mirror of
https://github.com/TomHodson/tomhodson.github.com.git
synced 2025-06-26 10:01:18 +02:00
254 lines
35 KiB
HTML
254 lines
35 KiB
HTML
---
|
||
title: Background - Disorder & Localisation
|
||
excerpt:
|
||
layout: none
|
||
image:
|
||
|
||
---
|
||
<!DOCTYPE html>
|
||
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
|
||
<head>
|
||
<meta charset="utf-8" />
|
||
<meta name="generator" content="pandoc" />
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
|
||
<title>Background - Disorder & Localisation</title>
|
||
|
||
|
||
<script type="text/x-mathjax-config">
|
||
|
||
MathJax.Hub.Config({
|
||
"HTML-CSS": {
|
||
linebreaks: { automatic: true, width: "container" }
|
||
}
|
||
});
|
||
|
||
</script>
|
||
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
|
||
|
||
<script src="/assets/js/thesis_scrollspy.js"></script>
|
||
<script src="https://d3js.org/d3.v5.min.js" defer></script>
|
||
|
||
<link rel="stylesheet" href="/assets/css/styles.css">
|
||
<script src="/assets/js/index.js"></script>
|
||
</head>
|
||
<body>
|
||
|
||
<!--Capture the table of contents from pandoc as a jekyll variable -->
|
||
{% capture tableOfContents %}
|
||
<br>
|
||
<nav aria-label="Table of Contents" class="page-table-of-contents">
|
||
<ul>
|
||
<li><a href="#bg-disorder-and-localisation" id="toc-bg-disorder-and-localisation">Disorder and Localisation</a>
|
||
<ul>
|
||
<li><a href="#topological-disorder" id="toc-topological-disorder">Topological Disorder</a></li>
|
||
<li><a href="#diagnosing-localisation-in-practice" id="toc-diagnosing-localisation-in-practice">Diagnosing Localisation in practice</a>
|
||
<ul>
|
||
<li><a href="#chapter-summary" id="toc-chapter-summary">Chapter Summary</a></li>
|
||
</ul></li>
|
||
</ul></li>
|
||
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
|
||
</ul>
|
||
</nav>
|
||
{% endcapture %}
|
||
|
||
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
|
||
{% include header.html extra=tableOfContents %}
|
||
|
||
<main>
|
||
|
||
<!-- Table of Contents -->
|
||
<!-- <nav id="TOC" role="doc-toc">
|
||
<ul>
|
||
<li><a href="#bg-disorder-and-localisation" id="toc-bg-disorder-and-localisation">Disorder and Localisation</a>
|
||
<ul>
|
||
<li><a href="#topological-disorder" id="toc-topological-disorder">Topological Disorder</a></li>
|
||
<li><a href="#diagnosing-localisation-in-practice" id="toc-diagnosing-localisation-in-practice">Diagnosing Localisation in practice</a>
|
||
<ul>
|
||
<li><a href="#chapter-summary" id="toc-chapter-summary">Chapter Summary</a></li>
|
||
</ul></li>
|
||
</ul></li>
|
||
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
|
||
</ul>
|
||
</nav>
|
||
-->
|
||
|
||
<!-- Main Page Body -->
|
||
<div id="page-header">
|
||
<p>2 Background</p>
|
||
<hr />
|
||
</div>
|
||
<section id="bg-disorder-and-localisation" class="level1">
|
||
<h1>Disorder and Localisation</h1>
|
||
<p>Disorder is a fact of life for the condensed matter physicist. No sample will ever be completely free of contamination or of structural defects. The classical Drude theory of electron conductivity envisages electrons as scattering off impurities. In this model one would expect the electrical conductivity to be proportional to the mean free path <span class="citation" data-cites="lagendijkFiftyYearsAnderson2009"> [<a href="#ref-lagendijkFiftyYearsAnderson2009" role="doc-biblioref">1</a>]</span>, decreasing smoothly as the number of defects increases. However, Anderson in 1958 <span class="citation" data-cites="andersonAbsenceDiffusionCertain1958"> [<a href="#ref-andersonAbsenceDiffusionCertain1958" role="doc-biblioref">2</a>]</span> showed that in a simple model, there is some critical level of disorder at which <strong>all</strong> single particle eigenstates localise.</p>
|
||
<p>What would later be known as Anderson localisation is characterised by exponentially localised eigenfunctions <span class="math inline">\(\psi(x) \sim e^{-x/\lambda}\)</span> which cannot contribute to transport processes. The localisation length <span class="math inline">\(\lambda\)</span> is the typical scale of localised states and can be extracted with transmission matrix methods <span class="citation" data-cites="pendrySymmetryTransportWaves1994"> [<a href="#ref-pendrySymmetryTransportWaves1994" role="doc-biblioref">3</a>]</span>. Anderson localisation provided a different kind of insulator to that of the band insulator.</p>
|
||
<p>The Anderson model is about the simplest model of disorder one could imagine <span id="eq:bg-anderson-model"><span class="math display">\[
|
||
H = -t\sum_{\langle jk \rangle} c^\dagger_j c_k + \sum_j V_j c_j^\dagger c_j.
|
||
\qquad{(1)}\]</span></span></p>
|
||
<p>It is one of non-interacting fermions subject to a disorder potential <span class="math inline">\(V_j\)</span> drawn uniformly from the interval <span class="math inline">\([-W,W]\)</span>. The discovery of localisation in quantum systems was surprising at the time given the seeming ubiquity of extended Bloch states. Within the Anderson model, all the states localise at the same disorder strength <span class="math inline">\(W\)</span>. Later Mott showed that in other contexts extended Bloch states and localised states can coexist at the same disorder strength but at different energies. The transition in energy between localised and extended states is known as a mobility edge <span class="citation" data-cites="mottMetalInsulatorTransitions1978"> [<a href="#ref-mottMetalInsulatorTransitions1978" role="doc-biblioref">4</a>]</span>.</p>
|
||
<p>Localisation phenomena are strongly dimension dependent. In 3D the scaling theory of localisation <span class="citation" data-cites="edwardsNumericalStudiesLocalization1972 kramerLocalizationTheoryExperiment1993"> [<a href="#ref-edwardsNumericalStudiesLocalization1972" role="doc-biblioref">5</a>,<a href="#ref-kramerLocalizationTheoryExperiment1993" role="doc-biblioref">6</a>]</span> shows that Anderson localisation is a critical phenomenon with critical exponents both for how the conductivity vanishes with energy when approaching the mobility edge and for how the localisation length increases below it. By contrast, in 1D disorder generally dominates. Even the weakest disorder exponentially localises <em>all</em> single particle eigenstates in the 1D Anderson model. Only long-range spatial correlations of the disorder potential can induce delocalisation <span class="citation" data-cites="aubryAnalyticityBreakingAnderson1980 dassarmaLocalizationMobilityEdges1990 dunlapAbsenceLocalizationRandomdimer1990 izrailevLocalizationMobilityEdge1999 croyAndersonLocalization1D2011 izrailevAnomalousLocalizationLowDimensional2012"> [<a href="#ref-aubryAnalyticityBreakingAnderson1980" role="doc-biblioref">7</a>–<a href="#ref-izrailevAnomalousLocalizationLowDimensional2012" role="doc-biblioref">12</a>]</span>.</p>
|
||
<p>Later localisation was found in disordered interacting many-body systems:</p>
|
||
<p><span class="math display">\[
|
||
H = -t\sum_{\langle jk \rangle} c^\dagger_j c_k + \sum_j V_j c_j^\dagger c_j + U\sum_{jk} n_j n_k
|
||
\]</span> Here, in contrast to the Anderson model, localisation phenomena are robust to weak perturbations of the Hamiltonian. This is called many-body localisation <span class="citation" data-cites="imbrieManyBodyLocalizationQuantum2016 gogolinEquilibrationThermalisationEmergence2016"> [<a href="#ref-imbrieManyBodyLocalizationQuantum2016" role="doc-biblioref">13</a>,<a href="#ref-gogolinEquilibrationThermalisationEmergence2016" role="doc-biblioref">14</a>]</span>.</p>
|
||
<p>Both many-body localisation and Anderson localisation depend crucially on the presence of <em>quenched</em> disorder. Quenched disorder takes the form a static background field drawn from an arbitrary probability distribution to which the model is coupled. Disorder may also be introduced into the initial state of the system rather than the Hamiltonian. This has led to ongoing interest in the possibility of disorder-free localisation where the disorder is instead <em>annealed</em>. In this scenario the disorder necessary to generate localisation is generated entirely from the thermal fluctuations of the model.</p>
|
||
<p>The concept of disorder-free localisation was first proposed in the context of Helium mixtures <span class="citation" data-cites="kagan1984localization"> [<a href="#ref-kagan1984localization" role="doc-biblioref">15</a>]</span> and then extended to heavy-light mixtures in which multiple species with large mass ratios interact. The idea is that the heavier particles act as an effective disorder potential for the lighter ones, inducing localisation. Two such models <span class="citation" data-cites="yaoQuasiManyBodyLocalizationTranslationInvariant2016 schiulazDynamicsManybodyLocalized2015"> [<a href="#ref-yaoQuasiManyBodyLocalizationTranslationInvariant2016" role="doc-biblioref">16</a>,<a href="#ref-schiulazDynamicsManybodyLocalized2015" role="doc-biblioref">17</a>]</span> instead find that the models thermalise exponentially slowly in system size, which Ref. <span class="citation" data-cites="yaoQuasiManyBodyLocalizationTranslationInvariant2016"> [<a href="#ref-yaoQuasiManyBodyLocalizationTranslationInvariant2016" role="doc-biblioref">16</a>]</span> dubs Quasi-MBL.</p>
|
||
<p>True disorder-free localisation does occur in exactly solvable models with extensively many conserved quantities <span class="citation" data-cites="smithDisorderFreeLocalization2017"> [<a href="#ref-smithDisorderFreeLocalization2017" role="doc-biblioref">18</a>]</span>. As conserved quantities have no time dynamics this can be thought of as taking the separation of timescales to the infinite limit. The localisation phenomena present in the Falicov-Kimball model are instead the result of annealed disorder. A strong separation of timescales means that the heavy species is approximated as immobile with respect to the lighter itinerant species. At finite temperature the heavy species acts as a disorder potential for the lighter one. However, in contrast to quenched disorder, the probability distribution of annealed disorder is entirely determined by the thermodynamics of the Hamiltonian. In the 2D FK model this leads to multiple phases where localisation effects are relevant. At low temperatures the heavy species orders to a symmetry broken CDW phase, leading to a traditional band gap insulator. At higher temperatures however thermal disorder causes the light species to localise. At weak coupling, the localisation length can be very large, so finite sized systems may still conduct, an effect known as weak localisation <span class="citation" data-cites="antipovInteractionTunedAndersonMott2016"> [<a href="#ref-antipovInteractionTunedAndersonMott2016" role="doc-biblioref">19</a>]</span>.</p>
|
||
<p>In Chapter 3 we will consider a generalised FK model in 1D and study how the disorder generated near a 1D thermodynamic phase transition interacts with localisation physics.</p>
|
||
<section id="topological-disorder" class="level2">
|
||
<h2>Topological Disorder</h2>
|
||
<p>So far we have considered disorder as a static or dynamic field coupled to a model defined on a translation invariant lattice. Another kind of disordered system that worthy of study are amorphous systems. Amorphous systems have disordered bond connectivity, so called <em>topological disorder</em>. As discussed in the introduction these include amorphous semiconductors such as amorphous Germanium and Silicon <span class="citation" data-cites="Yonezawa1983 zallen2008physics Weaire1971 betteridge1973possible"> [<a href="#ref-Yonezawa1983" role="doc-biblioref">20</a>–<a href="#ref-betteridge1973possible" role="doc-biblioref">23</a>]</span>. While materials do not have long-range lattice structure they can enforce local constraints such as the approximate coordination number <span class="math inline">\(z = 4\)</span> of silicon.</p>
|
||
<p>Topological disorder can be qualitatively different from other disordered systems. Disordered graphs are constrained by fixed coordination number and the Euler equation. A standard method for generating such graphs with coordination number <span class="math inline">\(d+1\)</span> is Voronoi tessellation <span class="citation" data-cites="mitchellAmorphousTopologicalInsulators2018 marsalTopologicalWeaireThorpeModels2020"> [<a href="#ref-mitchellAmorphousTopologicalInsulators2018" role="doc-biblioref">24</a>,<a href="#ref-marsalTopologicalWeaireThorpeModels2020" role="doc-biblioref">25</a>]</span>. The Harris <span class="citation" data-cites="harrisEffectRandomDefects1974"> [<a href="#ref-harrisEffectRandomDefects1974" role="doc-biblioref">26</a>]</span> and the Imry-Mar <span class="citation" data-cites="imryRandomFieldInstabilityOrdered1975"> [<a href="#ref-imryRandomFieldInstabilityOrdered1975" role="doc-biblioref">27</a>]</span> criteria are key results on the effect of disorder on thermodynamic phase transitions. The Harris criterion signals when disorder will affect the universality of a thermodynamic critical point while the Imry-Ma criterion simply forbids the formation of long-range ordered states in <span class="math inline">\(d \leq 2\)</span> dimensions in the presence of disorder. Both these criteria are modified for the case of topological disorder. This is because the Euler equation and vertex degree constraints lead to strong anti-correlations which mean that topological disorder is effectively weaker than standard disorder in 2D <span class="citation" data-cites="barghathiPhaseTransitionsRandom2014 schrauthViolationHarrisBarghathiVojtaCriterion2018"> [<a href="#ref-barghathiPhaseTransitionsRandom2014" role="doc-biblioref">28</a>,<a href="#ref-schrauthViolationHarrisBarghathiVojtaCriterion2018" role="doc-biblioref">29</a>]</span>. This does not apply to 3D Voronoi lattices where the Euler equation contains an extra volume term and so is effectively a weaker constraint.</p>
|
||
<p>Lastly it is worth exploring how QSLs and disorder interact. The KH model has been studied subject to both flux <span class="citation" data-cites="Nasu_Thermal_2015"> [<a href="#ref-Nasu_Thermal_2015" role="doc-biblioref">30</a>]</span> and bond <span class="citation" data-cites="knolle_dynamics_2016"> [<a href="#ref-knolle_dynamics_2016" role="doc-biblioref">31</a>]</span> disorder. In some instances it seems that disorder can even promote the formation of a QSL ground state <span class="citation" data-cites="wenDisorderedRouteCoulomb2017"> [<a href="#ref-wenDisorderedRouteCoulomb2017" role="doc-biblioref">32</a>]</span>. It has also been shown that the KH model exhibits disorder-free localisation after a quantum quench <span class="citation" data-cites="zhuSubdiffusiveDynamicsCritical2021"> [<a href="#ref-zhuSubdiffusiveDynamicsCritical2021" role="doc-biblioref">33</a>]</span>.</p>
|
||
<p>In chapter 4 we will put the Kitaev model onto 2D Voronoi lattices and show that much of the rich character of the model is preserved despite the lack of long-range order.</p>
|
||
</section>
|
||
<section id="diagnosing-localisation-in-practice" class="level2">
|
||
<h2>Diagnosing Localisation in practice</h2>
|
||
<figure>
|
||
<img src="/assets/thesis/background_chapter/localisation_radius_vs_length.svg" id="fig-localisation_radius_vs_length" data-short-caption="Localisation length vs diameter" style="width:100.0%" alt="Figure 1: A localised state \psi in an potential well that has formed from random fluctuations in the disorder potential V(x). The localisation length \lambda governs how quickly the state decays away from the well while the diameter R of the state is controlled by the size of the well. Reproduced from [6]." />
|
||
<figcaption aria-hidden="true">Figure 1: A localised state <span class="math inline">\(\psi\)</span> in an potential well that has formed from random fluctuations in the disorder potential <span class="math inline">\(V(x)\)</span>. The localisation length <span class="math inline">\(\lambda\)</span> governs how quickly the state decays away from the well while the diameter <span class="math inline">\(R\)</span> of the state is controlled by the size of the well. Reproduced from <span class="citation" data-cites="kramerLocalizationTheoryExperiment1993"> [<a href="#ref-kramerLocalizationTheoryExperiment1993" role="doc-biblioref">6</a>]</span>.</figcaption>
|
||
</figure>
|
||
<p>Looking at practical tools for diagnosing localisation, there are a few standard methods <span class="citation" data-cites="kramerLocalizationTheoryExperiment1993"> [<a href="#ref-kramerLocalizationTheoryExperiment1993" role="doc-biblioref">6</a>]</span>.</p>
|
||
<p>The most direct method would be to fit a function of the form <span class="math inline">\(\psi(x) = f(x) e^{-|x-x_0|/\lambda}\)</span> to each single particle wavefunction to extract the localisation length <span class="math inline">\(\lambda\)</span>. This method is little used in practice since it requires storing and processing full wavefunctions which quickly becomes expensive for large systems.</p>
|
||
<p>For low dimensional systems with quenched disorder, transfer matrix methods can be used to directly extract the localisation length. These work by turning the time independent Schrödinger equation <span class="math inline">\(\hat{H}|\psi\rangle = E|\psi\rangle\)</span> into a matrix equation linking the amplitude of <span class="math inline">\(\psi\)</span> on each <span class="math inline">\(d-1\)</span> dimensional slice of the system to the next and looking at average properties of this transmission matrix. This method is less useful for systems like the FK model where the disorder as a whole must be sampled from the thermodynamic ensemble.</p>
|
||
<p>A more versatile method is based on the inverse participation ratio (IPR). The IPR is defined for a normalised wave function <span class="math inline">\(\psi_i = \psi(x_i), \sum_i |\psi_i|^2 = 1\)</span> as its fourth moment <span class="citation" data-cites="kramerLocalizationTheoryExperiment1993"> [<a href="#ref-kramerLocalizationTheoryExperiment1993" role="doc-biblioref">6</a>]</span>:</p>
|
||
<p><span class="math display">\[
|
||
P^{-1} = \sum_i |\psi_i|^4
|
||
\]</span></p>
|
||
<p>The name derive from the fact that this operator acts as a measure of the volume where the wavefunction is significantly different from zero. They can alternatively be thought of as providing a measure of the average diameter <span class="math inline">\(R\)</span> from <span class="math inline">\(R = P^{1/d}\)</span>. See fig. <a href="#fig:localisation_radius_vs_length">1</a> for the distinction between <span class="math inline">\(R\)</span> and <span class="math inline">\(\lambda\)</span>.</p>
|
||
<p>For localised states, the <em>inverse</em> participation ratio <span class="math inline">\(P^{-1}\)</span> is independent of system size while for plane wave states in <span class="math inline">\(d\)</span> dimensions <span class="math inline">\(P^{-1} = L^{-d}\)</span>. States may also be intermediate between localised and extended, described by their fractal dimensionality <span class="math inline">\(d > d* > 0\)</span>:</p>
|
||
<p><span class="math display">\[
|
||
P(L)^{-1} \sim L^{-d*}
|
||
\]</span></p>
|
||
<p>Such intermediate states tend to appear as critical phenomena near mobility edges <span class="citation" data-cites="eversAndersonTransitions2008"> [<a href="#ref-eversAndersonTransitions2008" role="doc-biblioref">34</a>]</span>. For finite size systems, these relations only hold once the system size <span class="math inline">\(L\)</span> is much greater than the localisation length. When the localisation length is comparable to the system size the states still contribute to transport, this is the aforementioned weak localisation effect <span class="citation" data-cites="altshulerMagnetoresistanceHallEffect1980 dattaElectronicTransportMesoscopic1995"> [<a href="#ref-altshulerMagnetoresistanceHallEffect1980" role="doc-biblioref">35</a>,<a href="#ref-dattaElectronicTransportMesoscopic1995" role="doc-biblioref">36</a>]</span>.</p>
|
||
<p>In both chapters to follow I will use an energy resolved IPR <span class="math display">\[
|
||
\begin{aligned}
|
||
DOS(\omega) &= \sum_n \delta(\omega - \epsilon_n)\\
|
||
IPR(\omega) &= DOS(\omega)^{-1} \sum_{n,i} \delta(\omega - \epsilon_n) |\psi_{n,i}|^4
|
||
\end{aligned}
|
||
\]</span> Where <span class="math inline">\(\psi_{n,i}\)</span> is the wavefunction corresponding to the energy <span class="math inline">\(\epsilon_n\)</span> at the ith site. In practice I bin the energies and IPRs into a fine energy grid and use the mean within each bin.</p>
|
||
<section id="chapter-summary" class="level3">
|
||
<h3>Chapter Summary</h3>
|
||
<p>In this chapter we have covered the Falicov-Kimball model, the Kitaev Honeycomb model and the theory of disorder and localisation. We saw that the FK model is one of immobile species (spins) interacting with an itinerant quantum species (electrons). While the KH model is specified in terms of spins on a honeycomb lattice interacting via a highly anisotropic Ising coupling, it can be transformed into one of Majorana fermions interacting with a classical gauge field that supports immobile flux excitations. In each case it is the immobile species that makes each model exactly solvable. Both models have rich ground state and thermodynamic phase diagrams. The last part of this chapter dealt with disorder and how it almost inevitably leads to localisation. Both the FK and KH models are effectively disordered at finite temperatures by their immobile species. In the next chapter we will look at a version of the FK model in 1D augmented with long-range interactions in order to retain its ordered phase. The model is translation invariant but we will see that it exhibits disorder-free localisation. After that we will look at the KH model defined on an amorphous lattice with vertex degree <span class="math inline">\(z=3\)</span>.</p>
|
||
<p>Next Chapter: <a href="../3_Long_Range_Falicov_Kimball/3.1_LRFK_Model.html">3 The Long Range Falicov-Kimball Model</a></p>
|
||
</section>
|
||
</section>
|
||
</section>
|
||
<section id="bibliography" class="level1 unnumbered">
|
||
<h1 class="unnumbered">Bibliography</h1>
|
||
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
|
||
<div id="ref-lagendijkFiftyYearsAnderson2009" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[1] </div><div class="csl-right-inline">A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, <em><a href="https://doi.org/10.1063/1.3206091">Fifty Years of Anderson Localization</a></em>, Physics Today <strong>62</strong>, 24 (2009).</div>
|
||
</div>
|
||
<div id="ref-andersonAbsenceDiffusionCertain1958" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[2] </div><div class="csl-right-inline">P. W. Anderson, <em><a href="https://doi.org/10.1103/PhysRev.109.1492">Absence of Diffusion in Certain Random Lattices</a></em>, Phys. Rev. <strong>109</strong>, 1492 (1958).</div>
|
||
</div>
|
||
<div id="ref-pendrySymmetryTransportWaves1994" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[3] </div><div class="csl-right-inline">J. B. Pendry, <em><a href="https://doi.org/10.1080/00018739400101515">Symmetry and Transport of Waves in One-Dimensional Disordered Systems</a></em>, Advances in Physics <strong>43</strong>, 461 (1994).</div>
|
||
</div>
|
||
<div id="ref-mottMetalInsulatorTransitions1978" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[4] </div><div class="csl-right-inline">S. N. Mott, <em><a href="https://doi.org/10.1063/1.2994815">Metal–Insulator Transitions</a></em>, Physics Today <strong>31</strong>, 42 (1978).</div>
|
||
</div>
|
||
<div id="ref-edwardsNumericalStudiesLocalization1972" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[5] </div><div class="csl-right-inline">J. T. Edwards and D. J. Thouless, <em><a href="https://doi.org/10.1088/0022-3719/5/8/007">Numerical Studies of Localization in Disordered Systems</a></em>, J. Phys. C: Solid State Phys. <strong>5</strong>, 807 (1972).</div>
|
||
</div>
|
||
<div id="ref-kramerLocalizationTheoryExperiment1993" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[6] </div><div class="csl-right-inline">B. Kramer and A. MacKinnon, <em><a href="https://doi.org/10.1088/0034-4885/56/12/001">Localization: Theory and Experiment</a></em>, Rep. Prog. Phys. <strong>56</strong>, 1469 (1993).</div>
|
||
</div>
|
||
<div id="ref-aubryAnalyticityBreakingAnderson1980" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[7] </div><div class="csl-right-inline">S. Aubry and G. André, <em>Analyticity Breaking and Anderson Localization in Incommensurate Lattices</em>, Proceedings, VIII International Colloquium on Group-Theoretical Methods in Physics <strong>3</strong>, 18 (1980).</div>
|
||
</div>
|
||
<div id="ref-dassarmaLocalizationMobilityEdges1990" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[8] </div><div class="csl-right-inline">S. Das Sarma, S. He, and X. C. Xie, <em><a href="https://doi.org/10.1103/PhysRevB.41.5544">Localization, Mobility Edges, and Metal-Insulator Transition in a Class of One-Dimensional Slowly Varying Deterministic Potentials</a></em>, Phys. Rev. B <strong>41</strong>, 5544 (1990).</div>
|
||
</div>
|
||
<div id="ref-dunlapAbsenceLocalizationRandomdimer1990" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[9] </div><div class="csl-right-inline">D. H. Dunlap, H.-L. Wu, and P. W. Phillips, <em><a href="https://doi.org/10.1103/PhysRevLett.65.88">Absence of Localization in a Random-Dimer Model</a></em>, Phys. Rev. Lett. <strong>65</strong>, 88 (1990).</div>
|
||
</div>
|
||
<div id="ref-izrailevLocalizationMobilityEdge1999" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[10] </div><div class="csl-right-inline">F. M. Izrailev and A. A. Krokhin, <em><a href="https://doi.org/10.1103/PhysRevLett.82.4062">Localization and the Mobility Edge in One-Dimensional Potentials with Correlated Disorder</a></em>, Phys. Rev. Lett. <strong>82</strong>, 4062 (1999).</div>
|
||
</div>
|
||
<div id="ref-croyAndersonLocalization1D2011" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[11] </div><div class="csl-right-inline">A. Croy, P. Cain, and M. Schreiber, <em><a href="https://doi.org/10.1140/epjb/e2011-20212-1">Anderson Localization in 1d Systems with Correlated Disorder</a></em>, Eur. Phys. J. B <strong>82</strong>, 107 (2011).</div>
|
||
</div>
|
||
<div id="ref-izrailevAnomalousLocalizationLowDimensional2012" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[12] </div><div class="csl-right-inline">F. M. Izrailev, A. A. Krokhin, and N. M. Makarov, <em><a href="https://doi.org/10.1016/j.physrep.2011.11.002">Anomalous Localization in Low-Dimensional Systems with Correlated Disorder</a></em>, Physics Reports <strong>512</strong>, 125 (2012).</div>
|
||
</div>
|
||
<div id="ref-imbrieManyBodyLocalizationQuantum2016" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[13] </div><div class="csl-right-inline">J. Z. Imbrie, <em><a href="https://doi.org/10.1007/s10955-016-1508-x">On Many-Body Localization for Quantum Spin Chains</a></em>, J Stat Phys <strong>163</strong>, 998 (2016).</div>
|
||
</div>
|
||
<div id="ref-gogolinEquilibrationThermalisationEmergence2016" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[14] </div><div class="csl-right-inline">C. Gogolin and J. Eisert, <em><a href="https://doi.org/10.1088/0034-4885/79/5/056001">Equilibration, Thermalisation, and the Emergence of Statistical Mechanics in Closed Quantum Systems</a></em>, Rep. Prog. Phys. <strong>79</strong>, 056001 (2016).</div>
|
||
</div>
|
||
<div id="ref-kagan1984localization" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[15] </div><div class="csl-right-inline">Y. Kagan and L. Maksimov, <em>Localization in a System of Interacting Particles Diffusing in a Regular Crystal</em>, Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki <strong>87</strong>, 348 (1984).</div>
|
||
</div>
|
||
<div id="ref-yaoQuasiManyBodyLocalizationTranslationInvariant2016" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[16] </div><div class="csl-right-inline">N. Y. Yao, C. R. Laumann, J. I. Cirac, M. D. Lukin, and J. E. Moore, <em><a href="https://doi.org/10.1103/PhysRevLett.117.240601">Quasi-Many-Body Localization in Translation-Invariant Systems</a></em>, Phys. Rev. Lett. <strong>117</strong>, 240601 (2016).</div>
|
||
</div>
|
||
<div id="ref-schiulazDynamicsManybodyLocalized2015" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[17] </div><div class="csl-right-inline">M. Schiulaz, A. Silva, and M. Müller, <em><a href="https://doi.org/10.1103/PhysRevB.91.184202">Dynamics in Many-Body Localized Quantum Systems Without Disorder</a></em>, Phys. Rev. B <strong>91</strong>, 184202 (2015).</div>
|
||
</div>
|
||
<div id="ref-smithDisorderFreeLocalization2017" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[18] </div><div class="csl-right-inline">A. Smith, J. Knolle, D. L. Kovrizhin, and R. Moessner, <em><a href="https://doi.org/10.1103/PhysRevLett.118.266601">Disorder-Free Localization</a></em>, Phys. Rev. Lett. <strong>118</strong>, 266601 (2017).</div>
|
||
</div>
|
||
<div id="ref-antipovInteractionTunedAndersonMott2016" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[19] </div><div class="csl-right-inline">A. E. Antipov, Y. Javanmard, P. Ribeiro, and S. Kirchner, <em><a href="https://doi.org/10.1103/PhysRevLett.117.146601">Interaction-Tuned Anderson Versus Mott Localization</a></em>, Phys. Rev. Lett. <strong>117</strong>, 146601 (2016).</div>
|
||
</div>
|
||
<div id="ref-Yonezawa1983" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[20] </div><div class="csl-right-inline">F. Yonezawa and T. Ninomiya, editors, <em>Topological Disorder in Condensed Matter</em>, Vol. 46 (Springer-Verlag, Berlin Heidelberg, 1983).</div>
|
||
</div>
|
||
<div id="ref-zallen2008physics" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[21] </div><div class="csl-right-inline">R. Zallen, <em>The Physics of Amorphous Solids</em> (John Wiley & Sons, 2008).</div>
|
||
</div>
|
||
<div id="ref-Weaire1971" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[22] </div><div class="csl-right-inline">D. Weaire and M. F. Thorpe, <em><a href="https://doi.org/10.1103/PhysRevB.4.2508">Electronic Properties of an Amorphous Solid. I. A Simple Tight-Binding Theory</a></em>, Phys. Rev. B <strong>4</strong>, 2508 (1971).</div>
|
||
</div>
|
||
<div id="ref-betteridge1973possible" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[23] </div><div class="csl-right-inline">G. Betteridge, <em>A Possible Model of Amorphous Silicon and Germanium</em>, Journal of Physics C: Solid State Physics <strong>6</strong>, L427 (1973).</div>
|
||
</div>
|
||
<div id="ref-mitchellAmorphousTopologicalInsulators2018" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[24] </div><div class="csl-right-inline">N. P. Mitchell, L. M. Nash, D. Hexner, A. M. Turner, and W. T. M. Irvine, <em><a href="https://doi.org/10.1038/s41567-017-0024-5">Amorphous topological insulators constructed from random point sets</a></em>, Nature Phys <strong>14</strong>, 380 (2018).</div>
|
||
</div>
|
||
<div id="ref-marsalTopologicalWeaireThorpeModels2020" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[25] </div><div class="csl-right-inline">Q. Marsal, D. Varjas, and A. G. Grushin, <em><a href="https://doi.org/10.1073/pnas.2007384117">Topological Weaire-Thorpe Models of Amorphous Matter</a></em>, Proc. Natl. Acad. Sci. U.S.A. <strong>117</strong>, 30260 (2020).</div>
|
||
</div>
|
||
<div id="ref-harrisEffectRandomDefects1974" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[26] </div><div class="csl-right-inline">A. B. Harris, <em><a href="https://doi.org/10.1088/0022-3719/7/9/009">Effect of Random Defects on the Critical Behaviour of Ising Models</a></em>, J. Phys. C: Solid State Phys. <strong>7</strong>, 1671 (1974).</div>
|
||
</div>
|
||
<div id="ref-imryRandomFieldInstabilityOrdered1975" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[27] </div><div class="csl-right-inline">Y. Imry and S. Ma, <em><a href="https://doi.org/10.1103/PhysRevLett.35.1399">Random-Field Instability of the Ordered State of Continuous Symmetry</a></em>, Phys. Rev. Lett. <strong>35</strong>, 1399 (1975).</div>
|
||
</div>
|
||
<div id="ref-barghathiPhaseTransitionsRandom2014" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[28] </div><div class="csl-right-inline">H. Barghathi and T. Vojta, <em><a href="https://doi.org/10.1103/PhysRevLett.113.120602">Phase Transitions on Random Lattices: How Random Is Topological Disorder?</a></em>, Phys. Rev. Lett. <strong>113</strong>, 120602 (2014).</div>
|
||
</div>
|
||
<div id="ref-schrauthViolationHarrisBarghathiVojtaCriterion2018" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[29] </div><div class="csl-right-inline">M. Schrauth, J. Portela, and F. Goth, <em><a href="https://doi.org/10.1103/PhysRevLett.121.100601">Violation of the Harris-Barghathi-Vojta Criterion</a></em>, Physical Review Letters <strong>121</strong>, (2018).</div>
|
||
</div>
|
||
<div id="ref-Nasu_Thermal_2015" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[30] </div><div class="csl-right-inline">J. Nasu, M. Udagawa, and Y. Motome, <em><a href="https://doi.org/10.1103/PhysRevB.92.115122">Thermal Fractionalization of Quantum Spins in a Kitaev Model: Temperature-Linear Specific Heat and Coherent Transport of Majorana Fermions</a></em>, Phys. Rev. B <strong>92</strong>, 115122 (2015).</div>
|
||
</div>
|
||
<div id="ref-knolle_dynamics_2016" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[31] </div><div class="csl-right-inline">J. Knolle, Dynamics of a Quantum Spin Liquid, Max Planck Institute for the Physics of Complex Systems, Dresden, 2016.</div>
|
||
</div>
|
||
<div id="ref-wenDisorderedRouteCoulomb2017" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[32] </div><div class="csl-right-inline">J.-J. Wen et al., <em><a href="https://doi.org/10.1103/PhysRevLett.118.107206">Disordered Route to the Coulomb Quantum Spin Liquid: Random Transverse Fields on Spin Ice in ${\Mathrm{Pr}}_{2}{\mathrm{Zr}}_{2}{\mathrm{O}}_{7}$</a></em>, Phys. Rev. Lett. <strong>118</strong>, 107206 (2017).</div>
|
||
</div>
|
||
<div id="ref-zhuSubdiffusiveDynamicsCritical2021" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[33] </div><div class="csl-right-inline">G.-Y. Zhu and M. Heyl, <em><a href="https://doi.org/10.1103/PhysRevResearch.3.L032069">Subdiffusive Dynamics and Critical Quantum Correlations in a Disorder-Free Localized Kitaev Honeycomb Model Out of Equilibrium</a></em>, Phys. Rev. Research <strong>3</strong>, L032069 (2021).</div>
|
||
</div>
|
||
<div id="ref-eversAndersonTransitions2008" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[34] </div><div class="csl-right-inline">F. Evers and A. D. Mirlin, <em><a href="https://doi.org/10.1103/RevModPhys.80.1355">Anderson Transitions</a></em>, Rev. Mod. Phys. <strong>80</strong>, 1355 (2008).</div>
|
||
</div>
|
||
<div id="ref-altshulerMagnetoresistanceHallEffect1980" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[35] </div><div class="csl-right-inline">B. L. Altshuler, D. Khmel’nitzkii, A. I. Larkin, and P. A. Lee, <em><a href="https://doi.org/10.1103/PhysRevB.22.5142">Magnetoresistance and Hall Effect in a Disordered Two-Dimensional Electron Gas</a></em>, Phys. Rev. B <strong>22</strong>, 5142 (1980).</div>
|
||
</div>
|
||
<div id="ref-dattaElectronicTransportMesoscopic1995" class="csl-entry" role="doc-biblioentry">
|
||
<div class="csl-left-margin">[36] </div><div class="csl-right-inline">S. Datta, <em><a href="https://doi.org/10.1017/CBO9780511805776">Electronic Transport in Mesoscopic Systems</a></em> (Cambridge University Press, Cambridge, 1995).</div>
|
||
</div>
|
||
</div>
|
||
</section>
|
||
|
||
|
||
</main>
|
||
</body>
|
||
</html>
|