personal_site/_thesis/6_Appendices/A.1.2_Fermion_Free_Energy.html
2023-09-08 13:31:03 +01:00

105 lines
4.6 KiB
HTML

---
title: Particle-Hole Symmetry
excerpt:
layout: none
image:
---
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>Particle-Hole Symmetry</title>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
"HTML-CSS": {
linebreaks: { automatic: true, width: "container" }
}
});
</script>
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
<script src="/assets/js/thesis_scrollspy.js"></script>
<script src="https://d3js.org/d3.v5.min.js" defer></script>
<link rel="stylesheet" href="/assets/css/thesis.css">
<script src="/assets/js/index.js"></script>
</head>
<body>
<!--Capture the table of contents from pandoc as a jekyll variable -->
{% capture tableOfContents %}
<br>
<nav aria-label="Table of Contents" class="page-table-of-contents">
<ul>
<li><a href="#chap:appendices" id="toc-chap:appendices">Appendices</a></li>
<li><a href="#evaluation-of-the-fermion-free-energy" id="toc-evaluation-of-the-fermion-free-energy">Evaluation of the Fermion Free Energy</a></li>
</ul>
</nav>
{% endcapture %}
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
{% include header.html extra=tableOfContents %}
<main>
<!-- Table of Contents -->
<!-- <nav id="TOC" role="doc-toc">
<ul>
<li><a href="#chap:appendices" id="toc-chap:appendices">Appendices</a></li>
<li><a href="#evaluation-of-the-fermion-free-energy" id="toc-evaluation-of-the-fermion-free-energy">Evaluation of the Fermion Free Energy</a></li>
</ul>
</nav>
-->
<!-- Main Page Body -->
<div id="page-header">
<p>Appendices</p>
<hr />
</div>
<section id="chap:appendices" class="level1">
<h1>Appendices</h1>
</section>
<section id="evaluation-of-the-fermion-free-energy" class="level1">
<h1>Evaluation of the Fermion Free Energy</h1>
<p>There are <span class="math inline">\(2^N\)</span> possible configurations of the spins in the LRFK model. In the language of ions and electrons (immobile and mobile species), we define <span class="math inline">\(n^k_i\)</span> to be the occupation of the <span class="math inline">\(i\)</span>th site of the <span class="math inline">\(k\)</span>th configuration. The quantum part of the free energy can then be defined through the quantum partition function <span class="math inline">\(\mathcal{Z}^k\)</span> associated with each state <span class="math inline">\(n^k_i\)</span>:</p>
<p><span class="math display">\[\begin{aligned}
F^k &amp;= -1/\beta \ln{\mathcal{Z}^k}, \\
\end{aligned}\]</span></p>
<p>such that the overall partition function is:</p>
<p><span class="math display">\[\begin{aligned}
\mathcal{Z} &amp;= \sum_k e^{- \beta H^k} Z^k \\
&amp;= \sum_k e^{-\beta (H^k + F^k)}. \\
\end{aligned}\]</span></p>
<p>Fermions are limited to occupation numbers of 0 or 1, so <span class="math inline">\(Z^k\)</span> simplifies nicely. If <span class="math inline">\(m^j_i = \{0,1\}\)</span> is defined as the occupation of the level with energy <span class="math inline">\(\epsilon^k_i\)</span> then the partition function is a sum over all the occupation states labelled by <span class="math inline">\(j\)</span>:</p>
<p><span class="math display">\[\begin{aligned}
Z^k &amp;= \mathrm{Tr} e^{-\beta F^k} = \sum_j e^{-\beta \sum_i m^j_i \epsilon^k_i}\\
&amp;= \sum_j \prod_i e^{- \beta m^j_i \epsilon^k_i}= \prod_i \sum_j e^{- \beta m^j_i \epsilon^k_i}\\
&amp;= \prod_i (1 + e^{- \beta \epsilon^k_i})\\
F^k &amp;= -1/\beta \sum_k \ln{(1 + e^{- \beta \epsilon^k_i})}.
\end{aligned}\]</span></p>
<p>Observables can then be calculated from the partition function, for examples the occupation numbers:</p>
<p><span class="math display">\[\begin{aligned}
\langle N \rangle &amp;= \frac{1}{\beta} \frac{1}{Z} \frac{\partial Z}{\partial \mu} = - \frac{\partial F}{\partial \mu}\\
&amp;= \frac{1}{\beta} \frac{1}{Z} \frac{\partial}{\partial \mu} \sum_k e^{-\beta (H^k + F^k)}\\
&amp;= 1/Z \sum_k (N^k_{\mathrm{ion}} + N^k_{\mathrm{electron}}) e^{-\beta (H^k + F^k)},\\
\end{aligned}\]</span></p>
<p>with the definitions:</p>
<p><span class="math display">\[\begin{aligned}
N^k_{\mathrm{ion}} &amp;= - \frac{\partial H^k}{\partial \mu} = \sum_i n^k_i\\
N^k_{\mathrm{electron}} &amp;= - \frac{\partial F^k}{\partial \mu} = \sum_i \left(1 + e^{\beta \epsilon^k_i}\right)^{-1}.\\
\end{aligned}\]</span></p>
<p>Next Section: <a href="../6_Appendices/A.1_Particle_Hole_Symmetry.html">Particle-Hole Symmetry</a></p>
</section>
</main>
</body>
</html>