personal_site/_thesis/6_Appendices/A.5_The_Projector.html
2023-01-25 16:04:40 +00:00

111 lines
9.4 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: The Projector
excerpt:
layout: none
image:
---
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>The Projector</title>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
"HTML-CSS": {
linebreaks: { automatic: true, width: "container" }
}
});
</script>
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
<script src="/assets/js/thesis_scrollspy.js"></script>
<script src="https://d3js.org/d3.v5.min.js" defer></script>
<link rel="stylesheet" href="/assets/css/styles.css">
<script src="/assets/js/index.js"></script>
</head>
<body>
<!--Capture the table of contents from pandoc as a jekyll variable -->
{% capture tableOfContents %}
<br>
<nav aria-label="Table of Contents" class="page-table-of-contents">
<ul>
<li><a href="#app-the-projector" id="toc-app-the-projector">The Projector</a></li>
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
</ul>
</nav>
{% endcapture %}
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
{% include header.html extra=tableOfContents %}
<main>
<!-- Table of Contents -->
<!-- <nav id="TOC" role="doc-toc">
<ul>
<li><a href="#app-the-projector" id="toc-app-the-projector">The Projector</a></li>
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
</ul>
</nav>
-->
<!-- Main Page Body -->
<div id="page-header">
<p>Appendices</p>
<hr />
</div>
<section id="app-the-projector" class="level1">
<h1>The Projector</h1>
<p>The projection from the extended space to the physical space will not be particularly important for the results presented here. However, the theory remains useful to explain why this is.</p>
<!-- <figure>
<img src="../../figure_code/amk_chapter/hilbert_spaces.svg" style="max-width:700px;" title="How the different Hilbert Spaces relate to one another">
<figcaption>The relationship between the different Hilbert spaces used in the solution. __needs updating__ </figcaption>
</figure> -->
<p>The physical states are defined as those for which <span class="math inline">\(D_i |\phi\rangle = |\phi\rangle\)</span> for all <span class="math inline">\(D_i\)</span>. Since <span class="math inline">\(D_i\)</span> has eigenvalues <span class="math inline">\(\pm1\)</span>, the quantity <span class="math inline">\(\tfrac{(1+D_i)}{2}\)</span> has eigenvalue <span class="math inline">\(1\)</span> for physical states and <span class="math inline">\(0\)</span> for extended states so is the local projector onto the physical subspace.</p>
<p>Therefore, the global projector is <span class="math display">\[ \mathcal{P} = \prod_{i=1}^{2N} \left( \frac{1 + D_i}{2}\right),\]</span></p>
<p>for a toroidal trivalent lattice with <span class="math inline">\(N\)</span> plaquettes <span class="math inline">\(2N\)</span> vertices and <span class="math inline">\(3N\)</span> edges. As discussed earlier, the product over <span class="math inline">\((1 + D_j)\)</span> can also be thought of as the sum of all possible subsets <span class="math inline">\(\{i\}\)</span> of the <span class="math inline">\(D_j\)</span> operators, which is the set of all possible gauge symmetry operations</p>
<p><span class="math display">\[ \mathcal{P} = \frac{1}{2^{2N}} \sum_{\{i\}} \prod_{i\in\{i\}} D_i.\]</span></p>
<p>Since the gauge operators <span class="math inline">\(D_j\)</span> commute and square to one, we can define the complement operator <span class="math inline">\(C = \prod_{i=1}^{2N} D_i\)</span> and see that it takes each set of <span class="math inline">\(\prod_{i \in \{i\}} D_j\)</span> operators and gives us the complement of that set. We will shortly see why <span class="math inline">\(C\)</span> is the identity in the physical subspace, as noted earlier.</p>
<p>We use the complement operator to rewrite the projector as a sum over half the subsets of <span class="math inline">\(\{i\}\)</span> - referred to as <span class="math inline">\(\Lambda\)</span>. The complement operator deals with the other half</p>
<p><span class="math display">\[ \mathcal{P} = \left( \frac{1}{2^{2N-1}} \sum_{\Lambda} \prod_{i\in\{i\}} D_i\right) \left(\frac{1 + \prod_i^{2N} D_i}{2}\right) = \mathcal{S} \cdot \mathcal{P}_0.\]</span></p>
<p>To compute <span class="math inline">\(\mathcal{P}_0\)</span>, the main quantity needed is the product of the local projectors <span class="math inline">\(D_i\)</span> <span class="math display">\[\prod_i^{2N} D_i = \prod_i^{2N} b^x_i b^y_i b^z_i c_i \]</span> for a toroidal trivalent lattice with <span class="math inline">\(N\)</span> plaquettes <span class="math inline">\(2N\)</span> vertices and <span class="math inline">\(3N\)</span> edges.</p>
<p>First, we reorder the operators by bond type. This does not require any information about the underlying lattice,</p>
<p><span class="math display">\[\prod_i^{2N} D_i = \prod_i^{2N} b^x_i \prod_i^{2N} b^y_i \prod_i^{2N} b^z_i \prod_i^{2N} c_i.\]</span></p>
<p>The product over <span class="math inline">\(c_i\)</span> operators reduces to a determinant of the Q matrix and the fermion parity, see ref. <span class="citation" data-cites="pedrocchiPhysicalSolutionsKitaev2011"> [<a href="#ref-pedrocchiPhysicalSolutionsKitaev2011" role="doc-biblioref">1</a>]</span>. The only difference from the honeycomb case is that we cannot explicitly compute the factors <span class="math inline">\(p_x,p_y,p_z = \pm\;1\)</span> that arise from reordering the b operators such that pairs of vertices linked by the corresponding bonds are adjacent,</p>
<p><span class="math display">\[\prod_i^{2N} b^\alpha_i = p_\alpha \prod_{(i,j)}b^\alpha_i b^\alpha_j.\]</span></p>
<p>However, they are simply the parity of the permutation from one ordering to the other and can be computed in linear time with a cycle decomposition <span class="citation" data-cites="sedgewickPermutationGenerationMethods1977"> [<a href="#ref-sedgewickPermutationGenerationMethods1977" role="doc-biblioref">2</a>]</span>.</p>
<p>We find that <span class="math display">\[\mathcal{P}_0 = 1 + p_x\;p_y\;p_z\; \hat{\pi} \; \mathrm{det}(Q^u) \; \prod_{\{i,j\}} -iu_{ij},\]</span></p>
<p>where <span class="math inline">\(p_x\;p_y\;p_z = \pm 1\)</span> are lattice structure factors and <span class="math inline">\(\mathrm{det}(Q^u)\)</span> is the determinant of the matrix mentioned earlier that maps <span class="math inline">\(c_i\)</span> operators to normal mode operators <span class="math inline">\(b&#39;_i, b&#39;&#39;_i\)</span>. These depend only on the lattice structure.</p>
<p><span class="math inline">\(\hat{\pi} = \prod{i}^{N} (1 - 2\hat{n}_i)\)</span> is the parity of the particular many-body state determined by fermionic occupation numbers <span class="math inline">\(n_i\)</span>. As discussed in <span class="citation" data-cites="pedrocchiPhysicalSolutionsKitaev2011"> [<a href="#ref-pedrocchiPhysicalSolutionsKitaev2011" role="doc-biblioref">1</a>]</span>, <span class="math inline">\(\hat{\pi}\)</span> is gauge invariant in the sense that <span class="math inline">\([\hat{\pi}, D_i] = 0\)</span>.</p>
<p>This implies that <span class="math inline">\(det(Q^u) \prod -i u_{ij}\)</span> is also a gauge invariant quantity. In translation invariant models this quantity which can be related to the parity of the number of vortex pairs in the system <span class="citation" data-cites="yaoAlgebraicSpinLiquid2009"> [<a href="#ref-yaoAlgebraicSpinLiquid2009" role="doc-biblioref">3</a>]</span>.</p>
<p>All these factors take values <span class="math inline">\(\pm 1\)</span> so <span class="math inline">\(\mathcal{P}_0\)</span> is 0 or 1 for a particular state. Since <span class="math inline">\(\mathcal{S}\)</span> corresponds to symmetrising over all the gauge configurations and cannot be 0, once we have determined the single particle eigenstates of a bond sector, the true many-body ground state has the same energy as either the empty state with <span class="math inline">\(n_i = 0\)</span> or a state with a single fermion in the lowest level.</p>
</section>
<section id="bibliography" class="level1 unnumbered">
<h1 class="unnumbered">Bibliography</h1>
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
<div id="ref-pedrocchiPhysicalSolutionsKitaev2011" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[1] </div><div class="csl-right-inline">F. L. Pedrocchi, S. Chesi, and D. Loss, <em><a href="https://doi.org/10.1103/PhysRevB.84.165414">Physical solutions of the Kitaev honeycomb model</a></em>, Phys. Rev. B <strong>84</strong>, 165414 (2011).</div>
</div>
<div id="ref-sedgewickPermutationGenerationMethods1977" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[2] </div><div class="csl-right-inline">R. Sedgewick, <em><a href="https://doi.org/10.1145/356689.356692">Permutation Generation Methods</a></em>, ACM Comput. Surv. <strong>9</strong>, 137 (1977).</div>
</div>
<div id="ref-yaoAlgebraicSpinLiquid2009" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[3] </div><div class="csl-right-inline">H. Yao, S.-C. Zhang, and S. A. Kivelson, <em><a href="https://doi.org/10.1103/PhysRevLett.102.217202">Algebraic Spin Liquid in an Exactly Solvable Spin Model</a></em>, Phys. Rev. Lett. <strong>102</strong>, 217202 (2009).</div>
</div>
</div>
</section>
</main>
</body>
</html>