|
||||
quadratic Hamiltonian <span class="math inline">\(\tilde{H}_u\)</span>
|
||||
@ -891,7 +738,9 @@ namely how to construct a set of gauge invariant quantities out of the
|
||||
be the plaquette operators.</p>
|
||||
<p>Takeaway: The Bond Sectors overlap with the physical subspace but are
|
||||
not contained within it.</p>
|
||||
<h3 id="open-boundary-conditions">Open boundary conditions</h3>
|
||||
</section>
|
||||
<section id="open-boundary-conditions" class="level3">
|
||||
<h3>Open boundary conditions</h3>
|
||||
<p>Care must be taken when defining open boundary conditions. Simply
|
||||
removing bonds from the lattice leaves behind unpaired <span
|
||||
class="math inline">\(b^\alpha\)</span> operators that must be paired in
|
||||
@ -907,7 +756,11 @@ which we set to 1 when calculating the projector.</p>
|
||||
anyway, an arbitrary pairing of the unpaired <span
|
||||
class="math inline">\(b^\alpha\)</span> operators could be performed.
|
||||
</i,j></i,j></p>
|
||||
<h1 class="unnumbered" id="bibliography">Bibliography</h1>
|
||||
</section>
|
||||
</section>
|
||||
</section>
|
||||
<section id="bibliography" class="level1 unnumbered">
|
||||
<h1 class="unnumbered">Bibliography</h1>
|
||||
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
|
||||
<div id="ref-marsalTopologicalWeaireThorpe2020" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
@ -953,6 +806,9 @@ class="csl-right-inline">J.-P. Blaizot and G. Ripka, <em>Quantum Theory
|
||||
of Finite Systems</em> (The MIT Press, 1986).</div>
|
||||
</div>
|
||||
</div>
|
||||
</section>
|
||||
|
||||
|
||||
</main>
|
||||
</body>
|
||||
</html>
|
||||
|
@ -13,252 +13,11 @@ image:
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
|
||||
<meta name="description" content="The methods used to study the Amorphous Kitaev Model." />
|
||||
<title>The Amorphous Kitaev Model - Introduction</title>
|
||||
<!-- <style>
|
||||
html {
|
||||
line-height: 1.5;
|
||||
font-family: Georgia, serif;
|
||||
font-size: 20px;
|
||||
color: #1a1a1a;
|
||||
background-color: #fdfdfd;
|
||||
}
|
||||
body {
|
||||
margin: 0 auto;
|
||||
max-width: 36em;
|
||||
padding-left: 50px;
|
||||
padding-right: 50px;
|
||||
padding-top: 50px;
|
||||
padding-bottom: 50px;
|
||||
hyphens: auto;
|
||||
overflow-wrap: break-word;
|
||||
text-rendering: optimizeLegibility;
|
||||
font-kerning: normal;
|
||||
}
|
||||
@media (max-width: 600px) {
|
||||
body {
|
||||
font-size: 0.9em;
|
||||
padding: 1em;
|
||||
}
|
||||
h1 {
|
||||
font-size: 1.8em;
|
||||
}
|
||||
}
|
||||
@media print {
|
||||
body {
|
||||
background-color: transparent;
|
||||
color: black;
|
||||
font-size: 12pt;
|
||||
}
|
||||
p, h2, h3 {
|
||||
orphans: 3;
|
||||
widows: 3;
|
||||
}
|
||||
h2, h3, h4 {
|
||||
page-break-after: avoid;
|
||||
}
|
||||
}
|
||||
p {
|
||||
margin: 1em 0;
|
||||
}
|
||||
a {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
a:visited {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
img {
|
||||
max-width: 100%;
|
||||
}
|
||||
h1, h2, h3, h4, h5, h6 {
|
||||
margin-top: 1.4em;
|
||||
}
|
||||
h5, h6 {
|
||||
font-size: 1em;
|
||||
font-style: italic;
|
||||
}
|
||||
h6 {
|
||||
font-weight: normal;
|
||||
}
|
||||
ol, ul {
|
||||
padding-left: 1.7em;
|
||||
margin-top: 1em;
|
||||
}
|
||||
li > ol, li > ul {
|
||||
margin-top: 0;
|
||||
}
|
||||
blockquote {
|
||||
margin: 1em 0 1em 1.7em;
|
||||
padding-left: 1em;
|
||||
border-left: 2px solid #e6e6e6;
|
||||
color: #606060;
|
||||
}
|
||||
code {
|
||||
font-family: Menlo, Monaco, 'Lucida Console', Consolas, monospace;
|
||||
font-size: 85%;
|
||||
margin: 0;
|
||||
}
|
||||
pre {
|
||||
margin: 1em 0;
|
||||
overflow: auto;
|
||||
}
|
||||
pre code {
|
||||
padding: 0;
|
||||
overflow: visible;
|
||||
overflow-wrap: normal;
|
||||
}
|
||||
.sourceCode {
|
||||
background-color: transparent;
|
||||
overflow: visible;
|
||||
}
|
||||
hr {
|
||||
background-color: #1a1a1a;
|
||||
border: none;
|
||||
height: 1px;
|
||||
margin: 1em 0;
|
||||
}
|
||||
table {
|
||||
margin: 1em 0;
|
||||
border-collapse: collapse;
|
||||
width: 100%;
|
||||
overflow-x: auto;
|
||||
display: block;
|
||||
font-variant-numeric: lining-nums tabular-nums;
|
||||
}
|
||||
table caption {
|
||||
margin-bottom: 0.75em;
|
||||
}
|
||||
tbody {
|
||||
margin-top: 0.5em;
|
||||
border-top: 1px solid #1a1a1a;
|
||||
border-bottom: 1px solid #1a1a1a;
|
||||
}
|
||||
th {
|
||||
border-top: 1px solid #1a1a1a;
|
||||
padding: 0.25em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
td {
|
||||
padding: 0.125em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
header {
|
||||
margin-bottom: 4em;
|
||||
text-align: center;
|
||||
}
|
||||
#TOC li {
|
||||
list-style: none;
|
||||
}
|
||||
#TOC ul {
|
||||
padding-left: 1.3em;
|
||||
}
|
||||
#TOC > ul {
|
||||
padding-left: 0;
|
||||
}
|
||||
#TOC a:not(:hover) {
|
||||
text-decoration: none;
|
||||
}
|
||||
code{white-space: pre-wrap;}
|
||||
span.smallcaps{font-variant: small-caps;}
|
||||
span.underline{text-decoration: underline;}
|
||||
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
||||
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
||||
ul.task-list{list-style: none;}
|
||||
pre > code.sourceCode { white-space: pre; position: relative; }
|
||||
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
|
||||
pre > code.sourceCode > span:empty { height: 1.2em; }
|
||||
.sourceCode { overflow: visible; }
|
||||
code.sourceCode > span { color: inherit; text-decoration: inherit; }
|
||||
div.sourceCode { margin: 1em 0; }
|
||||
pre.sourceCode { margin: 0; }
|
||||
@media screen {
|
||||
div.sourceCode { overflow: auto; }
|
||||
}
|
||||
@media print {
|
||||
pre > code.sourceCode { white-space: pre-wrap; }
|
||||
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
|
||||
}
|
||||
pre.numberSource code
|
||||
{ counter-reset: source-line 0; }
|
||||
pre.numberSource code > span
|
||||
{ position: relative; left: -4em; counter-increment: source-line; }
|
||||
pre.numberSource code > span > a:first-child::before
|
||||
{ content: counter(source-line);
|
||||
position: relative; left: -1em; text-align: right; vertical-align: baseline;
|
||||
border: none; display: inline-block;
|
||||
-webkit-touch-callout: none; -webkit-user-select: none;
|
||||
-khtml-user-select: none; -moz-user-select: none;
|
||||
-ms-user-select: none; user-select: none;
|
||||
padding: 0 4px; width: 4em;
|
||||
color: #aaaaaa;
|
||||
}
|
||||
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
|
||||
div.sourceCode
|
||||
{ }
|
||||
@media screen {
|
||||
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
|
||||
}
|
||||
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
|
||||
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
|
||||
code span.at { color: #7d9029; } /* Attribute */
|
||||
code span.bn { color: #40a070; } /* BaseN */
|
||||
code span.bu { } /* BuiltIn */
|
||||
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
|
||||
code span.ch { color: #4070a0; } /* Char */
|
||||
code span.cn { color: #880000; } /* Constant */
|
||||
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
|
||||
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
|
||||
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
|
||||
code span.dt { color: #902000; } /* DataType */
|
||||
code span.dv { color: #40a070; } /* DecVal */
|
||||
code span.er { color: #ff0000; font-weight: bold; } /* Error */
|
||||
code span.ex { } /* Extension */
|
||||
code span.fl { color: #40a070; } /* Float */
|
||||
code span.fu { color: #06287e; } /* Function */
|
||||
code span.im { } /* Import */
|
||||
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
|
||||
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
|
||||
code span.op { color: #666666; } /* Operator */
|
||||
code span.ot { color: #007020; } /* Other */
|
||||
code span.pp { color: #bc7a00; } /* Preprocessor */
|
||||
code span.sc { color: #4070a0; } /* SpecialChar */
|
||||
code span.ss { color: #bb6688; } /* SpecialString */
|
||||
code span.st { color: #4070a0; } /* String */
|
||||
code span.va { color: #19177c; } /* Variable */
|
||||
code span.vs { color: #4070a0; } /* VerbatimString */
|
||||
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
|
||||
div.csl-bib-body { }
|
||||
div.csl-entry {
|
||||
clear: both;
|
||||
}
|
||||
.hanging div.csl-entry {
|
||||
margin-left:2em;
|
||||
text-indent:-2em;
|
||||
}
|
||||
div.csl-left-margin {
|
||||
min-width:2em;
|
||||
float:left;
|
||||
}
|
||||
div.csl-right-inline {
|
||||
margin-left:2em;
|
||||
padding-left:1em;
|
||||
}
|
||||
div.csl-indent {
|
||||
margin-left: 2em;
|
||||
}
|
||||
</style> -->
|
||||
|
||||
<!-- <script
|
||||
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js"
|
||||
type="text/javascript"></script>
|
||||
-->
|
||||
|
||||
<!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
|
||||
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3.0.1/es5/tex-mml-chtml.js"></script>
|
||||
-->
|
||||
|
||||
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
|
||||
<script src="/assets/js/thesis_scrollspy.js"></script>
|
||||
|
||||
|
||||
<!--[if lt IE 9]>
|
||||
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
|
||||
<![endif]-->
|
||||
<link rel="stylesheet" href="/assets/css/styles.css">
|
||||
<script src="/assets/js/index.js"></script>
|
||||
</head>
|
||||
@ -267,9 +26,9 @@ image:
|
||||
<!--Capture the table of contents from pandoc as a jekyll variable -->
|
||||
{% capture tableOfContents %}
|
||||
<br>
|
||||
Contents:
|
||||
<nav aria-label="Table of Contents" class="page-table-of-contents">
|
||||
<ul>
|
||||
<li><a href="#methods" id="toc-methods">Methods</a>
|
||||
<li><a href="#sec:AMK-Methods" id="toc-sec:AMK-Methods">Methods</a>
|
||||
<ul>
|
||||
<li><a href="#voronisation" id="toc-voronisation">Voronisation</a></li>
|
||||
<li><a href="#graph-representation" id="toc-graph-representation">Graph
|
||||
@ -295,15 +54,18 @@ Markers</a></li>
|
||||
</ul></li>
|
||||
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
{% endcapture %}
|
||||
|
||||
<!-- Give the table of contents to header as a variable -->
|
||||
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
|
||||
{% include header.html extra=tableOfContents %}
|
||||
|
||||
<main>
|
||||
|
||||
<!-- Table of Contents -->
|
||||
<!-- <nav id="TOC" role="doc-toc">
|
||||
<ul>
|
||||
<li><a href="#methods" id="toc-methods">Methods</a>
|
||||
<li><a href="#sec:AMK-Methods" id="toc-sec:AMK-Methods">Methods</a>
|
||||
<ul>
|
||||
<li><a href="#voronisation" id="toc-voronisation">Voronisation</a></li>
|
||||
<li><a href="#graph-representation" id="toc-graph-representation">Graph
|
||||
@ -331,9 +93,12 @@ Markers</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
-->
|
||||
|
||||
<!-- Main Page Body -->
|
||||
<div class="sourceCode" id="cb1"><pre
|
||||
class="sourceCode python"><code class="sourceCode python"></code></pre></div>
|
||||
<h1 id="methods">Methods</h1>
|
||||
<section id="sec:AMK-Methods" class="level1">
|
||||
<h1>Methods</h1>
|
||||
<p>The practical implementation of what is described in this section is
|
||||
available as a Python package called Koala (Kitaev On Amorphous
|
||||
LAttices) <span class="citation"
|
||||
@ -341,7 +106,8 @@ data-cites="tomImperialCMTHKoalaFirst2022"> [<a
|
||||
href="#ref-tomImperialCMTHKoalaFirst2022"
|
||||
role="doc-biblioref"><strong>tomImperialCMTHKoalaFirst2022?</strong></a>]</span>.
|
||||
All results and figures were generated with Koala.</p>
|
||||
<h2 id="voronisation">Voronisation</h2>
|
||||
<section id="voronisation" class="level2">
|
||||
<h2>Voronisation</h2>
|
||||
<p>To study the properties of the amorphous Kitaev model, we need to
|
||||
sample from the space of possible trivalent graphs.</p>
|
||||
<p>A simple method is to use a Voronoi partition of the torus <span
|
||||
@ -396,7 +162,9 @@ is shown here to help the reader identify corresponding
|
||||
edges.</figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
<h2 id="graph-representation">Graph Representation</h2>
|
||||
</section>
|
||||
<section id="graph-representation" class="level2">
|
||||
<h2>Graph Representation</h2>
|
||||
<p>Three keys pieces of information allow us to represent amorphous
|
||||
lattices.</p>
|
||||
<p>Most of the graph connectivity is encoded by an ordered list of edges
|
||||
@ -451,7 +219,9 @@ similar idea, we unwrap the torus to one unit cell and keep track of
|
||||
which bonds cross the cell boundaries.</figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
<h2 id="colouring-the-bonds">Colouring the Bonds</h2>
|
||||
</section>
|
||||
<section id="colouring-the-bonds" class="level2">
|
||||
<h2>Colouring the Bonds</h2>
|
||||
<p>The Kitaev Model requires that each edge in the lattice be assigned a
|
||||
label <span class="math inline">\(x\)</span>, <span
|
||||
class="math inline">\(y\)</span> or <span
|
||||
@ -522,8 +292,8 @@ valid 3-edge-colourings of amorphous lattices. Colors that differ from
|
||||
the leftmost panel are highlighted.</figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
<h3 id="four-colourings-and-three-colourings">Four-colourings and
|
||||
three-colourings</h3>
|
||||
<section id="four-colourings-and-three-colourings" class="level3">
|
||||
<h3>Four-colourings and three-colourings</h3>
|
||||
<p><strong>add diagram of this</strong></p>
|
||||
<p>A four-face-colouring can be converted into a three-edge-colouring
|
||||
quite easily: 1. Assume the faces of G can be four-coloured with labels
|
||||
@ -558,8 +328,9 @@ suggests that Voronoi lattices may have additional structures that make
|
||||
them three-edge-colourable. Intuitively, it seems that the kinds of
|
||||
toroidal graphs that cannot be three-edge-coloured could never be
|
||||
generated by a Voronoi partition with more than a few seed points.</p>
|
||||
<h3 id="finding-lattice-colourings-with-minisat">Finding Lattice
|
||||
colourings with miniSAT</h3>
|
||||
</section>
|
||||
<section id="finding-lattice-colourings-with-minisat" class="level3">
|
||||
<h3>Finding Lattice colourings with miniSAT</h3>
|
||||
<p>Some issues are harder in theory than in practice.
|
||||
Three-edge-colouring cubic toroidal graphs appears to be one of those
|
||||
things.</p>
|
||||
@ -673,8 +444,9 @@ generating a lattice. For larger systems, the time taken to perform the
|
||||
diagonalisation dominates.</figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
<h3 id="does-it-matter-which-colouring-we-choose">Does it matter which
|
||||
colouring we choose?</h3>
|
||||
</section>
|
||||
<section id="does-it-matter-which-colouring-we-choose" class="level3">
|
||||
<h3>Does it matter which colouring we choose?</h3>
|
||||
<p>In the isotropic case <span class="math inline">\(J^\alpha =
|
||||
1\)</span>, it is easy to show that choosing a particular valid
|
||||
colouring cannot make a difference. As the choice of how we define the
|
||||
@ -687,8 +459,11 @@ one colouring into that generated by another.</p>
|
||||
question whether particular physical properties could arise by
|
||||
engineering the colouring in this phase though we expect them to exhibit
|
||||
a self averaging behaviour.</p>
|
||||
<h2 id="mapping-between-flux-sectors-and-bond-sectors">Mapping between
|
||||
flux sectors and bond sectors</h2>
|
||||
</section>
|
||||
</section>
|
||||
<section id="mapping-between-flux-sectors-and-bond-sectors"
|
||||
class="level2">
|
||||
<h2>Mapping between flux sectors and bond sectors</h2>
|
||||
<p>Constructing the Majorana representation of the model requires the
|
||||
particular bond configuration <span class="math inline">\(u_{jk} = \pm
|
||||
1\)</span>. However, the large number of gauge symmetries of the bond
|
||||
@ -743,7 +518,9 @@ flux will remain because the starting and target flux sectors differed
|
||||
by an odd number of fluxes.</figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
<h2 id="chern-markers">Chern Markers</h2>
|
||||
</section>
|
||||
<section id="chern-markers" class="level2">
|
||||
<h2>Chern Markers</h2>
|
||||
<p>We know that the standard Kitaev model supports both Abelian and
|
||||
non-Abelian phases. Therefore, how can we assess whether this is also
|
||||
the case for the amorphous Kitaev model?</p>
|
||||
@ -759,7 +536,10 @@ system.</p>
|
||||
<p><strong>Expand on definition here</strong></p>
|
||||
<p><strong>Discuss link between Chern number and Anyonic
|
||||
Statistics</strong></p>
|
||||
<h1 class="unnumbered" id="bibliography">Bibliography</h1>
|
||||
</section>
|
||||
</section>
|
||||
<section id="bibliography" class="level1 unnumbered">
|
||||
<h1 class="unnumbered">Bibliography</h1>
|
||||
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
|
||||
<div id="ref-mitchellAmorphousTopologicalInsulators2018"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
@ -903,6 +683,9 @@ Clustering and Graph Coloring Algorithms</a></em>, J. ACM
|
||||
<strong>30</strong>, 417 (1983).</div>
|
||||
</div>
|
||||
</div>
|
||||
</section>
|
||||
|
||||
|
||||
</main>
|
||||
</body>
|
||||
</html>
|
||||
|
@ -13,189 +13,11 @@ image:
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
|
||||
<meta name="description" content="The Amorphous Kitaev model is a chiral spin liquid!" />
|
||||
<title>The Amorphous Kitaev Model - Results</title>
|
||||
<!-- <style>
|
||||
html {
|
||||
line-height: 1.5;
|
||||
font-family: Georgia, serif;
|
||||
font-size: 20px;
|
||||
color: #1a1a1a;
|
||||
background-color: #fdfdfd;
|
||||
}
|
||||
body {
|
||||
margin: 0 auto;
|
||||
max-width: 36em;
|
||||
padding-left: 50px;
|
||||
padding-right: 50px;
|
||||
padding-top: 50px;
|
||||
padding-bottom: 50px;
|
||||
hyphens: auto;
|
||||
overflow-wrap: break-word;
|
||||
text-rendering: optimizeLegibility;
|
||||
font-kerning: normal;
|
||||
}
|
||||
@media (max-width: 600px) {
|
||||
body {
|
||||
font-size: 0.9em;
|
||||
padding: 1em;
|
||||
}
|
||||
h1 {
|
||||
font-size: 1.8em;
|
||||
}
|
||||
}
|
||||
@media print {
|
||||
body {
|
||||
background-color: transparent;
|
||||
color: black;
|
||||
font-size: 12pt;
|
||||
}
|
||||
p, h2, h3 {
|
||||
orphans: 3;
|
||||
widows: 3;
|
||||
}
|
||||
h2, h3, h4 {
|
||||
page-break-after: avoid;
|
||||
}
|
||||
}
|
||||
p {
|
||||
margin: 1em 0;
|
||||
}
|
||||
a {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
a:visited {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
img {
|
||||
max-width: 100%;
|
||||
}
|
||||
h1, h2, h3, h4, h5, h6 {
|
||||
margin-top: 1.4em;
|
||||
}
|
||||
h5, h6 {
|
||||
font-size: 1em;
|
||||
font-style: italic;
|
||||
}
|
||||
h6 {
|
||||
font-weight: normal;
|
||||
}
|
||||
ol, ul {
|
||||
padding-left: 1.7em;
|
||||
margin-top: 1em;
|
||||
}
|
||||
li > ol, li > ul {
|
||||
margin-top: 0;
|
||||
}
|
||||
blockquote {
|
||||
margin: 1em 0 1em 1.7em;
|
||||
padding-left: 1em;
|
||||
border-left: 2px solid #e6e6e6;
|
||||
color: #606060;
|
||||
}
|
||||
code {
|
||||
font-family: Menlo, Monaco, 'Lucida Console', Consolas, monospace;
|
||||
font-size: 85%;
|
||||
margin: 0;
|
||||
}
|
||||
pre {
|
||||
margin: 1em 0;
|
||||
overflow: auto;
|
||||
}
|
||||
pre code {
|
||||
padding: 0;
|
||||
overflow: visible;
|
||||
overflow-wrap: normal;
|
||||
}
|
||||
.sourceCode {
|
||||
background-color: transparent;
|
||||
overflow: visible;
|
||||
}
|
||||
hr {
|
||||
background-color: #1a1a1a;
|
||||
border: none;
|
||||
height: 1px;
|
||||
margin: 1em 0;
|
||||
}
|
||||
table {
|
||||
margin: 1em 0;
|
||||
border-collapse: collapse;
|
||||
width: 100%;
|
||||
overflow-x: auto;
|
||||
display: block;
|
||||
font-variant-numeric: lining-nums tabular-nums;
|
||||
}
|
||||
table caption {
|
||||
margin-bottom: 0.75em;
|
||||
}
|
||||
tbody {
|
||||
margin-top: 0.5em;
|
||||
border-top: 1px solid #1a1a1a;
|
||||
border-bottom: 1px solid #1a1a1a;
|
||||
}
|
||||
th {
|
||||
border-top: 1px solid #1a1a1a;
|
||||
padding: 0.25em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
td {
|
||||
padding: 0.125em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
header {
|
||||
margin-bottom: 4em;
|
||||
text-align: center;
|
||||
}
|
||||
#TOC li {
|
||||
list-style: none;
|
||||
}
|
||||
#TOC ul {
|
||||
padding-left: 1.3em;
|
||||
}
|
||||
#TOC > ul {
|
||||
padding-left: 0;
|
||||
}
|
||||
#TOC a:not(:hover) {
|
||||
text-decoration: none;
|
||||
}
|
||||
code{white-space: pre-wrap;}
|
||||
span.smallcaps{font-variant: small-caps;}
|
||||
span.underline{text-decoration: underline;}
|
||||
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
||||
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
||||
ul.task-list{list-style: none;}
|
||||
div.csl-bib-body { }
|
||||
div.csl-entry {
|
||||
clear: both;
|
||||
}
|
||||
.hanging div.csl-entry {
|
||||
margin-left:2em;
|
||||
text-indent:-2em;
|
||||
}
|
||||
div.csl-left-margin {
|
||||
min-width:2em;
|
||||
float:left;
|
||||
}
|
||||
div.csl-right-inline {
|
||||
margin-left:2em;
|
||||
padding-left:1em;
|
||||
}
|
||||
div.csl-indent {
|
||||
margin-left: 2em;
|
||||
}
|
||||
</style> -->
|
||||
|
||||
<!-- <script
|
||||
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js"
|
||||
type="text/javascript"></script>
|
||||
-->
|
||||
|
||||
<!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
|
||||
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3.0.1/es5/tex-mml-chtml.js"></script>
|
||||
-->
|
||||
|
||||
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
|
||||
<script src="/assets/js/thesis_scrollspy.js"></script>
|
||||
|
||||
|
||||
<!--[if lt IE 9]>
|
||||
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
|
||||
<![endif]-->
|
||||
<link rel="stylesheet" href="/assets/css/styles.css">
|
||||
<script src="/assets/js/index.js"></script>
|
||||
</head>
|
||||
@ -204,9 +26,9 @@ image:
|
||||
<!--Capture the table of contents from pandoc as a jekyll variable -->
|
||||
{% capture tableOfContents %}
|
||||
<br>
|
||||
Contents:
|
||||
<nav aria-label="Table of Contents" class="page-table-of-contents">
|
||||
<ul>
|
||||
<li><a href="#results" id="toc-results">Results</a>
|
||||
<li><a href="#sec:AMK-Results" id="toc-sec:AMK-Results">Results</a>
|
||||
<ul>
|
||||
<li><a href="#the-ground-state-flux-sector"
|
||||
id="toc-the-ground-state-flux-sector">The Ground State Flux
|
||||
@ -226,32 +48,27 @@ non-Abelian?</a></li>
|
||||
id="toc-anderson-transition-to-a-thermal-metal">Anderson Transition to a
|
||||
Thermal Metal</a></li>
|
||||
</ul></li>
|
||||
<li><a href="#sec:AMK-Conclusion" id="toc-sec:AMK-Conclusion">Discussion
|
||||
and Conclusion</a>
|
||||
<ul>
|
||||
<li><a href="#conclusion" id="toc-conclusion">Conclusion</a></li>
|
||||
<li><a href="#discussion" id="toc-discussion">Discussion</a>
|
||||
<ul>
|
||||
<li><a href="#limits-of-the-ground-state-conjecture"
|
||||
id="toc-limits-of-the-ground-state-conjecture">Limits of the ground
|
||||
state conjecture</a></li>
|
||||
</ul></li>
|
||||
<li><a href="#outlook" id="toc-outlook">Outlook</a>
|
||||
<ul>
|
||||
<li><a href="#experimental-realisations-and-signatures"
|
||||
id="toc-experimental-realisations-and-signatures">Experimental
|
||||
Realisations and Signatures</a></li>
|
||||
<li><a href="#generalisations"
|
||||
id="toc-generalisations">Generalisations</a></li>
|
||||
<li><a href="#discussion" id="toc-discussion">Discussion</a></li>
|
||||
<li><a href="#outlook" id="toc-outlook">Outlook</a></li>
|
||||
</ul></li>
|
||||
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
{% endcapture %}
|
||||
|
||||
<!-- Give the table of contents to header as a variable -->
|
||||
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
|
||||
{% include header.html extra=tableOfContents %}
|
||||
|
||||
<main>
|
||||
|
||||
<!-- Table of Contents -->
|
||||
<!-- <nav id="TOC" role="doc-toc">
|
||||
<ul>
|
||||
<li><a href="#results" id="toc-results">Results</a>
|
||||
<li><a href="#sec:AMK-Results" id="toc-sec:AMK-Results">Results</a>
|
||||
<ul>
|
||||
<li><a href="#the-ground-state-flux-sector"
|
||||
id="toc-the-ground-state-flux-sector">The Ground State Flux
|
||||
@ -271,27 +88,23 @@ non-Abelian?</a></li>
|
||||
id="toc-anderson-transition-to-a-thermal-metal">Anderson Transition to a
|
||||
Thermal Metal</a></li>
|
||||
</ul></li>
|
||||
<li><a href="#sec:AMK-Conclusion" id="toc-sec:AMK-Conclusion">Discussion
|
||||
and Conclusion</a>
|
||||
<ul>
|
||||
<li><a href="#conclusion" id="toc-conclusion">Conclusion</a></li>
|
||||
<li><a href="#discussion" id="toc-discussion">Discussion</a>
|
||||
<ul>
|
||||
<li><a href="#limits-of-the-ground-state-conjecture"
|
||||
id="toc-limits-of-the-ground-state-conjecture">Limits of the ground
|
||||
state conjecture</a></li>
|
||||
</ul></li>
|
||||
<li><a href="#outlook" id="toc-outlook">Outlook</a>
|
||||
<ul>
|
||||
<li><a href="#experimental-realisations-and-signatures"
|
||||
id="toc-experimental-realisations-and-signatures">Experimental
|
||||
Realisations and Signatures</a></li>
|
||||
<li><a href="#generalisations"
|
||||
id="toc-generalisations">Generalisations</a></li>
|
||||
<li><a href="#discussion" id="toc-discussion">Discussion</a></li>
|
||||
<li><a href="#outlook" id="toc-outlook">Outlook</a></li>
|
||||
</ul></li>
|
||||
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
-->
|
||||
<h1 id="results">Results</h1>
|
||||
<h2 id="the-ground-state-flux-sector">The Ground State Flux Sector</h2>
|
||||
|
||||
<!-- Main Page Body -->
|
||||
<section id="sec:AMK-Results" class="level1">
|
||||
<h1>Results</h1>
|
||||
<section id="the-ground-state-flux-sector" class="level2">
|
||||
<h2>The Ground State Flux Sector</h2>
|
||||
<p>Here I will discuss the numerical evidence that our guess for the
|
||||
ground state flux sector is correct. We will do this by enumerating all
|
||||
the flux sectors of many separate system realisations. However there are
|
||||
@ -345,8 +158,9 @@ conjecture. In these cases, the energy difference between the true
|
||||
ground state and our prediction was on the order of <span
|
||||
class="math inline">\(10^{-6} J\)</span>. It is unclear whether this is
|
||||
a finite size effect or something else.</p>
|
||||
<h2 id="spontaneous-chiral-symmetry-breaking">Spontaneous Chiral
|
||||
Symmetry Breaking</h2>
|
||||
</section>
|
||||
<section id="spontaneous-chiral-symmetry-breaking" class="level2">
|
||||
<h2>Spontaneous Chiral Symmetry Breaking</h2>
|
||||
<p>The spin Kitaev Hamiltonian is real and therefore has time reversal
|
||||
symmetry (TRS). However, the flux <span
|
||||
class="math inline">\(\phi_p\)</span> through any plaquette with an odd
|
||||
@ -368,7 +182,9 @@ href="#ref-Peri2020" role="doc-biblioref">4</a>]</span>. This
|
||||
spontaneously broken symmetry avoids the need to explicitly break TRS
|
||||
with a magnetic field term as is done in the original honeycomb
|
||||
model.</p>
|
||||
<h2 id="ground-state-phase-diagram">Ground State Phase Diagram</h2>
|
||||
</section>
|
||||
<section id="ground-state-phase-diagram" class="level2">
|
||||
<h2>Ground State Phase Diagram</h2>
|
||||
<p>As previously discussed, the standard Honeycomb model has a Abelian,
|
||||
gapped phase in the anisotropic region (the A phase) and is gapless in
|
||||
the isotropic region. The introduction of a magnetic field breaks the
|
||||
@ -430,7 +246,8 @@ class="math inline">\(0\)</span> to <span class="math inline">\(\pm
|
||||
<strong>citation</strong>.</figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
<h3 id="is-it-abelian-or-non-abelian">Is it Abelian or non-Abelian?</h3>
|
||||
<section id="is-it-abelian-or-non-abelian" class="level3">
|
||||
<h3>Is it Abelian or non-Abelian?</h3>
|
||||
<p>The two phases of the amorphous model are clearly gapped, though
|
||||
later I’ll double check this with finite size scaling.</p>
|
||||
<p>The next question is: do these phases support excitations with
|
||||
@ -527,7 +344,9 @@ with fixed <span class="math inline">\(r = 0.3\)</span> nicely confirms
|
||||
that the isotropic phase is non-Abelian.</figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
<h3 id="edge-modes">Edge Modes</h3>
|
||||
</section>
|
||||
<section id="edge-modes" class="level3">
|
||||
<h3>Edge Modes</h3>
|
||||
<p>Chiral Spin Liquids support topological protected edge modes on open
|
||||
boundary conditions <span class="citation"
|
||||
data-cites="qi_general_2006"> [<a href="#ref-qi_general_2006"
|
||||
@ -562,8 +381,10 @@ each energy window. Cutting the boundary fills the gap with localised
|
||||
states.</figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
<h2 id="anderson-transition-to-a-thermal-metal">Anderson Transition to a
|
||||
Thermal Metal</h2>
|
||||
</section>
|
||||
</section>
|
||||
<section id="anderson-transition-to-a-thermal-metal" class="level2">
|
||||
<h2>Anderson Transition to a Thermal Metal</h2>
|
||||
<p>Previous work on the honeycomb model at finite temperature has shown
|
||||
that the B phase undergoes a thermal transition from a quantum spin
|
||||
liquid phase a to a <strong>thermal metal</strong> phase <span
|
||||
@ -716,7 +537,12 @@ plots the density of vortices is <span class="math inline">\(\rho =
|
||||
\infty\)</span> limit.</figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
<h1 id="conclusion">Conclusion</h1>
|
||||
</section>
|
||||
</section>
|
||||
<section id="sec:AMK-Conclusion" class="level1">
|
||||
<h1>Discussion and Conclusion</h1>
|
||||
<section id="conclusion" class="level2">
|
||||
<h2>Conclusion</h2>
|
||||
<p>In this chapter we have looked at an extension of the Kitaev
|
||||
honeycomb model to amorphous lattices with coordination number three. We
|
||||
discussed a method to construct arbitrary trivalent lattices using
|
||||
@ -735,9 +561,10 @@ spin liquid phase.</p>
|
||||
<p>Finally we showed evidence that the amorphous system undergoes an
|
||||
Anderson transition to a thermal metal phase, driven by the
|
||||
proliferation of vortices with increasing temperature.</p>
|
||||
<h1 id="discussion">Discussion</h1>
|
||||
<h2 id="limits-of-the-ground-state-conjecture">Limits of the ground
|
||||
state conjecture</h2>
|
||||
</section>
|
||||
<section id="discussion" class="level2">
|
||||
<h2>Discussion</h2>
|
||||
<p><strong>Limits of the ground state conjecture</strong></p>
|
||||
<p>We found a small number of lattices for which the ground state
|
||||
conjecture did not correctly predict the true ground state flux sector.
|
||||
I see two possibilities for what could cause this.</p>
|
||||
@ -753,12 +580,13 @@ colouring for a lattice affects the physical properties in the toric
|
||||
code A phase. It is possible that some property of the particular
|
||||
colouring chosen is what leads to failure of the ground state conjecture
|
||||
here.</p>
|
||||
<h1 id="outlook">Outlook</h1>
|
||||
</section>
|
||||
<section id="outlook" class="level2">
|
||||
<h2>Outlook</h2>
|
||||
<p>This exactly solvable chiral QSL provides a first example of a
|
||||
topological quantum many-body phase in amorphous magnets, which raises a
|
||||
number of questions for future research.</p>
|
||||
<h2 id="experimental-realisations-and-signatures">Experimental
|
||||
Realisations and Signatures</h2>
|
||||
<p><strong>Experimental Realisations and Signatures</strong></p>
|
||||
<p>The obvious question is whether amorphous Kitaev materials could be
|
||||
physically realised.</p>
|
||||
<p>Most crystals can as exists in a metastable amorphous state if they
|
||||
@ -793,7 +621,7 @@ behavior <span class="citation"
|
||||
data-cites="misumiQuantumSpinLiquid2020"> [<a
|
||||
href="#ref-misumiQuantumSpinLiquid2020"
|
||||
role="doc-biblioref">29</a>]</span>.</p>
|
||||
<h2 id="generalisations">Generalisations</h2>
|
||||
<p><strong>Generalisations</strong></p>
|
||||
<p>The model presented here could be generalized in several ways.</p>
|
||||
<p>First, it would be interesting to study the stability of the chiral
|
||||
amorphous Kitaev QSL with respect to perturbations\ <span
|
||||
@ -831,7 +659,10 @@ href="#ref-Wu2009" role="doc-biblioref">47</a>]</span></p>
|
||||
quantum many body phases albeit material candidates aplenty. We expect
|
||||
our exact chiral amorphous spin liquid to find many generalisation to
|
||||
realistic amorphous quantum magnets and beyond.</p>
|
||||
<h1 class="unnumbered" id="bibliography">Bibliography</h1>
|
||||
</section>
|
||||
</section>
|
||||
<section id="bibliography" class="level1 unnumbered">
|
||||
<h1 class="unnumbered">Bibliography</h1>
|
||||
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
|
||||
<div id="ref-kitaevAnyonsExactlySolved2006" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
@ -1188,6 +1019,9 @@ Wu, D. Arovas, and H.-H. Hung, <em>Γ-Matrix Generalization of the Kitaev
|
||||
Model</em>, Physical Review B <strong>79</strong>, 134427 (2009).</div>
|
||||
</div>
|
||||
</div>
|
||||
</section>
|
||||
|
||||
|
||||
</main>
|
||||
</body>
|
||||
</html>
|
||||
|
@ -12,167 +12,11 @@ image:
|
||||
<meta name="generator" content="pandoc" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
|
||||
<title>Conclusion</title>
|
||||
<!-- <style>
|
||||
html {
|
||||
line-height: 1.5;
|
||||
font-family: Georgia, serif;
|
||||
font-size: 20px;
|
||||
color: #1a1a1a;
|
||||
background-color: #fdfdfd;
|
||||
}
|
||||
body {
|
||||
margin: 0 auto;
|
||||
max-width: 36em;
|
||||
padding-left: 50px;
|
||||
padding-right: 50px;
|
||||
padding-top: 50px;
|
||||
padding-bottom: 50px;
|
||||
hyphens: auto;
|
||||
overflow-wrap: break-word;
|
||||
text-rendering: optimizeLegibility;
|
||||
font-kerning: normal;
|
||||
}
|
||||
@media (max-width: 600px) {
|
||||
body {
|
||||
font-size: 0.9em;
|
||||
padding: 1em;
|
||||
}
|
||||
h1 {
|
||||
font-size: 1.8em;
|
||||
}
|
||||
}
|
||||
@media print {
|
||||
body {
|
||||
background-color: transparent;
|
||||
color: black;
|
||||
font-size: 12pt;
|
||||
}
|
||||
p, h2, h3 {
|
||||
orphans: 3;
|
||||
widows: 3;
|
||||
}
|
||||
h2, h3, h4 {
|
||||
page-break-after: avoid;
|
||||
}
|
||||
}
|
||||
p {
|
||||
margin: 1em 0;
|
||||
}
|
||||
a {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
a:visited {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
img {
|
||||
max-width: 100%;
|
||||
}
|
||||
h1, h2, h3, h4, h5, h6 {
|
||||
margin-top: 1.4em;
|
||||
}
|
||||
h5, h6 {
|
||||
font-size: 1em;
|
||||
font-style: italic;
|
||||
}
|
||||
h6 {
|
||||
font-weight: normal;
|
||||
}
|
||||
ol, ul {
|
||||
padding-left: 1.7em;
|
||||
margin-top: 1em;
|
||||
}
|
||||
li > ol, li > ul {
|
||||
margin-top: 0;
|
||||
}
|
||||
blockquote {
|
||||
margin: 1em 0 1em 1.7em;
|
||||
padding-left: 1em;
|
||||
border-left: 2px solid #e6e6e6;
|
||||
color: #606060;
|
||||
}
|
||||
code {
|
||||
font-family: Menlo, Monaco, 'Lucida Console', Consolas, monospace;
|
||||
font-size: 85%;
|
||||
margin: 0;
|
||||
}
|
||||
pre {
|
||||
margin: 1em 0;
|
||||
overflow: auto;
|
||||
}
|
||||
pre code {
|
||||
padding: 0;
|
||||
overflow: visible;
|
||||
overflow-wrap: normal;
|
||||
}
|
||||
.sourceCode {
|
||||
background-color: transparent;
|
||||
overflow: visible;
|
||||
}
|
||||
hr {
|
||||
background-color: #1a1a1a;
|
||||
border: none;
|
||||
height: 1px;
|
||||
margin: 1em 0;
|
||||
}
|
||||
table {
|
||||
margin: 1em 0;
|
||||
border-collapse: collapse;
|
||||
width: 100%;
|
||||
overflow-x: auto;
|
||||
display: block;
|
||||
font-variant-numeric: lining-nums tabular-nums;
|
||||
}
|
||||
table caption {
|
||||
margin-bottom: 0.75em;
|
||||
}
|
||||
tbody {
|
||||
margin-top: 0.5em;
|
||||
border-top: 1px solid #1a1a1a;
|
||||
border-bottom: 1px solid #1a1a1a;
|
||||
}
|
||||
th {
|
||||
border-top: 1px solid #1a1a1a;
|
||||
padding: 0.25em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
td {
|
||||
padding: 0.125em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
header {
|
||||
margin-bottom: 4em;
|
||||
text-align: center;
|
||||
}
|
||||
#TOC li {
|
||||
list-style: none;
|
||||
}
|
||||
#TOC ul {
|
||||
padding-left: 1.3em;
|
||||
}
|
||||
#TOC > ul {
|
||||
padding-left: 0;
|
||||
}
|
||||
#TOC a:not(:hover) {
|
||||
text-decoration: none;
|
||||
}
|
||||
code{white-space: pre-wrap;}
|
||||
span.smallcaps{font-variant: small-caps;}
|
||||
span.underline{text-decoration: underline;}
|
||||
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
||||
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
||||
ul.task-list{list-style: none;}
|
||||
</style> -->
|
||||
|
||||
<!-- -->
|
||||
|
||||
<!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
|
||||
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3.0.1/es5/tex-mml-chtml.js"></script>
|
||||
-->
|
||||
|
||||
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
|
||||
<script src="/assets/js/thesis_scrollspy.js"></script>
|
||||
|
||||
|
||||
<!--[if lt IE 9]>
|
||||
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
|
||||
<![endif]-->
|
||||
<link rel="stylesheet" href="/assets/css/styles.css">
|
||||
<script src="/assets/js/index.js"></script>
|
||||
</head>
|
||||
@ -181,17 +25,20 @@ image:
|
||||
<!--Capture the table of contents from pandoc as a jekyll variable -->
|
||||
{% capture tableOfContents %}
|
||||
<br>
|
||||
Contents:
|
||||
<nav aria-label="Table of Contents" class="page-table-of-contents">
|
||||
<ul>
|
||||
<li><a href="#discussion" id="toc-discussion">Discussion</a></li>
|
||||
<li><a href="#outlook" id="toc-outlook">Outlook</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
{% endcapture %}
|
||||
|
||||
<!-- Give the table of contents to header as a variable -->
|
||||
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
|
||||
{% include header.html extra=tableOfContents %}
|
||||
|
||||
<main>
|
||||
|
||||
<!-- Table of Contents -->
|
||||
<!-- <nav id="TOC" role="doc-toc">
|
||||
<ul>
|
||||
<li><a href="#discussion" id="toc-discussion">Discussion</a></li>
|
||||
@ -199,8 +46,16 @@ Contents:
|
||||
</ul>
|
||||
</nav>
|
||||
-->
|
||||
<h2 id="discussion">Discussion</h2>
|
||||
<h2 id="outlook">Outlook</h2>
|
||||
|
||||
<!-- Main Page Body -->
|
||||
<section id="discussion" class="level2">
|
||||
<h2>Discussion</h2>
|
||||
</section>
|
||||
<section id="outlook" class="level2">
|
||||
<h2>Outlook</h2>
|
||||
</section>
|
||||
|
||||
|
||||
</main>
|
||||
</body>
|
||||
</html>
|
||||
|
128
_thesis/6_Appendices/A.1_Particle_Hole_Symmetry.html
Normal file
128
_thesis/6_Appendices/A.1_Particle_Hole_Symmetry.html
Normal file
@ -0,0 +1,128 @@
|
||||
---
|
||||
title: A.1_Particle_Hole_Symmetry
|
||||
excerpt:
|
||||
layout: none
|
||||
image:
|
||||
|
||||
---
|
||||
<!DOCTYPE html>
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
|
||||
<head>
|
||||
<meta charset="utf-8" />
|
||||
<meta name="generator" content="pandoc" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
|
||||
<title>A.1_Particle_Hole_Symmetry</title>
|
||||
|
||||
|
||||
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
|
||||
<script src="/assets/js/thesis_scrollspy.js"></script>
|
||||
|
||||
<link rel="stylesheet" href="/assets/css/styles.css">
|
||||
<script src="/assets/js/index.js"></script>
|
||||
</head>
|
||||
<body>
|
||||
|
||||
<!--Capture the table of contents from pandoc as a jekyll variable -->
|
||||
{% capture tableOfContents %}
|
||||
<br>
|
||||
<nav aria-label="Table of Contents" class="page-table-of-contents">
|
||||
<ul>
|
||||
<li><a href="#particle-hole-symmetry"
|
||||
id="toc-particle-hole-symmetry">Particle-Hole Symmetry</a></li>
|
||||
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
{% endcapture %}
|
||||
|
||||
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
|
||||
{% include header.html extra=tableOfContents %}
|
||||
|
||||
<main>
|
||||
|
||||
<!-- Table of Contents -->
|
||||
<!-- <nav id="TOC" role="doc-toc">
|
||||
<ul>
|
||||
<li><a href="#particle-hole-symmetry"
|
||||
id="toc-particle-hole-symmetry">Particle-Hole Symmetry</a></li>
|
||||
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
-->
|
||||
|
||||
<!-- Main Page Body -->
|
||||
<section id="particle-hole-symmetry" class="level1">
|
||||
<h1>Particle-Hole Symmetry</h1>
|
||||
<p>The Hubbard and FK models on a bipartite lattice have particle-hole
|
||||
(PH) symmetry <span class="math inline">\(\mathcal{P}^\dagger H
|
||||
\mathcal{P} = - H\)</span>, accordingly they have symmetric energy
|
||||
spectra. The associated symmetry operator <span
|
||||
class="math inline">\(\mathcal{P}\)</span> exchanges creation and
|
||||
annihilation operators along with a sign change between the two
|
||||
sublattices. In the language of the Hubbard model of electrons <span
|
||||
class="math inline">\(c_{\alpha,i}\)</span> with spin <span
|
||||
class="math inline">\(\alpha\)</span> at site <span
|
||||
class="math inline">\(i\)</span> the particle hole operator corresponds
|
||||
to the substitution of new fermion operators <span
|
||||
class="math inline">\(d^\dagger_{\alpha,i}\)</span> and number operators
|
||||
<span class="math inline">\(m_{\alpha,i}\)</span> where</p>
|
||||
<p><span class="math display">\[d^\dagger_{\alpha,i} = \epsilon_i
|
||||
c_{\alpha,i}\]</span> <span class="math display">\[m_{\alpha,i} =
|
||||
d^\dagger_{\alpha,i}d_{\alpha,i}\]</span></p>
|
||||
<p>the lattices must be bipartite because to make this work we set <span
|
||||
class="math inline">\(\epsilon_i = +1\)</span> for the A sublattice and
|
||||
<span class="math inline">\(-1\)</span> for the even sublattice <span
|
||||
class="citation" data-cites="gruberFalicovKimballModel2005"> [<a
|
||||
href="#ref-gruberFalicovKimballModel2005"
|
||||
role="doc-biblioref">1</a>]</span>.</p>
|
||||
<p>The entirely filled state <span class="math inline">\(\ket{\Omega} =
|
||||
\sum_{\alpha,i} c^\dagger_{\alpha,i} \ket{0}\)</span> becomes the new
|
||||
vacuum state <span class="math display">\[d_{i\sigma} \ket{\Omega} =
|
||||
(-1)^i c^\dagger_{i\sigma} \sum_{j\rho} c^\dagger_{j\rho} \ket{0} =
|
||||
0.\]</span></p>
|
||||
<p>The number operator <span class="math inline">\(m_{\alpha,i} =
|
||||
0,1\)</span> counts holes rather than electrons <span
|
||||
class="math display">\[ m_{\alpha,i} = c_{\alpha,i} c^\dagger_{\alpha,i}
|
||||
= 1 - c^\dagger_{\alpha,i} c_{\alpha,i}.\]</span></p>
|
||||
<p>With the last equality following from the fermionic commutation
|
||||
relations. In the case of nearest neighbour hopping on a bipartite
|
||||
lattice this transformation also leaves the hopping term unchanged
|
||||
because <span class="math inline">\(\epsilon_i \epsilon_j = -1\)</span>
|
||||
when <span class="math inline">\(i\)</span> and <span
|
||||
class="math inline">\(j\)</span> are on different sublattices: <span
|
||||
class="math display">\[ d^\dagger_{\alpha,i} d_{\alpha,j} = \epsilon_i
|
||||
\epsilon_j c_{\alpha,i} c^\dagger_{\alpha,j} = c^\dagger_{\alpha,i}
|
||||
c_{\alpha,j} \]</span></p>
|
||||
<p>Defining the particle density <span
|
||||
class="math inline">\(\rho\)</span> as the number of fermions per site:
|
||||
<span class="math display">\[
|
||||
\rho = \frac{1}{N} \sum_i \left( n_{i \uparrow} + n_{i \downarrow}
|
||||
\right)
|
||||
\]</span></p>
|
||||
<p>The PH symmetry maps the Hamiltonian to itself with the sign of the
|
||||
chemical potential reversed and the density inverted about half filling:
|
||||
<span class="math display">\[ \text{PH} : H(t, U, \mu) \rightarrow H(t,
|
||||
U, -\mu) \]</span> <span class="math display">\[ \rho \rightarrow 2 -
|
||||
\rho \]</span></p>
|
||||
<p>The Hamiltonian is symmetric under PH at <span
|
||||
class="math inline">\(\mu = 0\)</span> and so must all the observables,
|
||||
hence half filling <span class="math inline">\(\rho = 1\)</span> occurs
|
||||
here. This symmetry and known observable acts as a useful test for the
|
||||
numerical calculations.</p>
|
||||
</section>
|
||||
<section id="bibliography" class="level1 unnumbered">
|
||||
<h1 class="unnumbered">Bibliography</h1>
|
||||
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
|
||||
<div id="ref-gruberFalicovKimballModel2005" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[1] </div><div class="csl-right-inline">C.
|
||||
Gruber and D. Ueltschi, <em><a
|
||||
href="http://arxiv.org/abs/math-ph/0502041">The Falicov-Kimball
|
||||
Model</a></em>, arXiv:math-Ph/0502041 (2005).</div>
|
||||
</div>
|
||||
</div>
|
||||
</section>
|
||||
|
||||
|
||||
</main>
|
||||
</body>
|
||||
</html>
|
146
_thesis/6_Appendices/A.2_Markov_Chain_Monte_Carlo.html
Normal file
146
_thesis/6_Appendices/A.2_Markov_Chain_Monte_Carlo.html
Normal file
@ -0,0 +1,146 @@
|
||||
---
|
||||
title: A.2_Markov_Chain_Monte_Carlo
|
||||
excerpt:
|
||||
layout: none
|
||||
image:
|
||||
|
||||
---
|
||||
<!DOCTYPE html>
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
|
||||
<head>
|
||||
<meta charset="utf-8" />
|
||||
<meta name="generator" content="pandoc" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
|
||||
<title>A.2_Markov_Chain_Monte_Carlo</title>
|
||||
|
||||
|
||||
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
|
||||
<script src="/assets/js/thesis_scrollspy.js"></script>
|
||||
|
||||
<link rel="stylesheet" href="/assets/css/styles.css">
|
||||
<script src="/assets/js/index.js"></script>
|
||||
</head>
|
||||
<body>
|
||||
|
||||
<!--Capture the table of contents from pandoc as a jekyll variable -->
|
||||
{% capture tableOfContents %}
|
||||
<br>
|
||||
<nav aria-label="Table of Contents" class="page-table-of-contents">
|
||||
<ul>
|
||||
<li><a href="#markov-chain-monte-carlo"
|
||||
id="toc-markov-chain-monte-carlo">Markov Chain Monte Carlo</a>
|
||||
<ul>
|
||||
<li><a href="#applying-mcmc-to-the-fk-model"
|
||||
id="toc-applying-mcmc-to-the-fk-model">Applying MCMC to the FK
|
||||
model</a></li>
|
||||
</ul></li>
|
||||
</ul>
|
||||
</nav>
|
||||
{% endcapture %}
|
||||
|
||||
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
|
||||
{% include header.html extra=tableOfContents %}
|
||||
|
||||
<main>
|
||||
|
||||
<!-- Table of Contents -->
|
||||
<!-- <nav id="TOC" role="doc-toc">
|
||||
<ul>
|
||||
<li><a href="#markov-chain-monte-carlo"
|
||||
id="toc-markov-chain-monte-carlo">Markov Chain Monte Carlo</a>
|
||||
<ul>
|
||||
<li><a href="#applying-mcmc-to-the-fk-model"
|
||||
id="toc-applying-mcmc-to-the-fk-model">Applying MCMC to the FK
|
||||
model</a></li>
|
||||
</ul></li>
|
||||
</ul>
|
||||
</nav>
|
||||
-->
|
||||
|
||||
<!-- Main Page Body -->
|
||||
<section id="markov-chain-monte-carlo" class="level1">
|
||||
<h1>Markov Chain Monte Carlo</h1>
|
||||
<section id="applying-mcmc-to-the-fk-model" class="level2">
|
||||
<h2>Applying MCMC to the FK model</h2>
|
||||
<p>MCMC can be applied to sample over the classical degrees of freedom
|
||||
of the model. We take the full Hamiltonian and split it into a classical
|
||||
and a quantum part: <span class="math display">\[\begin{aligned}
|
||||
H_{\mathrm{FK}} &= -\sum_{<ij>} c^\dagger_{i}c_{j} + U
|
||||
\sum_{i} (c^\dagger_{i}c_{i} - 1/2)( n_i - 1/2) \\
|
||||
&+ \sum_{ij} J_{ij} (n_i - 1/2) (n_j - 1/2) - \mu \sum_i
|
||||
(c^\dagger_{i}c_{i} + n_i)\\
|
||||
H_q &= -\sum_{<ij>} c^\dagger_{i}c_{j} + \sum_{i}
|
||||
\left(U(n_i - 1/2) - \mu\right) c^\dagger_{i}c_{i}\\
|
||||
H_c &= \sum_i \mu n_i - \frac{U}{2}(n_i - 1/2) +
|
||||
\sum_{ij}J_{ij}(n_i - 1/2)(n_j - 1/2)
|
||||
\end{aligned}
|
||||
\]</span></p>
|
||||
<p>There are <span class="math inline">\(2^N\)</span> possible ion
|
||||
configurations <span class="math inline">\(\{ n_i \}\)</span>, we define
|
||||
<span class="math inline">\(n^k_i\)</span> to be the occupation of the
|
||||
ith site of the kth configuration. The quantum part of the free energy
|
||||
can then be defined through the quantum partition function <span
|
||||
class="math inline">\(\mathcal{Z}^k\)</span> associated with each ionic
|
||||
state <span class="math inline">\(n^k_i\)</span>: <span
|
||||
class="math display">\[\begin{aligned}
|
||||
F^k &= -1/\beta \ln{\mathcal{Z}^k} \\
|
||||
\end{aligned}\]</span> % Such that the overall partition function is:
|
||||
<span class="math display">\[\begin{aligned}
|
||||
\mathcal{Z} &= \sum_k e^{- \beta H^k} Z^k \\
|
||||
&= \sum_k e^{-\beta (H^k + F^k)} \\
|
||||
\end{aligned}\]</span> % Because fermions are limited to occupation
|
||||
numbers of 0 or 1 <span class="math inline">\(Z^k\)</span> simplifies
|
||||
nicely. If <span class="math inline">\(m^j_i = \{0,1\}\)</span> is
|
||||
defined as the occupation of the level with energy <span
|
||||
class="math inline">\(\epsilon^k_i\)</span> then the partition function
|
||||
is a sum over all the occupation states labelled by j: <span
|
||||
class="math display">\[\begin{aligned}
|
||||
Z^k &= \Tr e^{-\beta F^k} = \sum_j e^{-\beta \sum_i m^j_i
|
||||
\epsilon^k_i}\\
|
||||
&= \sum_j \prod_i e^{- \beta m^j_i \epsilon^k_i}= \prod_i
|
||||
\sum_j e^{- \beta m^j_i \epsilon^k_i}\\
|
||||
&= \prod_i (1 + e^{- \beta \epsilon^k_i})\\
|
||||
F^k &= -1/\beta \sum_k \ln{(1 + e^{- \beta \epsilon^k_i})}
|
||||
\end{aligned}\]</span> % Observables can then be calculated from the
|
||||
partition function, for examples the occupation numbers:</p>
|
||||
<p><span class="math display">\[\begin{aligned}
|
||||
\tex{N} &= \frac{1}{\beta} \frac{1}{Z} \frac{\partial Z}{\partial
|
||||
\mu} = - \frac{\partial F}{\partial \mu}\\
|
||||
&= \frac{1}{\beta} \frac{1}{Z} \frac{\partial}{\partial \mu}
|
||||
\sum_k e^{-\beta (H^k + F^k)}\\
|
||||
&= 1/Z \sum_k (N^k_{\mathrm{ion}} + N^k_{\mathrm{electron}})
|
||||
e^{-\beta (H^k + F^k)}\\
|
||||
\end{aligned}\]</span> % with the definitions:</p>
|
||||
<p><span class="math display">\[\begin{aligned}
|
||||
N^k_{\mathrm{ion}} &= - \frac{\partial H^k}{\partial \mu} = \sum_i
|
||||
n^k_i\\
|
||||
N^k_{\mathrm{electron}} &= - \frac{\partial F^k}{\partial \mu} =
|
||||
\sum_i \left(1 + e^{\beta \epsilon^k_i}\right)^{-1}\\
|
||||
\end{aligned}\]</span> % The MCMC algorithm consists of performing a
|
||||
random walk over the states <span class="math inline">\(\{ n^k_i
|
||||
\}\)</span>. In the simplest case the proposal distribution corresponds
|
||||
to flipping a random site from occupied to unoccupied or vice versa,
|
||||
since this proposal is symmetric the acceptance function becomes: <span
|
||||
class="math display">\[\begin{aligned}
|
||||
P(k) &= \mathcal{Z}^{-1} e^{-\beta(H^k + F^k)} \\
|
||||
\mathcal{A}(k \to k') &= \min\left(1,
|
||||
\frac{P(k')}{P(k)}\right) = \min\left(1, e^{\beta(H^{k'} +
|
||||
F^{k'})-\beta(H^k + F^k)}\right)
|
||||
\end{aligned}\]</span> % At each step <span
|
||||
class="math inline">\(F^k\)</span> is calculated by diagonalising the
|
||||
tri-diagonal matrix representation of <span
|
||||
class="math inline">\(H_q\)</span> with open boundary conditions.
|
||||
Observables are simply averages over the their value at each step of the
|
||||
random walk. The full spectrum and eigenbasis is too large to save to
|
||||
disk so usually running averages of key observables are taken as the
|
||||
walk progresses.</p>
|
||||
<div class="sourceCode" id="cb1"><pre
|
||||
class="sourceCode python"><code class="sourceCode python"></code></pre></div>
|
||||
<p></ij></ij></p>
|
||||
</section>
|
||||
</section>
|
||||
|
||||
|
||||
</main>
|
||||
</body>
|
||||
</html>
|
60
_thesis/6_Appendices/A.3_Lattice_Generation.html
Normal file
60
_thesis/6_Appendices/A.3_Lattice_Generation.html
Normal file
@ -0,0 +1,60 @@
|
||||
---
|
||||
title: A.3_Lattice_Generation
|
||||
excerpt:
|
||||
layout: none
|
||||
image:
|
||||
|
||||
---
|
||||
<!DOCTYPE html>
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
|
||||
<head>
|
||||
<meta charset="utf-8" />
|
||||
<meta name="generator" content="pandoc" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
|
||||
<title>A.3_Lattice_Generation</title>
|
||||
|
||||
|
||||
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
|
||||
<script src="/assets/js/thesis_scrollspy.js"></script>
|
||||
|
||||
<link rel="stylesheet" href="/assets/css/styles.css">
|
||||
<script src="/assets/js/index.js"></script>
|
||||
</head>
|
||||
<body>
|
||||
|
||||
<!--Capture the table of contents from pandoc as a jekyll variable -->
|
||||
{% capture tableOfContents %}
|
||||
<br>
|
||||
<nav aria-label="Table of Contents" class="page-table-of-contents">
|
||||
<ul>
|
||||
<li><a href="#lattice-generation" id="toc-lattice-generation">Lattice
|
||||
Generation</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
{% endcapture %}
|
||||
|
||||
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
|
||||
{% include header.html extra=tableOfContents %}
|
||||
|
||||
<main>
|
||||
|
||||
<!-- Table of Contents -->
|
||||
<!-- <nav id="TOC" role="doc-toc">
|
||||
<ul>
|
||||
<li><a href="#lattice-generation" id="toc-lattice-generation">Lattice
|
||||
Generation</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
-->
|
||||
|
||||
<!-- Main Page Body -->
|
||||
<section id="lattice-generation" class="level1">
|
||||
<h1>Lattice Generation</h1>
|
||||
<div class="sourceCode" id="cb1"><pre
|
||||
class="sourceCode python"><code class="sourceCode python"></code></pre></div>
|
||||
</section>
|
||||
|
||||
|
||||
</main>
|
||||
</body>
|
||||
</html>
|
60
_thesis/6_Appendices/A.4_Lattice_Colouring.html
Normal file
60
_thesis/6_Appendices/A.4_Lattice_Colouring.html
Normal file
@ -0,0 +1,60 @@
|
||||
---
|
||||
title: A.4_Lattice_Colouring
|
||||
excerpt:
|
||||
layout: none
|
||||
image:
|
||||
|
||||
---
|
||||
<!DOCTYPE html>
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
|
||||
<head>
|
||||
<meta charset="utf-8" />
|
||||
<meta name="generator" content="pandoc" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
|
||||
<title>A.4_Lattice_Colouring</title>
|
||||
|
||||
|
||||
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
|
||||
<script src="/assets/js/thesis_scrollspy.js"></script>
|
||||
|
||||
<link rel="stylesheet" href="/assets/css/styles.css">
|
||||
<script src="/assets/js/index.js"></script>
|
||||
</head>
|
||||
<body>
|
||||
|
||||
<!--Capture the table of contents from pandoc as a jekyll variable -->
|
||||
{% capture tableOfContents %}
|
||||
<br>
|
||||
<nav aria-label="Table of Contents" class="page-table-of-contents">
|
||||
<ul>
|
||||
<li><a href="#lattice-colouring" id="toc-lattice-colouring">Lattice
|
||||
Colouring</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
{% endcapture %}
|
||||
|
||||
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
|
||||
{% include header.html extra=tableOfContents %}
|
||||
|
||||
<main>
|
||||
|
||||
<!-- Table of Contents -->
|
||||
<!-- <nav id="TOC" role="doc-toc">
|
||||
<ul>
|
||||
<li><a href="#lattice-colouring" id="toc-lattice-colouring">Lattice
|
||||
Colouring</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
-->
|
||||
|
||||
<!-- Main Page Body -->
|
||||
<section id="lattice-colouring" class="level1">
|
||||
<h1>Lattice Colouring</h1>
|
||||
<div class="sourceCode" id="cb1"><pre
|
||||
class="sourceCode python"><code class="sourceCode python"></code></pre></div>
|
||||
</section>
|
||||
|
||||
|
||||
</main>
|
||||
</body>
|
||||
</html>
|
58
_thesis/6_Appendices/A.5_The_Projector.html
Normal file
58
_thesis/6_Appendices/A.5_The_Projector.html
Normal file
@ -0,0 +1,58 @@
|
||||
---
|
||||
title: A.5_The_Projector
|
||||
excerpt:
|
||||
layout: none
|
||||
image:
|
||||
|
||||
---
|
||||
<!DOCTYPE html>
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
|
||||
<head>
|
||||
<meta charset="utf-8" />
|
||||
<meta name="generator" content="pandoc" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
|
||||
<title>A.5_The_Projector</title>
|
||||
|
||||
|
||||
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
|
||||
<script src="/assets/js/thesis_scrollspy.js"></script>
|
||||
|
||||
<link rel="stylesheet" href="/assets/css/styles.css">
|
||||
<script src="/assets/js/index.js"></script>
|
||||
</head>
|
||||
<body>
|
||||
|
||||
<!--Capture the table of contents from pandoc as a jekyll variable -->
|
||||
{% capture tableOfContents %}
|
||||
<br>
|
||||
<nav aria-label="Table of Contents" class="page-table-of-contents">
|
||||
<ul>
|
||||
<li><a href="#the-projector" id="toc-the-projector">The
|
||||
Projector</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
{% endcapture %}
|
||||
|
||||
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
|
||||
{% include header.html extra=tableOfContents %}
|
||||
|
||||
<main>
|
||||
|
||||
<!-- Table of Contents -->
|
||||
<!-- <nav id="TOC" role="doc-toc">
|
||||
<ul>
|
||||
<li><a href="#the-projector" id="toc-the-projector">The
|
||||
Projector</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
-->
|
||||
|
||||
<!-- Main Page Body -->
|
||||
<section id="the-projector" class="level1">
|
||||
<h1>The Projector</h1>
|
||||
</section>
|
||||
|
||||
|
||||
</main>
|
||||
</body>
|
||||
</html>
|
@ -10,32 +10,31 @@
|
||||
<ul>
|
||||
<li><a href="./2_Background/2.1_FK_Model.html#the-falikov-kimball-model">The Falikov Kimball Model</a></li>
|
||||
<li><a href="./2_Background/2.2_HKM_Model.html#the-kitaev-honeycomb-model">The Kitaev Honeycomb Model</a></li>
|
||||
<li><a href="./2_Background/2.3_Disorder.html#disorder-&-localisation">Disorder & Localisation</a></li>
|
||||
<li><a href="./2_Background/2.3_Disorder.html#disorder-and-localisation">Disorder and Localisation</a></li>
|
||||
</ul>
|
||||
<li><a href="./3_Long_Range_Falikov_Kimball/3.1_LRFK_Model.html#chapter-summary">Chapter 3: The Long Range Falikov-Kimball Model</a></li>
|
||||
<li><a href="./3_Long_Range_Falikov_Kimball/3.1_LRFK_Model.html#the-model">Chapter 3: The Long Range Falikov-Kimball Model</a></li>
|
||||
<ul>
|
||||
<li><a href="./3_Long_Range_Falikov_Kimball/3.1_LRFK_Model.html#the-model">The Model</a></li>
|
||||
<li><a href="./3_Long_Range_Falikov_Kimball/3.2_LRFK_Methods.html#markov-chain-monte-carlo">Markov Chain Monte Carlo</a></li>
|
||||
<li><a href="./3_Long_Range_Falikov_Kimball/3.3_LRFK_Results.html#the-phase-diagram">The Phase Diagram</a></li>
|
||||
<li><a href="./3_Long_Range_Falikov_Kimball/3.3_LRFK_Results.html#localisation-properties">Localisation Properties</a></li>
|
||||
<li><a href="./3_Long_Range_Falikov_Kimball/3.3_LRFK_Results.html#discussion-&-conclusion">Discussion & Conclusion</a></li>
|
||||
<li><a href="./3_Long_Range_Falikov_Kimball/3.3_LRFK_Results.html#acknowledgments">Acknowledgments</a></li>
|
||||
<li><a href="./3_Long_Range_Falikov_Kimball/3.3_LRFK_Results.html#[]{#app:disorder_model-label="app:disorder_model"}-uncorrelated-disorder-model">[]{#app:disorder_model label="app:disorder_model"} UNCORRELATED DISORDER MODEL</a></li>
|
||||
<li><a href="./3_Long_Range_Falikov_Kimball/3.2_LRFK_Methods.html#methods">Methods</a></li>
|
||||
<li><a href="./3_Long_Range_Falikov_Kimball/3.3_LRFK_Results.html#results">Results</a></li>
|
||||
<li><a href="./3_Long_Range_Falikov_Kimball/3.3_LRFK_Results.html#discussion-and-conclusion">Discussion and Conclusion</a></li>
|
||||
</ul>
|
||||
<li><a href="./4_Amorphous_Kitaev_Model/4.1.2_AMK_Model.html#gauge-fields">Chapter 4: The Amorphous Kitaev Model</a></li>
|
||||
<ul>
|
||||
<li><a href="./4_Amorphous_Kitaev_Model/4.1_AMK_Model.html#contributions">Contributions</a></li>
|
||||
<li><a href="./4_Amorphous_Kitaev_Model/4.1_AMK_Model.html#introduction">Introduction</a></li>
|
||||
<li><a href="./4_Amorphous_Kitaev_Model/4.1_AMK_Model.html#the-model">The Model</a></li>
|
||||
<li><a href="./4_Amorphous_Kitaev_Model/4.2_AMK_Methods.html#methods">Methods</a></li>
|
||||
<li><a href="./4_Amorphous_Kitaev_Model/4.3_AMK_Results.html#results">Results</a></li>
|
||||
<li><a href="./4_Amorphous_Kitaev_Model/4.3_AMK_Results.html#conclusion">Conclusion</a></li>
|
||||
<li><a href="./4_Amorphous_Kitaev_Model/4.3_AMK_Results.html#discussion">Discussion</a></li>
|
||||
<li><a href="./4_Amorphous_Kitaev_Model/4.3_AMK_Results.html#outlook">Outlook</a></li>
|
||||
<li><a href="./4_Amorphous_Kitaev_Model/4.3_AMK_Results.html#discussion-and-conclusion">Discussion and Conclusion</a></li>
|
||||
</ul>
|
||||
<li><a href="./5_Conclusion/5_Conclusion.html#discussion">Conclusion</a></li>
|
||||
<li><a href="./6_Appendices/A.1_Markov_Chain_Monte_Carlo.html#markov-chain-monte-carlo">Appendices</a></li>
|
||||
<ul>
|
||||
<li><a href="./6_Appendices/A.1_Markov_Chain_Monte_Carlo.html#markov-chain-monte-carlo">Markov Chain Monte Carlo</a></li>
|
||||
<li><a href="./6_Appendices/A.1_Particle_Hole_Symmetry.html#particle-hole-symmetry">Particle-Hole Symmetry</a></li>
|
||||
<li><a href="./6_Appendices/A.2_Lattice_Generation.html#lattice-generation">Lattice Generation</a></li>
|
||||
<li><a href="./6_Appendices/A.2_Markov_Chain_Monte_Carlo.html#markov-chain-monte-carlo">Markov Chain Monte Carlo</a></li>
|
||||
<li><a href="./6_Appendices/A.3_Lattice_Colouring.html#lattice-colouring">Lattice Colouring</a></li>
|
||||
<li><a href="./6_Appendices/A.3_Lattice_Generation.html#lattice-generation">Lattice Generation</a></li>
|
||||
<li><a href="./6_Appendices/A.4_Lattice_Colouring.html#lattice-colouring">Lattice Colouring</a></li>
|
||||
<li><a href="./6_Appendices/A.4_The_Projector.html#the-projector">The Projector</a></li>
|
||||
<li><a href="./6_Appendices/A.5_The_Projector.html#the-projector">The Projector</a></li>
|
||||
|
22
assets/js/thesis_scrollspy.js
Normal file
22
assets/js/thesis_scrollspy.js
Normal file
@ -0,0 +1,22 @@
|
||||
window.addEventListener('DOMContentLoaded', () => {
|
||||
|
||||
const observer = new IntersectionObserver(entries => {
|
||||
entries.forEach(entry => {
|
||||
const id = entry.target.getAttribute('id');
|
||||
const el = document.querySelector(`nav.page-table-of-contents li a[href="#${id}"]`);
|
||||
if (entry.intersectionRatio > 0) {
|
||||
el.parentElement.classList.add('active');
|
||||
} else {
|
||||
el.parentElement.classList.remove('active');
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
// Track all sections that have an `id` applied
|
||||
document.querySelectorAll('section[id]').forEach((section) => {
|
||||
observer.observe(section);
|
||||
});
|
||||
|
||||
});
|
||||
|
||||
console.log("Scroll Observer running");
|
1774
assets/thesis/background_chapter/alpha_diagram.svg
Normal file
1774
assets/thesis/background_chapter/alpha_diagram.svg
Normal file
File diff suppressed because it is too large
Load Diff
After Width: | Height: | Size: 82 KiB |
2710
assets/thesis/background_chapter/fk_phase_diagram.svg
Normal file
2710
assets/thesis/background_chapter/fk_phase_diagram.svg
Normal file
File diff suppressed because it is too large
Load Diff
After Width: | Height: | Size: 202 KiB |
3919
assets/thesis/background_chapter/simple_DOS.svg
Normal file
3919
assets/thesis/background_chapter/simple_DOS.svg
Normal file
File diff suppressed because it is too large
Load Diff
After Width: | Height: | Size: 196 KiB |
@ -7,6 +7,6 @@ permalink: /thesis/
|
||||
This is my work-in-progress thesis. It will be available as a traditional PDF too but I wanted to make it available as nicely rendered website too!
|
||||
|
||||
<h2>Contents</h2>
|
||||
<nav>
|
||||
<nav aria-label="Thesis Table of Contents" class="overall-table-of-contents">
|
||||
{% include_relative _thesis/toc.html %}
|
||||
</nav>
|
Loading…
x
Reference in New Issue
Block a user