This commit is contained in:
Tom Hodson 2022-08-27 18:33:40 +02:00
parent c23fcc5acb
commit f5b5ce22f1
19 changed files with 1539 additions and 1241 deletions

View File

@ -88,5 +88,11 @@ nav.overall-table-of-contents > ul {
// Page header
div#page-header {
//make the header sticky, I don't really like how this looks but it's fun to play with
// position: sticky;
// top: 0px;
// background: white;
// z-index: 10;
// width: 100%;
p { margin-block-end: 0px;}
}

View File

@ -595,8 +595,7 @@ to the Falikov-Kimball Model, the Kitaev Honeycomb Model, disorder and
localisation. Then Chapter 3 introduces and studies the Long Range
Falikov-Kimball Model in one dimension while Chapter 4 focusses on the
Amorphous Kitaev Model.</p>
<p>Next Chapter: <a
href="../2_Background/2.1_FK_Model.html#the-falikov-kimball-model">2
<p>Next Chapter: <a href="../2_Background/2.1_FK_Model.html">2
Background</a></p>
</section>
<section id="bibliography" class="level1 unnumbered">

View File

@ -138,7 +138,7 @@ href="#ref-gruberFalicovKimballModel2005"
role="doc-biblioref">9</a>]</span>. The absence of a hopping term for
the heavy electrons means they do not need the factor of <span
class="math inline">\(\epsilon_i\)</span>. See appendix <a
href="../6_Appendices/A.1_Particle_Hole_Symmetry.html#particle-hole-symmetry">A.1</a>
href="../6_Appendices/A.1_Particle_Hole_Symmetry-Copy1.html#particle-hole-symmetry">A.1</a>
for a full derivation of the PH symmetry.</p>
<div id="fig:simple_DOS" class="fignos">
<figure>
@ -419,9 +419,8 @@ j|^{-\alpha} S_i S_j\)</span> as the exponent of the interaction <span
class="math inline">\(\alpha\)</span> is varied.</figcaption>
</figure>
</div>
<p>Next Section: <a
href="../2_Background/2.2_HKM_Model.html#the-kitaev-honeycomb-model">The
Kitaev Honeycomb Model</a></p>
<p>Next Section: <a href="../2_Background/2.2_HKM_Model.html">The Kitaev
Honeycomb Model</a></p>
</section>
</section>
<section id="bibliography" class="level1 unnumbered">

View File

@ -140,8 +140,7 @@ role="doc-biblioref">1</a>]</span></li>
<h2>Phase Diagram</h2>
<div class="sourceCode" id="cb1"><pre
class="sourceCode python"><code class="sourceCode python"></code></pre></div>
<p>Next Section: <a
href="../2_Background/2.3_Disorder.html#bg-disorder-and-localisation">Disorder
<p>Next Section: <a href="../2_Background/2.3_Disorder.html">Disorder
and Localisation</a></p>
</section>
</section>

View File

@ -174,8 +174,8 @@ timescales to the infinite limit.</p>
<p>-link to the Kitaev Model</p>
<p>-link to the physics of amorphous systems</p>
<p>Next Chapter: <a
href="../3_Long_Range_Falikov_Kimball/3.1_LRFK_Model.html#fk-model">3
The Long Range Falikov-Kimball Model</a></p>
href="../3_Long_Range_Falikov_Kimball/3.1_LRFK_Model.html">3 The Long
Range Falikov-Kimball Model</a></p>
</section>
</section>
<section id="bibliography" class="level1 unnumbered">

View File

@ -272,7 +272,7 @@ href="#ref-fukuiOrderNClusterMonte2009"
role="doc-biblioref">30</a>]</span>. We only consider even system sizes
given that odd system sizes are not commensurate with a CDW state.</p>
<p>Next Section: <a
href="../3_Long_Range_Falikov_Kimball/3.2_LRFK_Methods.html#fk-methods">Methods</a></p>
href="../3_Long_Range_Falikov_Kimball/3.2_LRFK_Methods.html">Methods</a></p>
</section>
<section id="bibliography" class="level1 unnumbered">
<h1 class="unnumbered">Bibliography</h1>

File diff suppressed because it is too large Load Diff

View File

@ -470,8 +470,8 @@ H_{\mathrm{DM}} = &amp; \;U \sum_{i} (-1)^i \; d_i \;(c^\dag_{i}c_{i} -
<div class="sourceCode" id="cb1"><pre
class="sourceCode python"><code class="sourceCode python"></code></pre></div>
<p>Next Chapter: <a
href="../4_Amorphous_Kitaev_Model/4.1.2_AMK_Model.html#vortices-and-their-movements">4
The Amorphous Kitaev Model</a></p>
href="../4_Amorphous_Kitaev_Model/4.1.2_AMK_Model.html">4 The Amorphous
Kitaev Model</a></p>
</section>
<section id="bibliography" class="level1 unnumbered">
<h1 class="unnumbered">Bibliography</h1>

View File

@ -1070,8 +1070,7 @@ role="doc-biblioref">16</a>,<a
href="#ref-kitaevFaulttolerantQuantumComputation2003"
role="doc-biblioref"><strong>kitaevFaulttolerantQuantumComputation2003?</strong></a>]</span>.</p>
<p>Next Section: <a
href="../4_Amorphous_Kitaev_Model/4.1_AMK_Model.html#amk-Model">The
Model</a></p>
href="../4_Amorphous_Kitaev_Model/4.1_AMK_Model.html">The Model</a></p>
</section>
</section>
<section id="bibliography" class="level1 unnumbered">

View File

@ -769,7 +769,7 @@ anyway, an arbitrary pairing of the unpaired <span
class="math inline">\(b^\alpha\)</span> operators could be performed.
&lt;/i,j&gt;&lt;/i,j&gt;</p>
<p>Next Section: <a
href="../4_Amorphous_Kitaev_Model/4.2_AMK_Methods.html#amk-methods">Methods</a></p>
href="../4_Amorphous_Kitaev_Model/4.2_AMK_Methods.html">Methods</a></p>
</section>
</section>
</section>

View File

@ -541,7 +541,7 @@ system.</p>
<p><strong>Discuss link between Chern number and Anyonic
Statistics</strong></p>
<p>Next Section: <a
href="../4_Amorphous_Kitaev_Model/4.3_AMK_Results.html#amk-results">Results</a></p>
href="../4_Amorphous_Kitaev_Model/4.3_AMK_Results.html">Results</a></p>
</section>
</section>
<section id="bibliography" class="level1 unnumbered">

View File

@ -665,8 +665,8 @@ href="#ref-Wu2009" role="doc-biblioref">47</a>]</span></p>
quantum many body phases albeit material candidates aplenty. We expect
our exact chiral amorphous spin liquid to find many generalisation to
realistic amorphous quantum magnets and beyond.</p>
<p>Next Chapter: <a
href="../5_Conclusion/5_Conclusion.html#discussion">5 Conclusion</a></p>
<p>Next Chapter: <a href="../5_Conclusion/5_Conclusion.html">5
Conclusion</a></p>
</section>
</section>
<section id="bibliography" class="level1 unnumbered">

View File

@ -27,6 +27,14 @@ image:
<br>
<nav aria-label="Table of Contents" class="page-table-of-contents">
<ul>
<li><a href="#material-realisations"
id="toc-material-realisations">Material Realisations</a>
<ul>
<li><a href="#amorphous-materials"
id="toc-amorphous-materials">Amorphous Materials</a></li>
<li><a href="#metal-organic-frameworks"
id="toc-metal-organic-frameworks">Metal Organic Frameworks</a></li>
</ul></li>
<li><a href="#discussion" id="toc-discussion">Discussion</a></li>
<li><a href="#outlook" id="toc-outlook">Outlook</a></li>
</ul>
@ -41,6 +49,14 @@ image:
<!-- Table of Contents -->
<!-- <nav id="TOC" role="doc-toc">
<ul>
<li><a href="#material-realisations"
id="toc-material-realisations">Material Realisations</a>
<ul>
<li><a href="#amorphous-materials"
id="toc-amorphous-materials">Amorphous Materials</a></li>
<li><a href="#metal-organic-frameworks"
id="toc-metal-organic-frameworks">Metal Organic Frameworks</a></li>
</ul></li>
<li><a href="#discussion" id="toc-discussion">Discussion</a></li>
<li><a href="#outlook" id="toc-outlook">Outlook</a></li>
</ul>
@ -52,13 +68,22 @@ image:
<p>5 Conclusion</p>
<hr />
</div>
<section id="discussion" class="level2">
<h2>Discussion</h2>
<section id="material-realisations" class="level1">
<h1>Material Realisations</h1>
<section id="amorphous-materials" class="level2">
<h2>Amorphous Materials</h2>
</section>
<section id="outlook" class="level2">
<h2>Outlook</h2>
<section id="metal-organic-frameworks" class="level2">
<h2>Metal Organic Frameworks</h2>
</section>
</section>
<section id="discussion" class="level1">
<h1>Discussion</h1>
</section>
<section id="outlook" class="level1">
<h1>Outlook</h1>
<p>Next Chapter: <a
href="../6_Appendices/A.1_Particle_Hole_Symmetry.html#particle-hole-symmetry">Appendices</a></p>
href="../6_Appendices/A.1.2_Fermion_Free_Energy.html">Appendices</a></p>
</section>

View File

@ -0,0 +1,110 @@
---
title: Particle-Hole Symmetry
excerpt:
layout: none
image:
---
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>Particle-Hole Symmetry</title>
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
<script src="/assets/js/thesis_scrollspy.js"></script>
<link rel="stylesheet" href="/assets/css/styles.css">
<script src="/assets/js/index.js"></script>
</head>
<body>
<!--Capture the table of contents from pandoc as a jekyll variable -->
{% capture tableOfContents %}
<br>
<nav aria-label="Table of Contents" class="page-table-of-contents">
<ul>
<li><a href="#evaluation-of-the-fermion-free-energy"
id="toc-evaluation-of-the-fermion-free-energy">Evaluation of the Fermion
Free Energy</a></li>
</ul>
</nav>
{% endcapture %}
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
{% include header.html extra=tableOfContents %}
<main>
<!-- Table of Contents -->
<!-- <nav id="TOC" role="doc-toc">
<ul>
<li><a href="#evaluation-of-the-fermion-free-energy"
id="toc-evaluation-of-the-fermion-free-energy">Evaluation of the Fermion
Free Energy</a></li>
</ul>
</nav>
-->
<!-- Main Page Body -->
<div id="page-header">
<p>Appendices</p>
<hr />
</div>
<section id="evaluation-of-the-fermion-free-energy" class="level1">
<h1>Evaluation of the Fermion Free Energy</h1>
<p>There are <span class="math inline">\(2^N\)</span> possible ion
configurations <span class="math inline">\(\{ n_i \}\)</span>, we define
<span class="math inline">\(n^k_i\)</span> to be the occupation of the
ith site of the kth configuration. The quantum part of the free energy
can then be defined through the quantum partition function <span
class="math inline">\(\mathcal{Z}^k\)</span> associated with each ionic
state <span class="math inline">\(n^k_i\)</span>: <span
class="math display">\[\begin{aligned}
F^k &amp;= -1/\beta \ln{\mathcal{Z}^k} \\
\end{aligned}\]</span> % Such that the overall partition function is:
<span class="math display">\[\begin{aligned}
\mathcal{Z} &amp;= \sum_k e^{- \beta H^k} Z^k \\
&amp;= \sum_k e^{-\beta (H^k + F^k)} \\
\end{aligned}\]</span></p>
<p>Because fermions are limited to occupation numbers of 0 or 1 <span
class="math inline">\(Z^k\)</span> simplifies nicely. If <span
class="math inline">\(m^j_i = \{0,1\}\)</span> is defined as the
occupation of the level with energy <span
class="math inline">\(\epsilon^k_i\)</span> then the partition function
is a sum over all the occupation states labelled by j: <span
class="math display">\[\begin{aligned}
Z^k &amp;= \mathrm{Tr} e^{-\beta F^k} = \sum_j e^{-\beta \sum_i m^j_i
\epsilon^k_i}\\
&amp;= \sum_j \prod_i e^{- \beta m^j_i \epsilon^k_i}= \prod_i
\sum_j e^{- \beta m^j_i \epsilon^k_i}\\
&amp;= \prod_i (1 + e^{- \beta \epsilon^k_i})\\
F^k &amp;= -1/\beta \sum_k \ln{(1 + e^{- \beta \epsilon^k_i})}
\end{aligned}\]</span> % Observables can then be calculated from the
partition function, for examples the occupation numbers:</p>
<p><span class="math display">\[\begin{aligned}
\langle N \rangle &amp;= \frac{1}{\beta} \frac{1}{Z} \frac{\partial
Z}{\partial \mu} = - \frac{\partial F}{\partial \mu}\\
&amp;= \frac{1}{\beta} \frac{1}{Z} \frac{\partial}{\partial \mu}
\sum_k e^{-\beta (H^k + F^k)}\\
&amp;= 1/Z \sum_k (N^k_{\mathrm{ion}} + N^k_{\mathrm{electron}})
e^{-\beta (H^k + F^k)}\\
\end{aligned}\]</span> % with the definitions:</p>
<p><span class="math display">\[\begin{aligned}
N^k_{\mathrm{ion}} &amp;= - \frac{\partial H^k}{\partial \mu} = \sum_i
n^k_i\\
N^k_{\mathrm{electron}} &amp;= - \frac{\partial F^k}{\partial \mu} =
\sum_i \left(1 + e^{\beta \epsilon^k_i}\right)^{-1}\\
\end{aligned}\]</span></p>
<p>Next Section: <a
href="../6_Appendices/A.1_Particle_Hole_Symmetry-Copy1.html">Particle-Hole
Symmetry</a></p>
</section>
</main>
</body>
</html>

View File

@ -0,0 +1,135 @@
---
title: Particle-Hole Symmetry
excerpt:
layout: none
image:
---
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>Particle-Hole Symmetry</title>
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
<script src="/assets/js/thesis_scrollspy.js"></script>
<link rel="stylesheet" href="/assets/css/styles.css">
<script src="/assets/js/index.js"></script>
</head>
<body>
<!--Capture the table of contents from pandoc as a jekyll variable -->
{% capture tableOfContents %}
<br>
<nav aria-label="Table of Contents" class="page-table-of-contents">
<ul>
<li><a href="#particle-hole-symmetry"
id="toc-particle-hole-symmetry">Particle-Hole Symmetry</a></li>
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
</ul>
</nav>
{% endcapture %}
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
{% include header.html extra=tableOfContents %}
<main>
<!-- Table of Contents -->
<!-- <nav id="TOC" role="doc-toc">
<ul>
<li><a href="#particle-hole-symmetry"
id="toc-particle-hole-symmetry">Particle-Hole Symmetry</a></li>
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
</ul>
</nav>
-->
<!-- Main Page Body -->
<div id="page-header">
<p>Appendices</p>
<hr />
</div>
<section id="particle-hole-symmetry" class="level1">
<h1>Particle-Hole Symmetry</h1>
<p>The Hubbard and FK models on a bipartite lattice have particle-hole
(PH) symmetry <span class="math inline">\(\mathcal{P}^\dagger H
\mathcal{P} = - H\)</span>, accordingly they have symmetric energy
spectra. The associated symmetry operator <span
class="math inline">\(\mathcal{P}\)</span> exchanges creation and
annihilation operators along with a sign change between the two
sublattices. In the language of the Hubbard model of electrons <span
class="math inline">\(c_{\alpha,i}\)</span> with spin <span
class="math inline">\(\alpha\)</span> at site <span
class="math inline">\(i\)</span> the particle hole operator corresponds
to the substitution of new fermion operators <span
class="math inline">\(d^\dagger_{\alpha,i}\)</span> and number operators
<span class="math inline">\(m_{\alpha,i}\)</span> where</p>
<p><span class="math display">\[d^\dagger_{\alpha,i} = \epsilon_i
c_{\alpha,i}\]</span> <span class="math display">\[m_{\alpha,i} =
d^\dagger_{\alpha,i}d_{\alpha,i}\]</span></p>
<p>the lattices must be bipartite because to make this work we set <span
class="math inline">\(\epsilon_i = +1\)</span> for the A sublattice and
<span class="math inline">\(-1\)</span> for the even sublattice <span
class="citation" data-cites="gruberFalicovKimballModel2005"> [<a
href="#ref-gruberFalicovKimballModel2005"
role="doc-biblioref">1</a>]</span>.</p>
<p>The entirely filled state <span class="math inline">\(\ket{\Omega} =
\sum_{\alpha,i} c^\dagger_{\alpha,i} \ket{0}\)</span> becomes the new
vacuum state <span class="math display">\[d_{i\sigma} \ket{\Omega} =
(-1)^i c^\dagger_{i\sigma} \sum_{j\rho} c^\dagger_{j\rho} \ket{0} =
0.\]</span></p>
<p>The number operator <span class="math inline">\(m_{\alpha,i} =
0,1\)</span> counts holes rather than electrons <span
class="math display">\[ m_{\alpha,i} = c_{\alpha,i} c^\dagger_{\alpha,i}
= 1 - c^\dagger_{\alpha,i} c_{\alpha,i}.\]</span></p>
<p>With the last equality following from the fermionic commutation
relations. In the case of nearest neighbour hopping on a bipartite
lattice this transformation also leaves the hopping term unchanged
because <span class="math inline">\(\epsilon_i \epsilon_j = -1\)</span>
when <span class="math inline">\(i\)</span> and <span
class="math inline">\(j\)</span> are on different sublattices: <span
class="math display">\[ d^\dagger_{\alpha,i} d_{\alpha,j} = \epsilon_i
\epsilon_j c_{\alpha,i} c^\dagger_{\alpha,j} = c^\dagger_{\alpha,i}
c_{\alpha,j} \]</span></p>
<p>Defining the particle density <span
class="math inline">\(\rho\)</span> as the number of fermions per site:
<span class="math display">\[
\rho = \frac{1}{N} \sum_i \left( n_{i \uparrow} + n_{i \downarrow}
\right)
\]</span></p>
<p>The PH symmetry maps the Hamiltonian to itself with the sign of the
chemical potential reversed and the density inverted about half filling:
<span class="math display">\[ \text{PH} : H(t, U, \mu) \rightarrow H(t,
U, -\mu) \]</span> <span class="math display">\[ \rho \rightarrow 2 -
\rho \]</span></p>
<p>The Hamiltonian is symmetric under PH at <span
class="math inline">\(\mu = 0\)</span> and so must all the observables,
hence half filling <span class="math inline">\(\rho = 1\)</span> occurs
here. This symmetry and known observable acts as a useful test for the
numerical calculations.</p>
<p>Next Section: <a
href="../6_Appendices/A.2_Markov_Chain_Monte_Carlo.html">Markov Chain
Monte Carlo</a></p>
</section>
<section id="bibliography" class="level1 unnumbered">
<h1 class="unnumbered">Bibliography</h1>
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
<div id="ref-gruberFalicovKimballModel2005" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[1] </div><div class="csl-right-inline">C.
Gruber and D. Ueltschi, <em><a
href="http://arxiv.org/abs/math-ph/0502041">The Falicov-Kimball
Model</a></em>, arXiv:math-Ph/0502041 (2005).</div>
</div>
</div>
</section>
</main>
</body>
</html>

View File

@ -113,8 +113,8 @@ hence half filling <span class="math inline">\(\rho = 1\)</span> occurs
here. This symmetry and known observable acts as a useful test for the
numerical calculations.</p>
<p>Next Section: <a
href="../6_Appendices/A.2_Markov_Chain_Monte_Carlo.html#applying-mcmc-to-the-fk-model">Applying
MCMC to the FK model</a></p>
href="../6_Appendices/A.2_Markov_Chain_Monte_Carlo.html">Applying MCMC
to the FK model</a></p>
</section>
<section id="bibliography" class="level1 unnumbered">
<h1 class="unnumbered">Bibliography</h1>

File diff suppressed because it is too large Load Diff

View File

@ -57,7 +57,7 @@ Generation</a></li>
<div class="sourceCode" id="cb1"><pre
class="sourceCode python"><code class="sourceCode python"></code></pre></div>
<p>Next Section: <a
href="../6_Appendices/A.4_Lattice_Colouring.html#lattice-colouring">Lattice
href="../6_Appendices/A.4_Lattice_Colouring.html">Lattice
Colouring</a></p>
</section>

View File

@ -1,35 +1,43 @@
<ul>
<li><a href="./1_Introduction/1_Intro.html#interacting-quantum-many-body-systems">1 Introduction</a></li>
<li><a href="./1_Introduction/1_Intro.html">1 Introduction</a></li>
<ul>
<li><a href="./1_Introduction/1_Intro.html#interacting-quantum-many-body-systems">Interacting Quantum Many Body Systems</a></li>
<li><a href="./1_Introduction/1_Intro.html">Interacting Quantum Many Body Systems</a></li>
<li><a href="./1_Introduction/1_Intro.html#mott-insulators">Mott Insulators</a></li>
<li><a href="./1_Introduction/1_Intro.html#quantum-spin-liquids">Quantum Spin Liquids</a></li>
</ul>
<li><a href="./2_Background/2.1_FK_Model.html#the-falikov-kimball-model">2 Background</a></li>
<li><a href="./2_Background/2.1_FK_Model.html">2 Background</a></li>
<ul>
<li><a href="./2_Background/2.1_FK_Model.html#the-falikov-kimball-model">The Falikov Kimball Model</a></li>
<li><a href="./2_Background/2.1_FK_Model.html">The Falikov Kimball Model</a></li>
<li><a href="./2_Background/2.2_HKM_Model.html#the-kitaev-honeycomb-model">The Kitaev Honeycomb Model</a></li>
<li><a href="./2_Background/2.3_Disorder.html#disorder-and-localisation">Disorder and Localisation</a></li>
</ul>
<li><a href="./3_Long_Range_Falikov_Kimball/3.1_LRFK_Model.html#the-model">3 The Long Range Falikov-Kimball Model</a></li>
<li><a href="./3_Long_Range_Falikov_Kimball/3.1_LRFK_Model.html">3 The Long Range Falikov-Kimball Model</a></li>
<ul>
<li><a href="./3_Long_Range_Falikov_Kimball/3.1_LRFK_Model.html#the-model">The Model</a></li>
<li><a href="./3_Long_Range_Falikov_Kimball/3.1_LRFK_Model.html">The Model</a></li>
<li><a href="./3_Long_Range_Falikov_Kimball/3.2_LRFK_Methods.html#methods">Methods</a></li>
<li><a href="./3_Long_Range_Falikov_Kimball/3.3_LRFK_Results.html#results">Results</a></li>
<li><a href="./3_Long_Range_Falikov_Kimball/3.3_LRFK_Results.html#discussion-and-conclusion">Discussion and Conclusion</a></li>
</ul>
<li><a href="./4_Amorphous_Kitaev_Model/4.1.2_AMK_Model.html#gauge-fields">4 The Amorphous Kitaev Model</a></li>
<li><a href="./4_Amorphous_Kitaev_Model/4.1.2_AMK_Model.html">4 The Amorphous Kitaev Model</a></li>
<ul>
<li><a href="./4_Amorphous_Kitaev_Model/4.1_AMK_Model.html#the-model">The Model</a></li>
<li><a href="./4_Amorphous_Kitaev_Model/4.2_AMK_Methods.html#methods">Methods</a></li>
<li><a href="./4_Amorphous_Kitaev_Model/4.3_AMK_Results.html#results">Results</a></li>
<li><a href="./4_Amorphous_Kitaev_Model/4.3_AMK_Results.html#discussion-and-conclusion">Discussion and Conclusion</a></li>
</ul>
<li><a href="./5_Conclusion/5_Conclusion.html#discussion">5 Conclusion</a></li>
<li><a href="./6_Appendices/A.1_Particle_Hole_Symmetry.html#particle-hole-symmetry">Appendices</a></li>
<li><a href="./5_Conclusion/5_Conclusion.html">5 Conclusion</a></li>
<ul>
<li><a href="./5_Conclusion/5_Conclusion.html">Material Realisations</a></li>
<li><a href="./5_Conclusion/5_Conclusion.html#discussion">Discussion</a></li>
<li><a href="./5_Conclusion/5_Conclusion.html#outlook">Outlook</a></li>
</ul>
<li><a href="./6_Appendices/A.1.2_Fermion_Free_Energy.html">Appendices</a></li>
<ul>
<li><a href="./6_Appendices/A.1.2_Fermion_Free_Energy.html">Evaluation of the Fermion Free Energy</a></li>
<li><a href="./6_Appendices/A.1_Particle_Hole_Symmetry-Copy1.html#particle-hole-symmetry">Particle-Hole Symmetry</a></li>
<li><a href="./6_Appendices/A.1_Particle_Hole_Symmetry.html#particle-hole-symmetry">Particle-Hole Symmetry</a></li>
<li><a href="./6_Appendices/A.2_Markov_Chain_Monte_Carlo.html#markov-chain-monte-carlo">Markov Chain Monte Carlo</a></li>
<li><a href="./6_Appendices/A.2_Markov_Chain_Monte_Carlo.html#[\[app:balance\]]">[\[app:balance\]]</a></li>
<li><a href="./6_Appendices/A.3_Lattice_Generation.html#lattice-generation">Lattice Generation</a></li>
<li><a href="./6_Appendices/A.4_Lattice_Colouring.html#lattice-colouring">Lattice Colouring</a></li>
<li><a href="./6_Appendices/A.5_The_Projector.html#the-projector">The Projector</a></li>