diff --git a/_thesis/1_Introduction/1_Intro.html b/_thesis/1_Introduction/1_Intro.html index db6afba..201b807 100644 --- a/_thesis/1_Introduction/1_Intro.html +++ b/_thesis/1_Introduction/1_Intro.html @@ -213,6 +213,7 @@ Insulators
  • Quantum Spin Liquids
  • Outline
  • +
  • Bibliography
  • {% endcapture %} @@ -230,6 +231,7 @@ Insulators
  • Quantum Spin Liquids
  • Outline
  • +
  • Bibliography
  • --> @@ -266,9 +268,10 @@ that of the individual objects.

    data-short-caption="A murmuration of Starlings" style="width:100.0%" alt="Figure 1: A murmuration of starlings. Dorset, UK. Credit Tanya Hart, “Studland Starlings”, 2017, CC BY-SA 3.0" /> @@ -356,7 +359,7 @@ methods.

    Figure 2: Three key adjectives. Many Body, the fact of describing systems in the limit of large numbers of particles. Quantum, objects whose behaviour requires quantum mechanics to describe accurately. Interacting, the constituent particles of the system affect one another via forces, either directly or indirectly. When taken together, these three properties can give rise to what are called strongly correlated materials.

    However, in the non-Abelian phase we have to wrangle with monodromy  [4,3,5]. Monodromy is the behaviour of +role="doc-biblioref">4]. Monodromy is the behaviour of objects as they move around a singularity. This manifests here in that the identity of a vortex and cloud of Majoranas can change as we wind them around the torus in such a way that, rather than annihilating to @@ -1192,9 +1194,9 @@ ground state. This means that we end up with only three degenerate ground states in the non-Abelian phase \((+1, +1), (+1, -1), (-1, +1)\)  [3,2,16]. Concretely, this is because the +role="doc-biblioref">15]. Concretely, this is because the projector enforces both flux and fermion parity. When we wind a vortex around both non-contractible loops of the torus, it flips the flux parity. Therefore, we have to introduce a fermionic excitation to make @@ -1205,24 +1207,17 @@ proposals to use this ground state degeneracy to implement both passively fault tolerant and actively stabilised quantum computations  [1,17,16,18].

    +role="doc-biblioref">17,kitaevFaulttolerantQuantumComputation2003?].

    +

    Bibliography

    -
    -
    [1]
    A. -Yu. Kitaev, Fault-Tolerant -Quantum Computation by Anyons, Annals of Physics -303, 2 (2003).
    -
    -
    [2]
    F. +
    [1]
    F. L. Pedrocchi, S. Chesi, and D. Loss, Physical solutions of the Kitaev honeycomb model, Phys. Rev. B 84, @@ -1230,7 +1225,7 @@ the Kitaev honeycomb model, Phys. Rev. B 84,
    -
    [3]
    H. +
    [2]
    H. Yao, S.-C. Zhang, and S. A. Kivelson, Algebraic Spin Liquid in an Exactly Solvable Spin Model, Phys. Rev. Lett. @@ -1238,7 +1233,7 @@ Liquid in an Exactly Solvable Spin Model, Phys. Rev. Lett.
    -
    [4]
    S. +
    [3]
    S. B. Chung and M. Stone, Explicit Monodromy of Moore–Read Wavefunctions on a Torus, J. Phys. A: Math. Theor. @@ -1246,20 +1241,20 @@ Moore–Read Wavefunctions on a Torus, J. Phys. A: Math. Theor.
    -
    [5]
    M. +
    [4]
    M. Oshikawa, Y. B. Kim, K. Shtengel, C. Nayak, and S. Tewari, Topological Degeneracy of Non-Abelian States for Dummies, Annals of Physics 322, 1477 (2007).
    -
    [6]
    E. +
    [5]
    E. H. Lieb, Flux Phase of the Half-Filled Band, Physical Review Letters 73, 2158 (1994).
    -
    [7]
    V. +
    [6]
    V. Chua, H. Yao, and G. A. Fiete, Exact Chiral Spin Liquid with Stable Spin Fermi Surface on the Kagome Lattice, @@ -1267,21 +1262,21 @@ Phys. Rev. B 83, 180412 (2011).
    -
    [8]
    H. +
    [7]
    H. Yao and S. A. Kivelson, An Exact Chiral Spin Liquid with Non-Abelian Anyons, Phys. Rev. Lett. 99, 247203 (2007).
    -
    [9]
    V. +
    [8]
    V. Chua and G. A. Fiete, Exactly Solvable Topological Chiral Spin Liquid with Random Exchange, Phys. Rev. B 84, 195129 (2011).
    -
    [10]
    G. +
    [9]
    G. A. Fiete, V. Chua, M. Kargarian, R. Lundgren, A. Rüegg, J. Wen, and V. Zyuzin, Topological @@ -1289,19 +1284,19 @@ Insulators and Quantum Spin Liquids, Physica E: Low-Dimensional Systems and Nanostructures 44, 845 (2012).
    -
    [11]
    W. +
    [10]
    W. M. H. Natori, E. C. Andrade, E. Miranda, and R. G. Pereira, Chiral Spin-Orbital Liquids with Nodal Lines, Phys. Rev. Lett. 117, 017204 (2016).
    -
    [12]
    C. +
    [11]
    C. Wu, D. Arovas, and H.-H. Hung, Γ-Matrix Generalization of the Kitaev Model, Physical Review B 79, 134427 (2009).
    -
    [13]
    V. +
    [12]
    V. Peri, S. Ok, S. S. Tsirkin, T. Neupert, G. Baskaran, M. Greiter, R. Moessner, and R. Thomale, Non-Abelian Chiral @@ -1310,7 +1305,7 @@ Spin Liquid on a Simple Non-Archimedean Lattice, Phys. Rev. B
    -
    [14]
    H. +
    [13]
    H. Wang and A. Principi, Majorana Edge and Corner States in Square and Kagome Quantum Spin-3/2 Liquids, @@ -1318,14 +1313,14 @@ Phys. Rev. B 104, 214422 (2021).
    -
    [15]
    [14]
    -
    [16]
    S. +
    [15]
    -
    [17]
    D. +
    [16]
    D. Poulin, Stabilizer Formalism for Operator Quantum Error Correction, Phys. Rev. @@ -1342,7 +1337,7 @@ Lett. 95, 230504 (2005).
    -
    [18]
    M. +
    [17]
    M. B. Hastings and J. Haah, Dynamically Generated Logical Qubits, Quantum 5, 564 (2021).
    diff --git a/_thesis/4_Amorphous_Kitaev_Model/4.1_AMK_Model.html b/_thesis/4_Amorphous_Kitaev_Model/4.1_AMK_Model.html index 52b9e5d..50223aa 100644 --- a/_thesis/4_Amorphous_Kitaev_Model/4.1_AMK_Model.html +++ b/_thesis/4_Amorphous_Kitaev_Model/4.1_AMK_Model.html @@ -237,6 +237,7 @@ back from Bond Sectors to the Physical Subspace id="toc-open-boundary-conditions">Open boundary conditions +
  • Bibliography
  • {% endcapture %} @@ -277,6 +278,7 @@ back from Bond Sectors to the Physical Subspace id="toc-open-boundary-conditions">Open boundary conditions +
  • Bibliography
  • --> @@ -905,6 +907,7 @@ which we set to 1 when calculating the projector.

    anyway, an arbitrary pairing of the unpaired \(b^\alpha\) operators could be performed. </i,j></i,j>

    +

    Bibliography

    diff --git a/_thesis/4_Amorphous_Kitaev_Model/4.2_AMK_Methods.html b/_thesis/4_Amorphous_Kitaev_Model/4.2_AMK_Methods.html index 37e4f40..94c1bde 100644 --- a/_thesis/4_Amorphous_Kitaev_Model/4.2_AMK_Methods.html +++ b/_thesis/4_Amorphous_Kitaev_Model/4.2_AMK_Methods.html @@ -293,6 +293,7 @@ flux sectors and bond sectors
  • Chern Markers
  • +
  • Bibliography
  • {% endcapture %} @@ -326,6 +327,7 @@ flux sectors and bond sectors
  • Chern Markers
  • +
  • Bibliography
  • --> @@ -757,6 +759,7 @@ system.

    Expand on definition here

    Discuss link between Chern number and Anyonic Statistics

    +

    Bibliography

    diff --git a/_thesis/4_Amorphous_Kitaev_Model/4.3_AMK_Results.html b/_thesis/4_Amorphous_Kitaev_Model/4.3_AMK_Results.html index 7d94b16..4327d4f 100644 --- a/_thesis/4_Amorphous_Kitaev_Model/4.3_AMK_Results.html +++ b/_thesis/4_Amorphous_Kitaev_Model/4.3_AMK_Results.html @@ -241,6 +241,7 @@ Realisations and Signatures
  • Generalisations
  • +
  • Bibliography
  • {% endcapture %} @@ -285,6 +286,7 @@ Realisations and Signatures
  • Generalisations
  • +
  • Bibliography
  • --> @@ -829,6 +831,7 @@ href="#ref-Wu2009" role="doc-biblioref">47]

    quantum many body phases albeit material candidates aplenty. We expect our exact chiral amorphous spin liquid to find many generalisation to realistic amorphous quantum magnets and beyond.

    +

    Bibliography

    @@ -935,7 +938,7 @@ Conductivity as a Local Chern Marker, arXiv Preprint
    [14]
    A. -Y. Kitaev, Fault-Tolerant Quantum Computation by Anyons, Annals of Physics 303, 2 (2003).
    diff --git a/_thesis/toc.html b/_thesis/toc.html index 62d4b78..c6e41fd 100644 --- a/_thesis/toc.html +++ b/_thesis/toc.html @@ -2,9 +2,8 @@
  • Introduction
  • Background
  • @@ -31,7 +30,6 @@
  • Chapter 3: The Long Range Falikov-Kimball Model
    • The Model
    • diff --git a/assets/thesis/intro_chapter/Venn_diagram.svg b/assets/thesis/intro_chapter/Venn_diagram.svg index 65e4d15..e59ee6a 100644 --- a/assets/thesis/intro_chapter/Venn_diagram.svg +++ b/assets/thesis/intro_chapter/Venn_diagram.svg @@ -3,10 +3,10 @@ + inkscape:current-layer="layer3" + inkscape:document-units="pt" /> + + + style="fill:#000000;fill-opacity:0.0472279;stroke:#000000;stroke-width:1;stroke-linecap:round;stroke-miterlimit:4;stroke-dashoffset:0;stroke-opacity:0.997947" + transform="matrix(0.89844426,0,0,0.89844426,61.476642,-43.358497)" /> + style="fill:#000000;fill-opacity:0.0472279;stroke:#000000;stroke-width:1;stroke-linecap:round;stroke-miterlimit:4;stroke-dashoffset:0;stroke-opacity:0.997947" + transform="matrix(0.89844426,0,0,0.89844426,61.476642,-43.358497)" /> + style="fill:#000000;fill-opacity:0.0472279;stroke:#000000;stroke-width:1;stroke-linecap:round;stroke-miterlimit:4;stroke-dashoffset:0;stroke-opacity:0.997947" + transform="matrix(0.89844426,0,0,0.89844426,61.476642,-43.358497)" /> Interacting + id="tspan495">Interacting Ideal Gas + id="tspan497">Ideal Gas Band + id="tspan499">Band Theory + id="tspan501">Insulators Many Body + id="tspan503">Many Body Quantum + id="tspan505">Quantum Single Particle Hydrogen QM + id="tspan509">Atom + Molecules Strongly Strongly Correlated Correlated Materials + id="tspan517">Materials Landau Classical Theory + id="tspan521">Phases + Classical Mechanics