This commit is contained in:
Tom Hodson 2022-08-27 18:33:40 +02:00
parent c23fcc5acb
commit f5b5ce22f1
19 changed files with 1539 additions and 1241 deletions

View File

@ -88,5 +88,11 @@ nav.overall-table-of-contents > ul {
// Page header // Page header
div#page-header { div#page-header {
//make the header sticky, I don't really like how this looks but it's fun to play with
// position: sticky;
// top: 0px;
// background: white;
// z-index: 10;
// width: 100%;
p { margin-block-end: 0px;} p { margin-block-end: 0px;}
} }

View File

@ -595,8 +595,7 @@ to the Falikov-Kimball Model, the Kitaev Honeycomb Model, disorder and
localisation. Then Chapter 3 introduces and studies the Long Range localisation. Then Chapter 3 introduces and studies the Long Range
Falikov-Kimball Model in one dimension while Chapter 4 focusses on the Falikov-Kimball Model in one dimension while Chapter 4 focusses on the
Amorphous Kitaev Model.</p> Amorphous Kitaev Model.</p>
<p>Next Chapter: <a <p>Next Chapter: <a href="../2_Background/2.1_FK_Model.html">2
href="../2_Background/2.1_FK_Model.html#the-falikov-kimball-model">2
Background</a></p> Background</a></p>
</section> </section>
<section id="bibliography" class="level1 unnumbered"> <section id="bibliography" class="level1 unnumbered">

View File

@ -138,7 +138,7 @@ href="#ref-gruberFalicovKimballModel2005"
role="doc-biblioref">9</a>]</span>. The absence of a hopping term for role="doc-biblioref">9</a>]</span>. The absence of a hopping term for
the heavy electrons means they do not need the factor of <span the heavy electrons means they do not need the factor of <span
class="math inline">\(\epsilon_i\)</span>. See appendix <a class="math inline">\(\epsilon_i\)</span>. See appendix <a
href="../6_Appendices/A.1_Particle_Hole_Symmetry.html#particle-hole-symmetry">A.1</a> href="../6_Appendices/A.1_Particle_Hole_Symmetry-Copy1.html#particle-hole-symmetry">A.1</a>
for a full derivation of the PH symmetry.</p> for a full derivation of the PH symmetry.</p>
<div id="fig:simple_DOS" class="fignos"> <div id="fig:simple_DOS" class="fignos">
<figure> <figure>
@ -419,9 +419,8 @@ j|^{-\alpha} S_i S_j\)</span> as the exponent of the interaction <span
class="math inline">\(\alpha\)</span> is varied.</figcaption> class="math inline">\(\alpha\)</span> is varied.</figcaption>
</figure> </figure>
</div> </div>
<p>Next Section: <a <p>Next Section: <a href="../2_Background/2.2_HKM_Model.html">The Kitaev
href="../2_Background/2.2_HKM_Model.html#the-kitaev-honeycomb-model">The Honeycomb Model</a></p>
Kitaev Honeycomb Model</a></p>
</section> </section>
</section> </section>
<section id="bibliography" class="level1 unnumbered"> <section id="bibliography" class="level1 unnumbered">

View File

@ -140,8 +140,7 @@ role="doc-biblioref">1</a>]</span></li>
<h2>Phase Diagram</h2> <h2>Phase Diagram</h2>
<div class="sourceCode" id="cb1"><pre <div class="sourceCode" id="cb1"><pre
class="sourceCode python"><code class="sourceCode python"></code></pre></div> class="sourceCode python"><code class="sourceCode python"></code></pre></div>
<p>Next Section: <a <p>Next Section: <a href="../2_Background/2.3_Disorder.html">Disorder
href="../2_Background/2.3_Disorder.html#bg-disorder-and-localisation">Disorder
and Localisation</a></p> and Localisation</a></p>
</section> </section>
</section> </section>

View File

@ -174,8 +174,8 @@ timescales to the infinite limit.</p>
<p>-link to the Kitaev Model</p> <p>-link to the Kitaev Model</p>
<p>-link to the physics of amorphous systems</p> <p>-link to the physics of amorphous systems</p>
<p>Next Chapter: <a <p>Next Chapter: <a
href="../3_Long_Range_Falikov_Kimball/3.1_LRFK_Model.html#fk-model">3 href="../3_Long_Range_Falikov_Kimball/3.1_LRFK_Model.html">3 The Long
The Long Range Falikov-Kimball Model</a></p> Range Falikov-Kimball Model</a></p>
</section> </section>
</section> </section>
<section id="bibliography" class="level1 unnumbered"> <section id="bibliography" class="level1 unnumbered">

View File

@ -272,7 +272,7 @@ href="#ref-fukuiOrderNClusterMonte2009"
role="doc-biblioref">30</a>]</span>. We only consider even system sizes role="doc-biblioref">30</a>]</span>. We only consider even system sizes
given that odd system sizes are not commensurate with a CDW state.</p> given that odd system sizes are not commensurate with a CDW state.</p>
<p>Next Section: <a <p>Next Section: <a
href="../3_Long_Range_Falikov_Kimball/3.2_LRFK_Methods.html#fk-methods">Methods</a></p> href="../3_Long_Range_Falikov_Kimball/3.2_LRFK_Methods.html">Methods</a></p>
</section> </section>
<section id="bibliography" class="level1 unnumbered"> <section id="bibliography" class="level1 unnumbered">
<h1 class="unnumbered">Bibliography</h1> <h1 class="unnumbered">Bibliography</h1>

File diff suppressed because it is too large Load Diff

View File

@ -470,8 +470,8 @@ H_{\mathrm{DM}} = &amp; \;U \sum_{i} (-1)^i \; d_i \;(c^\dag_{i}c_{i} -
<div class="sourceCode" id="cb1"><pre <div class="sourceCode" id="cb1"><pre
class="sourceCode python"><code class="sourceCode python"></code></pre></div> class="sourceCode python"><code class="sourceCode python"></code></pre></div>
<p>Next Chapter: <a <p>Next Chapter: <a
href="../4_Amorphous_Kitaev_Model/4.1.2_AMK_Model.html#vortices-and-their-movements">4 href="../4_Amorphous_Kitaev_Model/4.1.2_AMK_Model.html">4 The Amorphous
The Amorphous Kitaev Model</a></p> Kitaev Model</a></p>
</section> </section>
<section id="bibliography" class="level1 unnumbered"> <section id="bibliography" class="level1 unnumbered">
<h1 class="unnumbered">Bibliography</h1> <h1 class="unnumbered">Bibliography</h1>

View File

@ -1070,8 +1070,7 @@ role="doc-biblioref">16</a>,<a
href="#ref-kitaevFaulttolerantQuantumComputation2003" href="#ref-kitaevFaulttolerantQuantumComputation2003"
role="doc-biblioref"><strong>kitaevFaulttolerantQuantumComputation2003?</strong></a>]</span>.</p> role="doc-biblioref"><strong>kitaevFaulttolerantQuantumComputation2003?</strong></a>]</span>.</p>
<p>Next Section: <a <p>Next Section: <a
href="../4_Amorphous_Kitaev_Model/4.1_AMK_Model.html#amk-Model">The href="../4_Amorphous_Kitaev_Model/4.1_AMK_Model.html">The Model</a></p>
Model</a></p>
</section> </section>
</section> </section>
<section id="bibliography" class="level1 unnumbered"> <section id="bibliography" class="level1 unnumbered">

View File

@ -769,7 +769,7 @@ anyway, an arbitrary pairing of the unpaired <span
class="math inline">\(b^\alpha\)</span> operators could be performed. class="math inline">\(b^\alpha\)</span> operators could be performed.
&lt;/i,j&gt;&lt;/i,j&gt;</p> &lt;/i,j&gt;&lt;/i,j&gt;</p>
<p>Next Section: <a <p>Next Section: <a
href="../4_Amorphous_Kitaev_Model/4.2_AMK_Methods.html#amk-methods">Methods</a></p> href="../4_Amorphous_Kitaev_Model/4.2_AMK_Methods.html">Methods</a></p>
</section> </section>
</section> </section>
</section> </section>

View File

@ -541,7 +541,7 @@ system.</p>
<p><strong>Discuss link between Chern number and Anyonic <p><strong>Discuss link between Chern number and Anyonic
Statistics</strong></p> Statistics</strong></p>
<p>Next Section: <a <p>Next Section: <a
href="../4_Amorphous_Kitaev_Model/4.3_AMK_Results.html#amk-results">Results</a></p> href="../4_Amorphous_Kitaev_Model/4.3_AMK_Results.html">Results</a></p>
</section> </section>
</section> </section>
<section id="bibliography" class="level1 unnumbered"> <section id="bibliography" class="level1 unnumbered">

View File

@ -665,8 +665,8 @@ href="#ref-Wu2009" role="doc-biblioref">47</a>]</span></p>
quantum many body phases albeit material candidates aplenty. We expect quantum many body phases albeit material candidates aplenty. We expect
our exact chiral amorphous spin liquid to find many generalisation to our exact chiral amorphous spin liquid to find many generalisation to
realistic amorphous quantum magnets and beyond.</p> realistic amorphous quantum magnets and beyond.</p>
<p>Next Chapter: <a <p>Next Chapter: <a href="../5_Conclusion/5_Conclusion.html">5
href="../5_Conclusion/5_Conclusion.html#discussion">5 Conclusion</a></p> Conclusion</a></p>
</section> </section>
</section> </section>
<section id="bibliography" class="level1 unnumbered"> <section id="bibliography" class="level1 unnumbered">

View File

@ -27,6 +27,14 @@ image:
<br> <br>
<nav aria-label="Table of Contents" class="page-table-of-contents"> <nav aria-label="Table of Contents" class="page-table-of-contents">
<ul> <ul>
<li><a href="#material-realisations"
id="toc-material-realisations">Material Realisations</a>
<ul>
<li><a href="#amorphous-materials"
id="toc-amorphous-materials">Amorphous Materials</a></li>
<li><a href="#metal-organic-frameworks"
id="toc-metal-organic-frameworks">Metal Organic Frameworks</a></li>
</ul></li>
<li><a href="#discussion" id="toc-discussion">Discussion</a></li> <li><a href="#discussion" id="toc-discussion">Discussion</a></li>
<li><a href="#outlook" id="toc-outlook">Outlook</a></li> <li><a href="#outlook" id="toc-outlook">Outlook</a></li>
</ul> </ul>
@ -41,6 +49,14 @@ image:
<!-- Table of Contents --> <!-- Table of Contents -->
<!-- <nav id="TOC" role="doc-toc"> <!-- <nav id="TOC" role="doc-toc">
<ul> <ul>
<li><a href="#material-realisations"
id="toc-material-realisations">Material Realisations</a>
<ul>
<li><a href="#amorphous-materials"
id="toc-amorphous-materials">Amorphous Materials</a></li>
<li><a href="#metal-organic-frameworks"
id="toc-metal-organic-frameworks">Metal Organic Frameworks</a></li>
</ul></li>
<li><a href="#discussion" id="toc-discussion">Discussion</a></li> <li><a href="#discussion" id="toc-discussion">Discussion</a></li>
<li><a href="#outlook" id="toc-outlook">Outlook</a></li> <li><a href="#outlook" id="toc-outlook">Outlook</a></li>
</ul> </ul>
@ -52,13 +68,22 @@ image:
<p>5 Conclusion</p> <p>5 Conclusion</p>
<hr /> <hr />
</div> </div>
<section id="discussion" class="level2"> <section id="material-realisations" class="level1">
<h2>Discussion</h2> <h1>Material Realisations</h1>
<section id="amorphous-materials" class="level2">
<h2>Amorphous Materials</h2>
</section> </section>
<section id="outlook" class="level2"> <section id="metal-organic-frameworks" class="level2">
<h2>Outlook</h2> <h2>Metal Organic Frameworks</h2>
</section>
</section>
<section id="discussion" class="level1">
<h1>Discussion</h1>
</section>
<section id="outlook" class="level1">
<h1>Outlook</h1>
<p>Next Chapter: <a <p>Next Chapter: <a
href="../6_Appendices/A.1_Particle_Hole_Symmetry.html#particle-hole-symmetry">Appendices</a></p> href="../6_Appendices/A.1.2_Fermion_Free_Energy.html">Appendices</a></p>
</section> </section>

View File

@ -0,0 +1,110 @@
---
title: Particle-Hole Symmetry
excerpt:
layout: none
image:
---
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>Particle-Hole Symmetry</title>
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
<script src="/assets/js/thesis_scrollspy.js"></script>
<link rel="stylesheet" href="/assets/css/styles.css">
<script src="/assets/js/index.js"></script>
</head>
<body>
<!--Capture the table of contents from pandoc as a jekyll variable -->
{% capture tableOfContents %}
<br>
<nav aria-label="Table of Contents" class="page-table-of-contents">
<ul>
<li><a href="#evaluation-of-the-fermion-free-energy"
id="toc-evaluation-of-the-fermion-free-energy">Evaluation of the Fermion
Free Energy</a></li>
</ul>
</nav>
{% endcapture %}
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
{% include header.html extra=tableOfContents %}
<main>
<!-- Table of Contents -->
<!-- <nav id="TOC" role="doc-toc">
<ul>
<li><a href="#evaluation-of-the-fermion-free-energy"
id="toc-evaluation-of-the-fermion-free-energy">Evaluation of the Fermion
Free Energy</a></li>
</ul>
</nav>
-->
<!-- Main Page Body -->
<div id="page-header">
<p>Appendices</p>
<hr />
</div>
<section id="evaluation-of-the-fermion-free-energy" class="level1">
<h1>Evaluation of the Fermion Free Energy</h1>
<p>There are <span class="math inline">\(2^N\)</span> possible ion
configurations <span class="math inline">\(\{ n_i \}\)</span>, we define
<span class="math inline">\(n^k_i\)</span> to be the occupation of the
ith site of the kth configuration. The quantum part of the free energy
can then be defined through the quantum partition function <span
class="math inline">\(\mathcal{Z}^k\)</span> associated with each ionic
state <span class="math inline">\(n^k_i\)</span>: <span
class="math display">\[\begin{aligned}
F^k &amp;= -1/\beta \ln{\mathcal{Z}^k} \\
\end{aligned}\]</span> % Such that the overall partition function is:
<span class="math display">\[\begin{aligned}
\mathcal{Z} &amp;= \sum_k e^{- \beta H^k} Z^k \\
&amp;= \sum_k e^{-\beta (H^k + F^k)} \\
\end{aligned}\]</span></p>
<p>Because fermions are limited to occupation numbers of 0 or 1 <span
class="math inline">\(Z^k\)</span> simplifies nicely. If <span
class="math inline">\(m^j_i = \{0,1\}\)</span> is defined as the
occupation of the level with energy <span
class="math inline">\(\epsilon^k_i\)</span> then the partition function
is a sum over all the occupation states labelled by j: <span
class="math display">\[\begin{aligned}
Z^k &amp;= \mathrm{Tr} e^{-\beta F^k} = \sum_j e^{-\beta \sum_i m^j_i
\epsilon^k_i}\\
&amp;= \sum_j \prod_i e^{- \beta m^j_i \epsilon^k_i}= \prod_i
\sum_j e^{- \beta m^j_i \epsilon^k_i}\\
&amp;= \prod_i (1 + e^{- \beta \epsilon^k_i})\\
F^k &amp;= -1/\beta \sum_k \ln{(1 + e^{- \beta \epsilon^k_i})}
\end{aligned}\]</span> % Observables can then be calculated from the
partition function, for examples the occupation numbers:</p>
<p><span class="math display">\[\begin{aligned}
\langle N \rangle &amp;= \frac{1}{\beta} \frac{1}{Z} \frac{\partial
Z}{\partial \mu} = - \frac{\partial F}{\partial \mu}\\
&amp;= \frac{1}{\beta} \frac{1}{Z} \frac{\partial}{\partial \mu}
\sum_k e^{-\beta (H^k + F^k)}\\
&amp;= 1/Z \sum_k (N^k_{\mathrm{ion}} + N^k_{\mathrm{electron}})
e^{-\beta (H^k + F^k)}\\
\end{aligned}\]</span> % with the definitions:</p>
<p><span class="math display">\[\begin{aligned}
N^k_{\mathrm{ion}} &amp;= - \frac{\partial H^k}{\partial \mu} = \sum_i
n^k_i\\
N^k_{\mathrm{electron}} &amp;= - \frac{\partial F^k}{\partial \mu} =
\sum_i \left(1 + e^{\beta \epsilon^k_i}\right)^{-1}\\
\end{aligned}\]</span></p>
<p>Next Section: <a
href="../6_Appendices/A.1_Particle_Hole_Symmetry-Copy1.html">Particle-Hole
Symmetry</a></p>
</section>
</main>
</body>
</html>

View File

@ -0,0 +1,135 @@
---
title: Particle-Hole Symmetry
excerpt:
layout: none
image:
---
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>Particle-Hole Symmetry</title>
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
<script src="/assets/js/thesis_scrollspy.js"></script>
<link rel="stylesheet" href="/assets/css/styles.css">
<script src="/assets/js/index.js"></script>
</head>
<body>
<!--Capture the table of contents from pandoc as a jekyll variable -->
{% capture tableOfContents %}
<br>
<nav aria-label="Table of Contents" class="page-table-of-contents">
<ul>
<li><a href="#particle-hole-symmetry"
id="toc-particle-hole-symmetry">Particle-Hole Symmetry</a></li>
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
</ul>
</nav>
{% endcapture %}
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
{% include header.html extra=tableOfContents %}
<main>
<!-- Table of Contents -->
<!-- <nav id="TOC" role="doc-toc">
<ul>
<li><a href="#particle-hole-symmetry"
id="toc-particle-hole-symmetry">Particle-Hole Symmetry</a></li>
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
</ul>
</nav>
-->
<!-- Main Page Body -->
<div id="page-header">
<p>Appendices</p>
<hr />
</div>
<section id="particle-hole-symmetry" class="level1">
<h1>Particle-Hole Symmetry</h1>
<p>The Hubbard and FK models on a bipartite lattice have particle-hole
(PH) symmetry <span class="math inline">\(\mathcal{P}^\dagger H
\mathcal{P} = - H\)</span>, accordingly they have symmetric energy
spectra. The associated symmetry operator <span
class="math inline">\(\mathcal{P}\)</span> exchanges creation and
annihilation operators along with a sign change between the two
sublattices. In the language of the Hubbard model of electrons <span
class="math inline">\(c_{\alpha,i}\)</span> with spin <span
class="math inline">\(\alpha\)</span> at site <span
class="math inline">\(i\)</span> the particle hole operator corresponds
to the substitution of new fermion operators <span
class="math inline">\(d^\dagger_{\alpha,i}\)</span> and number operators
<span class="math inline">\(m_{\alpha,i}\)</span> where</p>
<p><span class="math display">\[d^\dagger_{\alpha,i} = \epsilon_i
c_{\alpha,i}\]</span> <span class="math display">\[m_{\alpha,i} =
d^\dagger_{\alpha,i}d_{\alpha,i}\]</span></p>
<p>the lattices must be bipartite because to make this work we set <span
class="math inline">\(\epsilon_i = +1\)</span> for the A sublattice and
<span class="math inline">\(-1\)</span> for the even sublattice <span
class="citation" data-cites="gruberFalicovKimballModel2005"> [<a
href="#ref-gruberFalicovKimballModel2005"
role="doc-biblioref">1</a>]</span>.</p>
<p>The entirely filled state <span class="math inline">\(\ket{\Omega} =
\sum_{\alpha,i} c^\dagger_{\alpha,i} \ket{0}\)</span> becomes the new
vacuum state <span class="math display">\[d_{i\sigma} \ket{\Omega} =
(-1)^i c^\dagger_{i\sigma} \sum_{j\rho} c^\dagger_{j\rho} \ket{0} =
0.\]</span></p>
<p>The number operator <span class="math inline">\(m_{\alpha,i} =
0,1\)</span> counts holes rather than electrons <span
class="math display">\[ m_{\alpha,i} = c_{\alpha,i} c^\dagger_{\alpha,i}
= 1 - c^\dagger_{\alpha,i} c_{\alpha,i}.\]</span></p>
<p>With the last equality following from the fermionic commutation
relations. In the case of nearest neighbour hopping on a bipartite
lattice this transformation also leaves the hopping term unchanged
because <span class="math inline">\(\epsilon_i \epsilon_j = -1\)</span>
when <span class="math inline">\(i\)</span> and <span
class="math inline">\(j\)</span> are on different sublattices: <span
class="math display">\[ d^\dagger_{\alpha,i} d_{\alpha,j} = \epsilon_i
\epsilon_j c_{\alpha,i} c^\dagger_{\alpha,j} = c^\dagger_{\alpha,i}
c_{\alpha,j} \]</span></p>
<p>Defining the particle density <span
class="math inline">\(\rho\)</span> as the number of fermions per site:
<span class="math display">\[
\rho = \frac{1}{N} \sum_i \left( n_{i \uparrow} + n_{i \downarrow}
\right)
\]</span></p>
<p>The PH symmetry maps the Hamiltonian to itself with the sign of the
chemical potential reversed and the density inverted about half filling:
<span class="math display">\[ \text{PH} : H(t, U, \mu) \rightarrow H(t,
U, -\mu) \]</span> <span class="math display">\[ \rho \rightarrow 2 -
\rho \]</span></p>
<p>The Hamiltonian is symmetric under PH at <span
class="math inline">\(\mu = 0\)</span> and so must all the observables,
hence half filling <span class="math inline">\(\rho = 1\)</span> occurs
here. This symmetry and known observable acts as a useful test for the
numerical calculations.</p>
<p>Next Section: <a
href="../6_Appendices/A.2_Markov_Chain_Monte_Carlo.html">Markov Chain
Monte Carlo</a></p>
</section>
<section id="bibliography" class="level1 unnumbered">
<h1 class="unnumbered">Bibliography</h1>
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
<div id="ref-gruberFalicovKimballModel2005" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[1] </div><div class="csl-right-inline">C.
Gruber and D. Ueltschi, <em><a
href="http://arxiv.org/abs/math-ph/0502041">The Falicov-Kimball
Model</a></em>, arXiv:math-Ph/0502041 (2005).</div>
</div>
</div>
</section>
</main>
</body>
</html>

View File

@ -113,8 +113,8 @@ hence half filling <span class="math inline">\(\rho = 1\)</span> occurs
here. This symmetry and known observable acts as a useful test for the here. This symmetry and known observable acts as a useful test for the
numerical calculations.</p> numerical calculations.</p>
<p>Next Section: <a <p>Next Section: <a
href="../6_Appendices/A.2_Markov_Chain_Monte_Carlo.html#applying-mcmc-to-the-fk-model">Applying href="../6_Appendices/A.2_Markov_Chain_Monte_Carlo.html">Applying MCMC
MCMC to the FK model</a></p> to the FK model</a></p>
</section> </section>
<section id="bibliography" class="level1 unnumbered"> <section id="bibliography" class="level1 unnumbered">
<h1 class="unnumbered">Bibliography</h1> <h1 class="unnumbered">Bibliography</h1>

File diff suppressed because it is too large Load Diff

View File

@ -57,7 +57,7 @@ Generation</a></li>
<div class="sourceCode" id="cb1"><pre <div class="sourceCode" id="cb1"><pre
class="sourceCode python"><code class="sourceCode python"></code></pre></div> class="sourceCode python"><code class="sourceCode python"></code></pre></div>
<p>Next Section: <a <p>Next Section: <a
href="../6_Appendices/A.4_Lattice_Colouring.html#lattice-colouring">Lattice href="../6_Appendices/A.4_Lattice_Colouring.html">Lattice
Colouring</a></p> Colouring</a></p>
</section> </section>

View File

@ -1,35 +1,43 @@
<ul> <ul>
<li><a href="./1_Introduction/1_Intro.html#interacting-quantum-many-body-systems">1 Introduction</a></li> <li><a href="./1_Introduction/1_Intro.html">1 Introduction</a></li>
<ul> <ul>
<li><a href="./1_Introduction/1_Intro.html#interacting-quantum-many-body-systems">Interacting Quantum Many Body Systems</a></li> <li><a href="./1_Introduction/1_Intro.html">Interacting Quantum Many Body Systems</a></li>
<li><a href="./1_Introduction/1_Intro.html#mott-insulators">Mott Insulators</a></li> <li><a href="./1_Introduction/1_Intro.html#mott-insulators">Mott Insulators</a></li>
<li><a href="./1_Introduction/1_Intro.html#quantum-spin-liquids">Quantum Spin Liquids</a></li> <li><a href="./1_Introduction/1_Intro.html#quantum-spin-liquids">Quantum Spin Liquids</a></li>
</ul> </ul>
<li><a href="./2_Background/2.1_FK_Model.html#the-falikov-kimball-model">2 Background</a></li> <li><a href="./2_Background/2.1_FK_Model.html">2 Background</a></li>
<ul> <ul>
<li><a href="./2_Background/2.1_FK_Model.html#the-falikov-kimball-model">The Falikov Kimball Model</a></li> <li><a href="./2_Background/2.1_FK_Model.html">The Falikov Kimball Model</a></li>
<li><a href="./2_Background/2.2_HKM_Model.html#the-kitaev-honeycomb-model">The Kitaev Honeycomb Model</a></li> <li><a href="./2_Background/2.2_HKM_Model.html#the-kitaev-honeycomb-model">The Kitaev Honeycomb Model</a></li>
<li><a href="./2_Background/2.3_Disorder.html#disorder-and-localisation">Disorder and Localisation</a></li> <li><a href="./2_Background/2.3_Disorder.html#disorder-and-localisation">Disorder and Localisation</a></li>
</ul> </ul>
<li><a href="./3_Long_Range_Falikov_Kimball/3.1_LRFK_Model.html#the-model">3 The Long Range Falikov-Kimball Model</a></li> <li><a href="./3_Long_Range_Falikov_Kimball/3.1_LRFK_Model.html">3 The Long Range Falikov-Kimball Model</a></li>
<ul> <ul>
<li><a href="./3_Long_Range_Falikov_Kimball/3.1_LRFK_Model.html#the-model">The Model</a></li> <li><a href="./3_Long_Range_Falikov_Kimball/3.1_LRFK_Model.html">The Model</a></li>
<li><a href="./3_Long_Range_Falikov_Kimball/3.2_LRFK_Methods.html#methods">Methods</a></li> <li><a href="./3_Long_Range_Falikov_Kimball/3.2_LRFK_Methods.html#methods">Methods</a></li>
<li><a href="./3_Long_Range_Falikov_Kimball/3.3_LRFK_Results.html#results">Results</a></li> <li><a href="./3_Long_Range_Falikov_Kimball/3.3_LRFK_Results.html#results">Results</a></li>
<li><a href="./3_Long_Range_Falikov_Kimball/3.3_LRFK_Results.html#discussion-and-conclusion">Discussion and Conclusion</a></li> <li><a href="./3_Long_Range_Falikov_Kimball/3.3_LRFK_Results.html#discussion-and-conclusion">Discussion and Conclusion</a></li>
</ul> </ul>
<li><a href="./4_Amorphous_Kitaev_Model/4.1.2_AMK_Model.html#gauge-fields">4 The Amorphous Kitaev Model</a></li> <li><a href="./4_Amorphous_Kitaev_Model/4.1.2_AMK_Model.html">4 The Amorphous Kitaev Model</a></li>
<ul> <ul>
<li><a href="./4_Amorphous_Kitaev_Model/4.1_AMK_Model.html#the-model">The Model</a></li> <li><a href="./4_Amorphous_Kitaev_Model/4.1_AMK_Model.html#the-model">The Model</a></li>
<li><a href="./4_Amorphous_Kitaev_Model/4.2_AMK_Methods.html#methods">Methods</a></li> <li><a href="./4_Amorphous_Kitaev_Model/4.2_AMK_Methods.html#methods">Methods</a></li>
<li><a href="./4_Amorphous_Kitaev_Model/4.3_AMK_Results.html#results">Results</a></li> <li><a href="./4_Amorphous_Kitaev_Model/4.3_AMK_Results.html#results">Results</a></li>
<li><a href="./4_Amorphous_Kitaev_Model/4.3_AMK_Results.html#discussion-and-conclusion">Discussion and Conclusion</a></li> <li><a href="./4_Amorphous_Kitaev_Model/4.3_AMK_Results.html#discussion-and-conclusion">Discussion and Conclusion</a></li>
</ul> </ul>
<li><a href="./5_Conclusion/5_Conclusion.html#discussion">5 Conclusion</a></li> <li><a href="./5_Conclusion/5_Conclusion.html">5 Conclusion</a></li>
<li><a href="./6_Appendices/A.1_Particle_Hole_Symmetry.html#particle-hole-symmetry">Appendices</a></li>
<ul> <ul>
<li><a href="./5_Conclusion/5_Conclusion.html">Material Realisations</a></li>
<li><a href="./5_Conclusion/5_Conclusion.html#discussion">Discussion</a></li>
<li><a href="./5_Conclusion/5_Conclusion.html#outlook">Outlook</a></li>
</ul>
<li><a href="./6_Appendices/A.1.2_Fermion_Free_Energy.html">Appendices</a></li>
<ul>
<li><a href="./6_Appendices/A.1.2_Fermion_Free_Energy.html">Evaluation of the Fermion Free Energy</a></li>
<li><a href="./6_Appendices/A.1_Particle_Hole_Symmetry-Copy1.html#particle-hole-symmetry">Particle-Hole Symmetry</a></li>
<li><a href="./6_Appendices/A.1_Particle_Hole_Symmetry.html#particle-hole-symmetry">Particle-Hole Symmetry</a></li> <li><a href="./6_Appendices/A.1_Particle_Hole_Symmetry.html#particle-hole-symmetry">Particle-Hole Symmetry</a></li>
<li><a href="./6_Appendices/A.2_Markov_Chain_Monte_Carlo.html#markov-chain-monte-carlo">Markov Chain Monte Carlo</a></li> <li><a href="./6_Appendices/A.2_Markov_Chain_Monte_Carlo.html#markov-chain-monte-carlo">Markov Chain Monte Carlo</a></li>
<li><a href="./6_Appendices/A.2_Markov_Chain_Monte_Carlo.html#[\[app:balance\]]">[\[app:balance\]]</a></li>
<li><a href="./6_Appendices/A.3_Lattice_Generation.html#lattice-generation">Lattice Generation</a></li> <li><a href="./6_Appendices/A.3_Lattice_Generation.html#lattice-generation">Lattice Generation</a></li>
<li><a href="./6_Appendices/A.4_Lattice_Colouring.html#lattice-colouring">Lattice Colouring</a></li> <li><a href="./6_Appendices/A.4_Lattice_Colouring.html#lattice-colouring">Lattice Colouring</a></li>
<li><a href="./6_Appendices/A.5_The_Projector.html#the-projector">The Projector</a></li> <li><a href="./6_Appendices/A.5_The_Projector.html#the-projector">The Projector</a></li>