personal_site/_thesis/2_Background/2.3_Disorder.html
2023-09-08 13:31:03 +01:00

279 lines
12 KiB
HTML
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: Background - Disorder & Localisation
excerpt:
layout: none
image:
---
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>Background - Disorder &amp; Localisation</title>
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
<script src="/assets/js/thesis_scrollspy.js"></script>
<link rel="stylesheet" href="/assets/css/thesis.css">
<script src="/assets/js/index.js"></script>
</head>
<body>
<!--Capture the table of contents from pandoc as a jekyll variable -->
{% capture tableOfContents %}
<br>
<nav aria-label="Table of Contents" class="page-table-of-contents">
<ul>
<li><a href="#bg-disorder-and-localisation"
id="toc-bg-disorder-and-localisation">Disorder and Localisation</a>
<ul>
<li><a href="#localisation-anderson-many-body-and-disorder-free"
id="toc-localisation-anderson-many-body-and-disorder-free">Localisation:
Anderson, Many Body and Disorder-Free</a></li>
<li><a href="#disorder-and-spin-liquids"
id="toc-disorder-and-spin-liquids">Disorder and Spin liquids</a></li>
<li><a href="#amorphous-magnetism"
id="toc-amorphous-magnetism">Amorphous Magnetism</a></li>
<li><a href="#localisation" id="toc-localisation">Localisation</a></li>
</ul></li>
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
</ul>
</nav>
{% endcapture %}
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
{% include header.html extra=tableOfContents %}
<main>
<!-- Table of Contents -->
<!-- <nav id="TOC" role="doc-toc">
<ul>
<li><a href="#bg-disorder-and-localisation"
id="toc-bg-disorder-and-localisation">Disorder and Localisation</a>
<ul>
<li><a href="#localisation-anderson-many-body-and-disorder-free"
id="toc-localisation-anderson-many-body-and-disorder-free">Localisation:
Anderson, Many Body and Disorder-Free</a></li>
<li><a href="#disorder-and-spin-liquids"
id="toc-disorder-and-spin-liquids">Disorder and Spin liquids</a></li>
<li><a href="#amorphous-magnetism"
id="toc-amorphous-magnetism">Amorphous Magnetism</a></li>
<li><a href="#localisation" id="toc-localisation">Localisation</a></li>
</ul></li>
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
</ul>
</nav>
-->
<!-- Main Page Body -->
<div id="page-header">
<p>2 Background</p>
<hr />
</div>
<section id="bg-disorder-and-localisation" class="level1">
<h1>Disorder and Localisation</h1>
<section id="localisation-anderson-many-body-and-disorder-free"
class="level2">
<h2>Localisation: Anderson, Many Body and Disorder-Free</h2>
</section>
<section id="disorder-and-spin-liquids" class="level2">
<h2>Disorder and Spin liquids</h2>
</section>
<section id="amorphous-magnetism" class="level2">
<h2>Amorphous Magnetism</h2>
<div class="sourceCode" id="cb1"><pre
class="sourceCode python"><code class="sourceCode python"></code></pre></div>
</section>
<section id="localisation" class="level2">
<h2>Localisation</h2>
<p>The discovery of localisation in quantum systems surprising at the
time given the seeming ubiquity of extended Bloch states. Later, when
thermalisation in quantum systems gained interest, localisation
phenomena again stood out as counterexamples to the eigenstate
thermalisation hypothesis <span class="citation"
data-cites="abaninRecentProgressManybody2017 srednickiChaosQuantumThermalization1994"> [<a
href="#ref-abaninRecentProgressManybody2017"
role="doc-biblioref">1</a>,<a
href="#ref-srednickiChaosQuantumThermalization1994"
role="doc-biblioref">2</a>]</span>, allowing quantum systems to avoid to
retain memory of their initial conditions in the face of thermal
noise.</p>
<p>The simplest and first discovered kind is Anderson localisation,
first studied in 1958 <span class="citation"
data-cites="andersonAbsenceDiffusionCertain1958"> [<a
href="#ref-andersonAbsenceDiffusionCertain1958"
role="doc-biblioref">3</a>]</span> in the context of non-interacting
fermions subject to a static or quenched disorder potential <span
class="math inline">\(V_j\)</span> drawn uniformly from the interval
<span class="math inline">\([-W,W]\)</span></p>
<p><span class="math display">\[
H = -t\sum_{\langle jk \rangle} c^\dagger_j c_k + \sum_j V_j c_j^\dagger
c_j
\]</span></p>
<p>this model exhibits exponentially localised eigenfunctions <span
class="math inline">\(\psi(x) = f(x) e^{-x/\lambda}\)</span> which
cannot contribute to transport processes. Initially it was thought that
in one dimensional disordered models, all states would be localised,
however it was later shown that in the presence of correlated disorder,
bands of extended states can exist <span class="citation"
data-cites="izrailevLocalizationMobilityEdge1999 croyAndersonLocalization1D2011 izrailevAnomalousLocalizationLowDimensional2012"> [<a
href="#ref-izrailevLocalizationMobilityEdge1999"
role="doc-biblioref">4</a><a
href="#ref-izrailevAnomalousLocalizationLowDimensional2012"
role="doc-biblioref">6</a>]</span>.</p>
<p>Later localisation was found in interacting many-body systems with
quenched disorder:</p>
<p><span class="math display">\[
H = -t\sum_{\langle jk \rangle} c^\dagger_j c_k + \sum_j V_j c_j^\dagger
c_j + U\sum_{jk} n_j n_k
\]</span></p>
<p>where the number operators <span class="math inline">\(n_j =
c^\dagger_j c_j\)</span>. Here, in contrast to the Anderson model,
localisation phenomena can be proven robust to weak perturbations of the
Hamiltonian. This is called many-body localisation (MBL) <span
class="citation" data-cites="imbrieManyBodyLocalizationQuantum2016"> [<a
href="#ref-imbrieManyBodyLocalizationQuantum2016"
role="doc-biblioref">7</a>]</span>.</p>
<p>Both MBL and Anderson localisation depend crucially on the presence
of quenched disorder. This has led to ongoing interest in the
possibility of disorder-free localisation, in which the disorder
necessary to generate localisation is generated entirely from the
dynamics of the model. This contracts with typical models of disordered
systems in which disorder is explicitly introduced into the Hamilton or
the initial state.</p>
<p>The concept of disorder-free localisation was first proposed in the
context of Helium mixtures <span class="citation"
data-cites="kagan1984localization"> [<a
href="#ref-kagan1984localization" role="doc-biblioref">8</a>]</span> and
then extended to heavy-light mixtures in which multiple species with
large mass ratios interact. The idea is that the heavier particles act
as an effective disorder potential for the lighter ones, inducing
localisation. Two such models <span class="citation"
data-cites="yaoQuasiManyBodyLocalizationTranslationInvariant2016 schiulazDynamicsManybodyLocalized2015"> [<a
href="#ref-yaoQuasiManyBodyLocalizationTranslationInvariant2016"
role="doc-biblioref">9</a>,<a
href="#ref-schiulazDynamicsManybodyLocalized2015"
role="doc-biblioref">10</a>]</span> instead find that the models
thermalise exponentially slowly in system size, which Ref. <span
class="citation"
data-cites="yaoQuasiManyBodyLocalizationTranslationInvariant2016"> [<a
href="#ref-yaoQuasiManyBodyLocalizationTranslationInvariant2016"
role="doc-biblioref">9</a>]</span> dubs Quasi-MBL.</p>
<p>True disorder-free localisation does occur in exactly solvable models
with extensively many conserved quantities <span class="citation"
data-cites="smithDisorderFreeLocalization2017"> [<a
href="#ref-smithDisorderFreeLocalization2017"
role="doc-biblioref">11</a>]</span>. As conserved quantities have no
time dynamics this can be thought of as taking the separation of
timescales to the infinite limit.</p>
<p>-link to the FK model</p>
<p>-link to the Kitaev Model</p>
<p>-link to the physics of amorphous systems</p>
<p>Next Chapter: <a
href="../3_Long_Range_Falikov_Kimball/3.1_LRFK_Model.html">3 The Long
Range Falikov-Kimball Model</a></p>
</section>
</section>
<section id="bibliography" class="level1 unnumbered">
<h1 class="unnumbered">Bibliography</h1>
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
<div id="ref-abaninRecentProgressManybody2017" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[1] </div><div class="csl-right-inline">D.
A. Abanin and Z. Papić, <em><a
href="https://doi.org/10.1002/andp.201700169">Recent Progress in
Many-Body Localization</a></em>, ANNALEN DER PHYSIK
<strong>529</strong>, 1700169 (2017).</div>
</div>
<div id="ref-srednickiChaosQuantumThermalization1994" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[2] </div><div class="csl-right-inline">M.
Srednicki, <em><a href="https://doi.org/10.1103/PhysRevE.50.888">Chaos
and Quantum Thermalization</a></em>, Phys. Rev. E <strong>50</strong>,
888 (1994).</div>
</div>
<div id="ref-andersonAbsenceDiffusionCertain1958" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[3] </div><div class="csl-right-inline">P.
W. Anderson, <em><a
href="https://doi.org/10.1103/PhysRev.109.1492">Absence of Diffusion in
Certain Random Lattices</a></em>, Phys. Rev. <strong>109</strong>, 1492
(1958).</div>
</div>
<div id="ref-izrailevLocalizationMobilityEdge1999" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[4] </div><div class="csl-right-inline">F.
M. Izrailev and A. A. Krokhin, <em><a
href="https://doi.org/10.1103/PhysRevLett.82.4062">Localization and the
Mobility Edge in One-Dimensional Potentials with Correlated
Disorder</a></em>, Phys. Rev. Lett. <strong>82</strong>, 4062
(1999).</div>
</div>
<div id="ref-croyAndersonLocalization1D2011" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[5] </div><div class="csl-right-inline">A.
Croy, P. Cain, and M. Schreiber, <em><a
href="https://doi.org/10.1140/epjb/e2011-20212-1">Anderson Localization
in 1d Systems with Correlated Disorder</a></em>, Eur. Phys. J. B
<strong>82</strong>, 107 (2011).</div>
</div>
<div id="ref-izrailevAnomalousLocalizationLowDimensional2012"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[6] </div><div class="csl-right-inline">F.
M. Izrailev, A. A. Krokhin, and N. M. Makarov, <em><a
href="https://doi.org/10.1016/j.physrep.2011.11.002">Anomalous
Localization in Low-Dimensional Systems with Correlated
Disorder</a></em>, Physics Reports <strong>512</strong>, 125
(2012).</div>
</div>
<div id="ref-imbrieManyBodyLocalizationQuantum2016" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[7] </div><div class="csl-right-inline">J.
Z. Imbrie, <em><a href="https://doi.org/10.1007/s10955-016-1508-x">On
Many-Body Localization for Quantum Spin Chains</a></em>, J Stat Phys
<strong>163</strong>, 998 (2016).</div>
</div>
<div id="ref-kagan1984localization" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[8] </div><div class="csl-right-inline">Y.
Kagan and L. Maksimov, <em>Localization in a System of Interacting
Particles Diffusing in a Regular Crystal</em>, Zhurnal Eksperimentalnoi
i Teoreticheskoi Fiziki <strong>87</strong>, 348 (1984).</div>
</div>
<div id="ref-yaoQuasiManyBodyLocalizationTranslationInvariant2016"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[9] </div><div class="csl-right-inline">N.
Y. Yao, C. R. Laumann, J. I. Cirac, M. D. Lukin, and J. E. Moore,
<em><a
href="https://doi.org/10.1103/PhysRevLett.117.240601">Quasi-Many-Body
Localization in Translation-Invariant Systems</a></em>, Phys. Rev. Lett.
<strong>117</strong>, 240601 (2016).</div>
</div>
<div id="ref-schiulazDynamicsManybodyLocalized2015" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[10] </div><div class="csl-right-inline">M.
Schiulaz, A. Silva, and M. Müller, <em><a
href="https://doi.org/10.1103/PhysRevB.91.184202">Dynamics in Many-Body
Localized Quantum Systems Without Disorder</a></em>, Phys. Rev. B
<strong>91</strong>, 184202 (2015).</div>
</div>
<div id="ref-smithDisorderFreeLocalization2017" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[11] </div><div class="csl-right-inline">A.
Smith, J. Knolle, D. L. Kovrizhin, and R. Moessner, <em><a
href="https://doi.org/10.1103/PhysRevLett.118.266601">Disorder-Free
Localization</a></em>, Phys. Rev. Lett. <strong>118</strong>, 266601
(2017).</div>
</div>
</div>
</section>
</main>
</body>
</html>