personal_site/_thesis/6_Appendices/A.1_Particle_Hole_Symmetry.html
2023-09-08 13:31:03 +01:00

94 lines
5.7 KiB
HTML
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: Particle-Hole Symmetry
excerpt:
layout: none
image:
---
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>Particle-Hole Symmetry</title>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
"HTML-CSS": {
linebreaks: { automatic: true, width: "container" }
}
});
</script>
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
<script src="/assets/js/thesis_scrollspy.js"></script>
<script src="https://d3js.org/d3.v5.min.js" defer></script>
<link rel="stylesheet" href="/assets/css/thesis.css">
<script src="/assets/js/index.js"></script>
</head>
<body>
<!--Capture the table of contents from pandoc as a jekyll variable -->
{% capture tableOfContents %}
<br>
<nav aria-label="Table of Contents" class="page-table-of-contents">
<ul>
<li><a href="#particle-hole-symmetry" id="toc-particle-hole-symmetry">Particle-Hole Symmetry</a></li>
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
</ul>
</nav>
{% endcapture %}
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
{% include header.html extra=tableOfContents %}
<main>
<!-- Table of Contents -->
<!-- <nav id="TOC" role="doc-toc">
<ul>
<li><a href="#particle-hole-symmetry" id="toc-particle-hole-symmetry">Particle-Hole Symmetry</a></li>
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
</ul>
</nav>
-->
<!-- Main Page Body -->
<div id="page-header">
<p>Appendices</p>
<hr />
</div>
<section id="particle-hole-symmetry" class="level1">
<h1>Particle-Hole Symmetry</h1>
<p>The Hubbard and FK models on a bipartite lattice have particle-hole (PH) symmetry <span class="math inline">\(\mathcal{P}^\dagger H \mathcal{P} = - H\)</span>, accordingly they have symmetric energy spectra. The associated symmetry operator <span class="math inline">\(\mathcal{P}\)</span> exchanges creation and annihilation operators along with a sign change between the two sublattices. In the language of the Hubbard model of electrons <span class="math inline">\(c_{\alpha,i}\)</span> with spin <span class="math inline">\(\alpha\)</span> at site <span class="math inline">\(i\)</span> the particle hole operator corresponds to the substitution of new fermion operators <span class="math inline">\(d^\dagger_{\alpha,i}\)</span> and number operators <span class="math inline">\(m_{\alpha,i}\)</span> where</p>
<p><span class="math display">\[d^\dagger_{\alpha,i} = \epsilon_i c_{\alpha,i}\]</span> <span class="math display">\[m_{\alpha,i} = d^\dagger_{\alpha,i}d_{\alpha,i},\]</span></p>
<p>the lattices must be bipartite because to make this work we set <span class="math inline">\(\epsilon_i = +1\)</span> for the A sublattice and <span class="math inline">\(-1\)</span> for the even sublattice <span class="citation" data-cites="gruberFalicovKimballModel2006"> [<a href="#ref-gruberFalicovKimballModel2006" role="doc-biblioref">1</a>]</span>.</p>
<p>The entirely filled state <span class="math inline">\(\ket{\Omega} = \sum_{\alpha,i} c^\dagger_{\alpha,i} \ket{0}\)</span> becomes the new vacuum state <span class="math display">\[d_{i\sigma} \ket{\Omega} = (-1)^i c^\dagger_{i\sigma} \sum_{j\rho} c^\dagger_{j\rho} \ket{0} = 0.\]</span></p>
<p>The number operator <span class="math inline">\(m_{\alpha,i} = 0,1\)</span> now counts holes rather than electrons <span class="math display">\[ m_{\alpha,i} = c^{\phantom{\dagger}}_{\alpha,i} c^\dagger_{\alpha,i} = 1 - c^\dagger_{\alpha,i} c^{\phantom{\dagger}}_{\alpha,i}.\]</span></p>
<p>In the case of nearest neighbour hopping on a bipartite lattice this transformation also leaves the hopping term unchanged because <span class="math inline">\(\epsilon_i \epsilon_j = -1\)</span> when <span class="math inline">\(i\)</span> and <span class="math inline">\(j\)</span> are on different sublattices: <span class="math display">\[ d^\dagger_{\alpha,i} d_{\alpha,j} = \epsilon_i \epsilon_j c^{\phantom{\dagger}}_{\alpha,i} c^\dagger_{\alpha,j} = c^\dagger_{\alpha,i} c^{\phantom{\dagger}}_{\alpha,j}. \]</span></p>
<p>Defining the particle density <span class="math inline">\(\rho\)</span> as the number of fermions per site: <span class="math display">\[
\rho = \frac{1}{N} \sum_i \left( n_{i \uparrow} + n_{i \downarrow} \right).
\]</span></p>
<p>The PH symmetry maps the Hamiltonian to itself with the sign of the chemical potential reversed and the density inverted about half-filling: <span class="math display">\[ \text{PH} : H(t, U, \mu) \rightarrow H(t, U, -\mu) \]</span> <span class="math display">\[ \rho \rightarrow 2 - \rho. \]</span></p>
<p>The Hamiltonian is symmetric under PH at <span class="math inline">\(\mu = 0\)</span> and so must all the observables, hence half-filling <span class="math inline">\(\rho = 1\)</span> occurs here. This symmetry and known observable acts as a useful test for the numerical calculations.</p>
<p>Next Section: <a href="../6_Appendices/A.2_Markov_Chain_Monte_Carlo.html">Markov Chain Monte Carlo</a></p>
</section>
<section id="bibliography" class="level1 unnumbered">
<h1 class="unnumbered">Bibliography</h1>
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
<div id="ref-gruberFalicovKimballModel2006" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[1] </div><div class="csl-right-inline">C. Gruber and D. Ueltschi, <em><a href="http://arxiv.org/abs/math-ph/0502041">The Falicov-Kimball model</a></em>, in <em>Encyclopedia of mathematical physics. 1, 1,</em> (Elsevier, Amsterdam, 2006).</div>
</div>
</div>
</section>
</main>
</body>
</html>