2022-08-24 15:30:38 +02:00

773 lines
33 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: 1_Intro
excerpt:
layout: none
image:
---
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>1_Intro</title>
<!-- <style>
html {
line-height: 1.5;
font-family: Georgia, serif;
font-size: 20px;
color: #1a1a1a;
background-color: #fdfdfd;
}
body {
margin: 0 auto;
max-width: 36em;
padding-left: 50px;
padding-right: 50px;
padding-top: 50px;
padding-bottom: 50px;
hyphens: auto;
overflow-wrap: break-word;
text-rendering: optimizeLegibility;
font-kerning: normal;
}
@media (max-width: 600px) {
body {
font-size: 0.9em;
padding: 1em;
}
h1 {
font-size: 1.8em;
}
}
@media print {
body {
background-color: transparent;
color: black;
font-size: 12pt;
}
p, h2, h3 {
orphans: 3;
widows: 3;
}
h2, h3, h4 {
page-break-after: avoid;
}
}
p {
margin: 1em 0;
}
a {
color: #1a1a1a;
}
a:visited {
color: #1a1a1a;
}
img {
max-width: 100%;
}
h1, h2, h3, h4, h5, h6 {
margin-top: 1.4em;
}
h5, h6 {
font-size: 1em;
font-style: italic;
}
h6 {
font-weight: normal;
}
ol, ul {
padding-left: 1.7em;
margin-top: 1em;
}
li > ol, li > ul {
margin-top: 0;
}
blockquote {
margin: 1em 0 1em 1.7em;
padding-left: 1em;
border-left: 2px solid #e6e6e6;
color: #606060;
}
code {
font-family: Menlo, Monaco, 'Lucida Console', Consolas, monospace;
font-size: 85%;
margin: 0;
}
pre {
margin: 1em 0;
overflow: auto;
}
pre code {
padding: 0;
overflow: visible;
overflow-wrap: normal;
}
.sourceCode {
background-color: transparent;
overflow: visible;
}
hr {
background-color: #1a1a1a;
border: none;
height: 1px;
margin: 1em 0;
}
table {
margin: 1em 0;
border-collapse: collapse;
width: 100%;
overflow-x: auto;
display: block;
font-variant-numeric: lining-nums tabular-nums;
}
table caption {
margin-bottom: 0.75em;
}
tbody {
margin-top: 0.5em;
border-top: 1px solid #1a1a1a;
border-bottom: 1px solid #1a1a1a;
}
th {
border-top: 1px solid #1a1a1a;
padding: 0.25em 0.5em 0.25em 0.5em;
}
td {
padding: 0.125em 0.5em 0.25em 0.5em;
}
header {
margin-bottom: 4em;
text-align: center;
}
#TOC li {
list-style: none;
}
#TOC ul {
padding-left: 1.3em;
}
#TOC > ul {
padding-left: 0;
}
#TOC a:not(:hover) {
text-decoration: none;
}
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
div.csl-bib-body { }
div.csl-entry {
clear: both;
}
.hanging div.csl-entry {
margin-left:2em;
text-indent:-2em;
}
div.csl-left-margin {
min-width:2em;
float:left;
}
div.csl-right-inline {
margin-left:2em;
padding-left:1em;
}
div.csl-indent {
margin-left: 2em;
}
</style> -->
<!-- <script
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js"
type="text/javascript"></script>
-->
<!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3.0.1/es5/tex-mml-chtml.js"></script>
-->
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
<!--[if lt IE 9]>
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
<![endif]-->
<link rel="stylesheet" href="/assets/css/styles.css">
<script src="/assets/js/index.js"></script>
</head>
<body>
{% include header.html %}
<main>
<nav id="TOC" role="doc-toc">
<ul>
<li><a href="#interacting-quantum-many-body-systems"
id="toc-interacting-quantum-many-body-systems">Interacting Quantum Many
Body Systems</a></li>
<li><a href="#mott-insulators-and-the-hubbard-model"
id="toc-mott-insulators-and-the-hubbard-model">Mott Insulators and The
Hubbard Model</a></li>
<li><a href="#outline" id="toc-outline">Outline</a></li>
</ul>
</nav>
<h1 id="interacting-quantum-many-body-systems">Interacting Quantum Many
Body Systems</h1>
<p>When you take many objects and let them interact together, it is
often simpler to describe the behaviour of the group differently than
one would describe the individual objects. Consider a flock (technically
called a <em>murmuration</em>) of starlings like fig. <a
href="#fig:Studland_Starlings">1</a>. Watching the flock youll see that
it has a distinct outline, that waves of density will sometimes
propagate through the closely packed birds and that the flock seems to
respond to predators as a distinct object. The natural description of
this phenomena is couched in terms of the flock rather than the
individual birds.</p>
<p>The behaviours of the flock are an emergent phenomena. The starlings
are only interacting with their immediate six or seven neighbours<span
class="citation"
data-cites="king2012murmurations balleriniInteractionRulingAnimal2008"><sup><a
href="#ref-king2012murmurations" role="doc-biblioref">1</a>,<a
href="#ref-balleriniInteractionRulingAnimal2008"
role="doc-biblioref">2</a></sup></span>. This is what a physicist would
call a <em>local interaction</em>. There is much philosophical debate
about how exactly to define emergence<span class="citation"
data-cites="andersonMoreDifferent1972 kivelsonDefiningEmergencePhysics2016"><sup><a
href="#ref-andersonMoreDifferent1972" role="doc-biblioref">3</a>,<a
href="#ref-kivelsonDefiningEmergencePhysics2016"
role="doc-biblioref">4</a></sup></span> but for our purposes it enough
to say that emergence is the fact that the aggregate behaviour of many
interacting objects may be very different from the individual behaviour
of those objects.</p>
<div id="fig:Studland_Starlings" class="fignos">
<figure>
<img src="/assets/thesis/intro_chapter/Studland_Starlings.jpeg"
data-short-caption="A murmuration of Starlings" style="width:100.0%"
alt="Figure 1: A murmuration of starlings. Dorset, UK. Credit Tanya Hart, “Studland Starlings”, 2017, CC BY-SA 3.0" />
<figcaption aria-hidden="true"><span>Figure 1:</span> A murmuration of
starlings. Dorset, UK. Credit <a href="twitter.com/arripay">Tanya
Hart</a>, “Studland Starlings”, 2017, <a
href="creativecommons.org/licenses/by-sa/3.0/deed.en">CC BY-SA
3.0</a></figcaption>
</figure>
</div>
<p>To give another example, our understanding of thermodynamics began
with bulk properties like heat, energy, pressure and temperature<span
class="citation"
data-cites="saslowHistoryThermodynamicsMissing2020"><sup><a
href="#ref-saslowHistoryThermodynamicsMissing2020"
role="doc-biblioref">5</a></sup></span>. It was only later that we
gained an understanding of how these properties emerge from microscopic
interactions between very large numbers of particles<span
class="citation" data-cites="flammHistoryOutlookStatistical1998"><sup><a
href="#ref-flammHistoryOutlookStatistical1998"
role="doc-biblioref">6</a></sup></span>.</p>
<p>Condensed Matter is, at its heart, the study of what behaviours
emerge from large numbers of interacting quantum objects at low energy.
When these three properties are present together: a large number of
objects, those objects being quantum and there are interaction between
the objects, we call it an interacting quantum many body system. From
these three ingredients nature builds all manner of weird and wonderful
materials.</p>
<p>Historically, we made initial headway in the study of many-body
systems, ignoring interactions and quantum properties. The ideal gas law
and the Drude classical electron gas<span class="citation"
data-cites="ashcroftSolidStatePhysics1976"><sup><a
href="#ref-ashcroftSolidStatePhysics1976"
role="doc-biblioref">7</a></sup></span> are good examples. Including
interactions into many-body physics leads to the Ising model<span
class="citation" data-cites="isingBeitragZurTheorie1925"><sup><a
href="#ref-isingBeitragZurTheorie1925"
role="doc-biblioref">8</a></sup></span>, Landau theory<span
class="citation" data-cites="landau2013fluid"><sup><a
href="#ref-landau2013fluid" role="doc-biblioref">9</a></sup></span> and
the classical theory of phase transitions<span class="citation"
data-cites="jaegerEhrenfestClassificationPhase1998"><sup><a
href="#ref-jaegerEhrenfestClassificationPhase1998"
role="doc-biblioref">10</a></sup></span>. In contrast, condensed matter
theory got it state in quantum many-body theory. Blochs theorem<span
class="citation"
data-cites="blochÜberQuantenmechanikElektronen1929"><sup><a
href="#ref-blochÜberQuantenmechanikElektronen1929"
role="doc-biblioref">11</a></sup></span> predicted the properties of
non-interacting electrons in crystal lattices, leading to band theory.
In the same vein, advances were made in understanding the quantum
origins of magnetism, including ferromagnetism and
antiferromagnetism<span class="citation"
data-cites="MagnetismCondensedMatter"><sup><a
href="#ref-MagnetismCondensedMatter"
role="doc-biblioref">12</a></sup></span>.</p>
<p>However, at some point we had to start on the interacting quantum
many body systems. Some phenomena cannot be understood without a taking
into account all three effects. The canonical examples are
superconductivity<span class="citation"
data-cites="MicroscopicTheorySuperconductivity"><sup><a
href="#ref-MicroscopicTheorySuperconductivity"
role="doc-biblioref">13</a></sup></span>, the fractional quantum hall
effect<span class="citation"
data-cites="feldmanFractionalChargeFractional2021"><sup><a
href="#ref-feldmanFractionalChargeFractional2021"
role="doc-biblioref">14</a></sup></span> and the Mott insulators<span
class="citation"
data-cites="mottBasisElectronTheory1949 fisherMottInsulatorsSpin1999"><sup><a
href="#ref-mottBasisElectronTheory1949" role="doc-biblioref">15</a>,<a
href="#ref-fisherMottInsulatorsSpin1999"
role="doc-biblioref">16</a></sup></span>. We will discuss the latter in
more detail.</p>
<p>Electrical conductivity, the bulk movement of electrons, requires
both that there are electronic states very close in energy to the ground
state and that those states are delocalised so that they can contribute
to macroscopic transport. Band insulators are systems whose Fermi level
falls within a gap in the density of states and thus fail the first
criteria. Anderson Insulators have only localised electronic states near
the fermi level and therefore fail the second criteria. We will discuss
Anderson insulators and disorder in a later section.</p>
<p>Both band and Anderson insulators occur without electron-electron
interactions. Mott insulators, by contrast, are by these interactions
and hence elude band theory and single-particle methods.</p>
<div id="fig:venn_diagram" class="fignos">
<figure>
<img src="/assets/thesis/intro_chapter/venn_diagram.svg"
data-short-caption="Interacting Quantum Many Body Systems Venn Diagram"
style="width:100.0%"
alt="Figure 2: Three key adjectives. Many Body, the fact of describing systems in the limit of large numbers of particles. Quantum, objects whose behaviour requires quantum mechanics to describe accurately. Interacting, the constituent particles of the system affect one another via forces, either directly or indirectly. When taken together, these three properties can give rise to what are called strongly correlated materials." />
<figcaption aria-hidden="true"><span>Figure 2:</span> Three key
adjectives. Many Body, the fact of describing systems in the limit of
large numbers of particles. Quantum, objects whose behaviour requires
quantum mechanics to describe accurately. Interacting, the constituent
particles of the system affect one another via forces, either directly
or indirectly. When taken together, these three properties can give rise
to what are called strongly correlated materials.</figcaption>
</figure>
</div>
<h1 id="mott-insulators-and-the-hubbard-model">Mott Insulators and The
Hubbard Model</h1>
<p>The theory of Mott insulators developed out of the observation that
many transition metal oxides are erroneously predicted by band theory to
be conductive<span class="citation"
data-cites="boerSemiconductorsPartiallyCompletely1937"><sup><a
href="#ref-boerSemiconductorsPartiallyCompletely1937"
role="doc-biblioref">17</a></sup></span> leading to the suggestion that
electron-electron interactions were the cause of this effect<span
class="citation" data-cites="mottDiscussionPaperBoer1937"><sup><a
href="#ref-mottDiscussionPaperBoer1937"
role="doc-biblioref">18</a></sup></span>. Interest grew with the
discovery of high temperature superconductivity in the cuprates in
1986<span class="citation"
data-cites="bednorzPossibleHighTcSuperconductivity1986"><sup><a
href="#ref-bednorzPossibleHighTcSuperconductivity1986"
role="doc-biblioref">19</a></sup></span> which is believed to arise as
the result of doping a Mott insulator state<span class="citation"
data-cites="leeDopingMottInsulator2006"><sup><a
href="#ref-leeDopingMottInsulator2006"
role="doc-biblioref">20</a></sup></span>.</p>
<p>The canonical toy model of the Mott insulator is the Hubbard
model<span class="citation"
data-cites="gutzwillerEffectCorrelationFerromagnetism1963 kanamoriElectronCorrelationFerromagnetism1963 hubbardj.ElectronCorrelationsNarrow1963"><sup><a
href="#ref-gutzwillerEffectCorrelationFerromagnetism1963"
role="doc-biblioref">21</a><a
href="#ref-hubbardj.ElectronCorrelationsNarrow1963"
role="doc-biblioref">23</a></sup></span> of <span
class="math inline">\(1/2\)</span> fermions hopping on the lattice with
hopping parameter <span class="math inline">\(t\)</span> and
electron-electron repulsion <span class="math inline">\(U\)</span></p>
<p><span class="math display">\[ H = -t \sum_{\langle i,j \rangle
\alpha} c^\dagger_{i\alpha} c_{j\alpha} + U \sum_i n_{i\uparrow}
n_{i\downarrow} - \mu \sum_{i,\alpha} n_{i\alpha}\]</span></p>
<p>where <span class="math inline">\(c^\dagger_{i\alpha}\)</span>
creates a spin <span class="math inline">\(\alpha\)</span> electron at
site <span class="math inline">\(i\)</span> and the number operator
<span class="math inline">\(n_{i\alpha}\)</span> measures the number of
electrons with spin <span class="math inline">\(\alpha\)</span> at site
<span class="math inline">\(i\)</span>. In the non-interacting limit
<span class="math inline">\(U &lt;&lt; t\)</span>, the model reduces to
free fermions and the many-body ground state is a separable product of
Bloch waves filled up to the Fermi level. In the interacting limit <span
class="math inline">\(U &gt;&gt; t\)</span> on the other hand, the
system breaks up into a product of local moments, each in one the four
states <span class="math inline">\(|0\rangle, |\uparrow\rangle,
|\downarrow\rangle, |\uparrow\downarrow\rangle\)</span> depending on the
filing.</p>
<p>The Mott insulating phase occurs at half filling <span
class="math inline">\(\mu = \tfrac{U}{2}\)</span> where there is one
electron per lattice site<span class="citation"
data-cites="hubbardElectronCorrelationsNarrow1964"><sup><a
href="#ref-hubbardElectronCorrelationsNarrow1964"
role="doc-biblioref">24</a></sup></span>. Here the model can be
rewritten in a symmetric form <span class="math display">\[ H = -t
\sum_{\langle i,j \rangle \alpha} c^\dagger_{i\alpha} c_{j\alpha} + U
\sum_i (n_{i\uparrow} - \tfrac{1}{2})(n_{i\downarrow} -
\tfrac{1}{2})\]</span></p>
<p>The basic reason that the half filled state is insulating seems is
trivial. Any excitation must include states of double occupancy that
cost energy <span class="math inline">\(U\)</span>, hence the system has
a finite bandgap and is an interaction driven Mott insulator. Originally
it was proposed that antiferromagnetic order was a necessary condition
for the Mott insulator transition<span class="citation"
data-cites="mottMetalInsulatorTransitions1990"><sup><a
href="#ref-mottMetalInsulatorTransitions1990"
role="doc-biblioref">25</a></sup></span> but later examples were found
without magnetic order <strong>cite</strong>.</p>
<p>Various theoretical treatments of the Hubbard model have been made,
including those based on Fermi liquid theory, mean field treatments, the
local density approximation (LDA)<span class="citation"
data-cites="slaterMagneticEffectsHartreeFock1951"><sup><a
href="#ref-slaterMagneticEffectsHartreeFock1951"
role="doc-biblioref">26</a></sup></span> and dynamical mean-field
theory<span class="citation"
data-cites="greinerQuantumPhaseTransition2002"><sup><a
href="#ref-greinerQuantumPhaseTransition2002"
role="doc-biblioref">27</a></sup></span>. None of these approaches is
perfect. Strong correlations are poorly described by the Fermi liquid
theory and the LDA approaches while mean field approximations do poorly
in low dimensional systems. This theoretical difficulty has made the
Hubbard model a target for cold atom simulations<span class="citation"
data-cites="mazurenkoColdatomFermiHubbard2017"><sup><a
href="#ref-mazurenkoColdatomFermiHubbard2017"
role="doc-biblioref">28</a></sup></span>.</p>
<p>From here the discussion will branch two directions. First, we will
discuss a limit of the Hubbard model called the Falikov Kimball Model.
Second, we will go down the rabbit hole of strongly correlated systems
without magnetic order. This will lead us to Quantum spin liquids and
the Kitaev honeycomb model.</p>
<p><strong>An exactly solvable model of the Mott Insulator</strong> -
demonstrate mott insulator in hubbard model, briefly tease the falikov
kimball model in order to lay the ground work to talk about the falikov
kimball model later</p>
<ul>
<li>FK model has extensively many conserved charges which makes it
tractable</li>
<li>Disorder free localisation</li>
</ul>
<p><strong>An exactly solvable Quantum Spin Liquid</strong> -
relationship between mott insulators and spin liquids: the electrons in
a mott insulator form local moments that normally form an AFM ground
state but if they dont, due to frustration or other reason, the local
moments may form a QSL at T=0 instead.<span class="citation"
data-cites="law1TTaS2QuantumSpin2017 ribakGaplessExcitationsGround2017"><sup><a
href="#ref-law1TTaS2QuantumSpin2017" role="doc-biblioref">29</a>,<a
href="#ref-ribakGaplessExcitationsGround2017"
role="doc-biblioref">30</a></sup></span></p>
<ul>
<li><p>QSLs introduced by anderson 1973<span class="citation"
data-cites="andersonResonatingValenceBonds1973"><sup><a
href="#ref-andersonResonatingValenceBonds1973"
role="doc-biblioref">31</a></sup></span></p></li>
<li><p>Spin orbit effect is a relativistic effect that couples electron
spin to orbital angular moment. Very roughly, an electron sees the
electric field of the nucleus as a magnetic field due to its movement
and the electron spin couples to this.</p></li>
<li><p>can be string in heavy elements</p></li>
<li><p>The Kitaev Model</p></li>
<li><p>Kitaev model has extensively many conserved charges too</p></li>
<li><p>Frustration</p></li>
<li><p>anyons</p></li>
<li><p>fractionalisation</p></li>
<li><p>Topology -&gt; GS degeneracy depends on the genus of the
surface</p></li>
<li><p>the chern number</p></li>
<li><p>quasiparticles</p></li>
<li><p>topological order</p></li>
<li><p>protected edge states</p></li>
<li><p>Abelian and non-Abelian anyons</p></li>
</ul>
<div id="fig:correlation_spin_orbit_PT" class="fignos">
<figure>
<img src="/assets/thesis/intro_chapter/correlation_spin_orbit_PT.png"
data-short-caption="Phase Diagram" style="width:100.0%"
alt="Figure 3: From32." />
<figcaption aria-hidden="true"><span>Figure 3:</span> From<span
class="citation" data-cites="TrebstPhysRep2022"><sup><a
href="#ref-TrebstPhysRep2022"
role="doc-biblioref">32</a></sup></span>.</figcaption>
</figure>
</div>
<p>kinds of mott insulators: Mott-Heisenberg (AFM order below Néel
temperature) Mott-Hubbard (no long-range order of local magnetic
moments) Mott-Anderson (disorder + correlations) Wigner Crystal</p>
<h1 id="outline">Outline</h1>
<p>This thesis is composed of two main studies of separate but related
physical models, The Falikov-Kimball Model and the Kitaev-Honeycomb
Model. In this chapter I will discuss the overarching motivations for
looking at these two physical models. I will then review the literature
and methods that are common to both models.</p>
<p>In Chapter 2 I will look at the Falikov-Kimball model. I will review
what it is and why we would want to study it. Ill survey what is
already known about it and identify the gap in the research that we aim
to fill, namely the models behaviour in one dimension. Ill then
introduce the modified model that we came up with to close this gap. I
will present our results on the thermodynamic phase diagram and
localisation properties of the model</p>
<p>In Chapter 3 Ill study the Kitaev Honeycomb Model, following the
same structure as Chapter 2 I will motivate the study, survey the
literature and identify a gap. Ill introduce our Amorphous Kitaev Model
designed to fill this gap and present the results.</p>
<p>Finally in chapter 4 I will summarise the results and discuss what
implications they have for our understanding interacting many-body
quantum systems.</p>
<div id="refs" class="references csl-bib-body" data-line-spacing="2"
role="doc-bibliography">
<div id="ref-king2012murmurations" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">1. </div><div
class="csl-right-inline">King, A. J. &amp; Sumpter, D. J. Murmurations.
<em>Current Biology</em> <strong>22</strong>, R112R114 (2012).</div>
</div>
<div id="ref-balleriniInteractionRulingAnimal2008" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">2. </div><div
class="csl-right-inline">Ballerini, M. <em>et al.</em> <a
href="https://doi.org/10.1073/pnas.0711437105">Interaction ruling animal
collective behavior depends on topological rather than metric distance:
Evidence from a field study</a>. <em>Proceedings of the National Academy
of Sciences</em> <strong>105</strong>, 12321237 (2008).</div>
</div>
<div id="ref-andersonMoreDifferent1972" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">3. </div><div
class="csl-right-inline">Anderson, P. W. <a
href="https://doi.org/10.1126/science.177.4047.393">More Is
Different</a>. <em>Science</em> <strong>177</strong>, 393396
(1972).</div>
</div>
<div id="ref-kivelsonDefiningEmergencePhysics2016" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">4. </div><div
class="csl-right-inline">Kivelson, S. &amp; Kivelson, S. A. <a
href="https://doi.org/10.1038/npjquantmats.2016.24">Defining emergence
in physics</a>. <em>npj Quant Mater</em> <strong>1</strong>, 12
(2016).</div>
</div>
<div id="ref-saslowHistoryThermodynamicsMissing2020" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">5. </div><div
class="csl-right-inline">Saslow, W. M. <a
href="https://doi.org/10.3390/e22010077">A History of Thermodynamics:
The Missing Manual</a>. <em>Entropy (Basel)</em> <strong>22</strong>, 77
(2020).</div>
</div>
<div id="ref-flammHistoryOutlookStatistical1998" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">6. </div><div
class="csl-right-inline">Flamm, D. History and outlook of statistical
physics. Preprint at <a
href="https://doi.org/10.48550/arXiv.physics/9803005">https://doi.org/10.48550/arXiv.physics/9803005</a>
(1998).</div>
</div>
<div id="ref-ashcroftSolidStatePhysics1976" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">7. </div><div
class="csl-right-inline">Ashcroft, N. W. &amp; Mermin, N. D. <em>Solid
State Physics</em>. (Holt, Rinehart and Winston, 1976).</div>
</div>
<div id="ref-isingBeitragZurTheorie1925" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">8. </div><div
class="csl-right-inline">Ising, E. <a
href="https://doi.org/10.1007/BF02980577">Beitrag zur Theorie des
Ferromagnetismus</a>. <em>Z. Physik</em> <strong>31</strong>, 253258
(1925).</div>
</div>
<div id="ref-landau2013fluid" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">9. </div><div
class="csl-right-inline">Landau, L. D. &amp; Lifshitz, E. M. <em>Fluid
mechanics: Landau and lifshitz: Course of theoretical physics, volume
6</em>. vol. 6 (Elsevier, 2013).</div>
</div>
<div id="ref-jaegerEhrenfestClassificationPhase1998" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">10. </div><div
class="csl-right-inline">Jaeger, G. <a
href="https://doi.org/10.1007/s004070050021">The Ehrenfest
Classification of Phase Transitions: Introduction and Evolution</a>.
<em>Arch Hist Exact Sc.</em> <strong>53</strong>, 5181 (1998).</div>
</div>
<div id="ref-blochÜberQuantenmechanikElektronen1929" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">11. </div><div
class="csl-right-inline">Bloch, F. <a
href="https://doi.org/10.1007/BF01339455">Über die Quantenmechanik der
Elektronen in Kristallgittern</a>. <em>Z. Physik</em>
<strong>52</strong>, 555600 (1929).</div>
</div>
<div id="ref-MagnetismCondensedMatter" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">12. </div><div
class="csl-right-inline">Blundell, S. <em>Magnetism in Condensed
Matter</em>. (OUP Oxford, 2001).</div>
</div>
<div id="ref-MicroscopicTheorySuperconductivity" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">13. </div><div
class="csl-right-inline">Bardeen, J., Cooper, L. N. &amp; Schrieffer, J.
R. <a href="https://doi.org/10.1103/PhysRev.106.162">Microscopic Theory
of Superconductivity</a>. <em>Phys. Rev.</em> <strong>106</strong>,
162164 (1957).</div>
</div>
<div id="ref-feldmanFractionalChargeFractional2021" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">14. </div><div
class="csl-right-inline">Feldman, D. E. &amp; Halperin, B. I. <a
href="https://doi.org/10.1088/1361-6633/ac03aa">Fractional charge and
fractional statistics in the quantum Hall effects</a>. <em>Rep. Prog.
Phys.</em> <strong>84</strong>, 076501 (2021).</div>
</div>
<div id="ref-mottBasisElectronTheory1949" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">15. </div><div
class="csl-right-inline">Mott, N. F. <a
href="https://doi.org/10.1088/0370-1298/62/7/303">The Basis of the
Electron Theory of Metals, with Special Reference to the Transition
Metals</a>. <em>Proc. Phys. Soc. A</em> <strong>62</strong>, 416422
(1949).</div>
</div>
<div id="ref-fisherMottInsulatorsSpin1999" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">16. </div><div
class="csl-right-inline">Fisher, M. P. A. <a
href="https://doi.org/10.1007/3-540-46637-1_8">Mott insulators, Spin
liquids and Quantum Disordered Superconductivity</a>. in <em>Aspects
topologiques de la physique en basse dimension. Topological aspects of
low dimensional systems</em> (eds. Comtet, A., Jolicœur, T., Ouvry, S.
&amp; David, F.) vol. 69 575641 (Springer Berlin Heidelberg,
1999).</div>
</div>
<div id="ref-boerSemiconductorsPartiallyCompletely1937"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">17. </div><div
class="csl-right-inline">Boer, J. H. de &amp; Verwey, E. J. W. <a
href="https://doi.org/10.1088/0959-5309/49/4S/307">Semi-conductors with
partially and with completely filled &lt;script&gt;3d-lattice
bands&lt;/script&gt;</a>. <em>Proc. Phys. Soc.</em> <strong>49</strong>,
5971 (1937).</div>
</div>
<div id="ref-mottDiscussionPaperBoer1937" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">18. </div><div
class="csl-right-inline">Mott, N. F. &amp; Peierls, R. <a
href="https://doi.org/10.1088/0959-5309/49/4S/308">Discussion of the
paper by de Boer and Verwey</a>. <em>Proc. Phys. Soc.</em>
<strong>49</strong>, 7273 (1937).</div>
</div>
<div id="ref-bednorzPossibleHighTcSuperconductivity1986"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">19. </div><div
class="csl-right-inline">Bednorz, J. G. &amp; Müller, K. A. <a
href="https://doi.org/10.1007/BF01303701">Possible highTc
superconductivity in the BaLaCuO system</a>. <em>Z. Physik B -
Condensed Matter</em> <strong>64</strong>, 189193 (1986).</div>
</div>
<div id="ref-leeDopingMottInsulator2006" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">20. </div><div
class="csl-right-inline">Lee, P. A., Nagaosa, N. &amp; Wen, X.-G. <a
href="https://doi.org/10.1103/RevModPhys.78.17">Doping a Mott insulator:
Physics of high-temperature superconductivity</a>. <em>Rev. Mod.
Phys.</em> <strong>78</strong>, 1785 (2006).</div>
</div>
<div id="ref-gutzwillerEffectCorrelationFerromagnetism1963"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">21. </div><div
class="csl-right-inline">Gutzwiller, M. C. <a
href="https://doi.org/10.1103/PhysRevLett.10.159">Effect of Correlation
on the Ferromagnetism of Transition Metals</a>. <em>Phys. Rev.
Lett.</em> <strong>10</strong>, 159162 (1963).</div>
</div>
<div id="ref-kanamoriElectronCorrelationFerromagnetism1963"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">22. </div><div
class="csl-right-inline">Kanamori, J. <a
href="https://doi.org/10.1143/PTP.30.275">Electron Correlation and
Ferromagnetism of Transition Metals</a>. <em>Progress of Theoretical
Physics</em> <strong>30</strong>, 275289 (1963).</div>
</div>
<div id="ref-hubbardj.ElectronCorrelationsNarrow1963" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">23. </div><div
class="csl-right-inline">Hubbard, J. <a
href="https://doi.org/10.1098/rspa.1963.0204">Electron correlations in
narrow energy bands</a>. <em>Proceedings of the Royal Society of London.
Series A. Mathematical and Physical Sciences</em> <strong>276</strong>,
238257 (1963).</div>
</div>
<div id="ref-hubbardElectronCorrelationsNarrow1964" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">24. </div><div
class="csl-right-inline">Hubbard, J. &amp; Flowers, B. H. <a
href="https://doi.org/10.1098/rspa.1964.0190">Electron correlations in
narrow energy bands III. An improved solution</a>. <em>Proceedings of
the Royal Society of London. Series A. Mathematical and Physical
Sciences</em> <strong>281</strong>, 401419 (1964).</div>
</div>
<div id="ref-mottMetalInsulatorTransitions1990" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">25. </div><div
class="csl-right-inline">Mott, N. <em>Metal-Insulator Transitions</em>.
(CRC Press, 1990). doi:<a
href="https://doi.org/10.1201/b12795">10.1201/b12795</a>.</div>
</div>
<div id="ref-slaterMagneticEffectsHartreeFock1951" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">26. </div><div
class="csl-right-inline">Slater, J. C. <a
href="https://doi.org/10.1103/PhysRev.82.538">Magnetic Effects and the
Hartree-Fock Equation</a>. <em>Phys. Rev.</em> <strong>82</strong>,
538541 (1951).</div>
</div>
<div id="ref-greinerQuantumPhaseTransition2002" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">27. </div><div
class="csl-right-inline">Greiner, M., Mandel, O., Esslinger, T., Hänsch,
T. W. &amp; Bloch, I. <a href="https://doi.org/10.1038/415039a">Quantum
phase transition from a superfluid to a Mott insulator in a gas of
ultracold atoms</a>. <em>Nature</em> <strong>415</strong>, 39
(2002).</div>
</div>
<div id="ref-mazurenkoColdatomFermiHubbard2017" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">28. </div><div
class="csl-right-inline">Mazurenko, A. <em>et al.</em> <a
href="https://doi.org/10.1038/nature22362">A cold-atom FermiHubbard
antiferromagnet</a>. <em>Nature</em> <strong>545</strong>, 462466
(2017).</div>
</div>
<div id="ref-law1TTaS2QuantumSpin2017" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">29. </div><div
class="csl-right-inline">Law, K. T. &amp; Lee, P. A. <a
href="https://doi.org/10.1073/pnas.1706769114">1T-TaS2 as a quantum spin
liquid</a>. <em>Proceedings of the National Academy of Sciences</em>
<strong>114</strong>, 69967000 (2017).</div>
</div>
<div id="ref-ribakGaplessExcitationsGround2017" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">30. </div><div
class="csl-right-inline">Ribak, A. <em>et al.</em> <a
href="https://doi.org/10.1103/PhysRevB.96.195131">Gapless excitations in
the ground state of
&lt;script&gt;$1T\text{\ensuremath{-}}{\mathrm{TaS}}_{2}$&lt;/script&gt;</a>.
<em>Phys. Rev. B</em> <strong>96</strong>, 195131 (2017).</div>
</div>
<div id="ref-andersonResonatingValenceBonds1973" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">31. </div><div
class="csl-right-inline">Anderson, P. W. <a
href="https://doi.org/10.1016/0025-5408(73)90167-0">Resonating valence
bonds: A new kind of insulator?</a> <em>Materials Research Bulletin</em>
<strong>8</strong>, 153160 (1973).</div>
</div>
<div id="ref-TrebstPhysRep2022" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">32. </div><div
class="csl-right-inline">Trebst, S. &amp; Hickey, C. <a
href="https://doi.org/10.1016/j.physrep.2021.11.003">Kitaev
materials</a>. <em>Physics Reports</em> <strong>950</strong>, 137
(2022).</div>
</div>
</div>
</main>
</body>
</html>