mirror of
https://github.com/TomHodson/tomhodson.github.com.git
synced 2025-06-26 10:01:18 +02:00
381 lines
13 KiB
HTML
381 lines
13 KiB
HTML
---
|
||
title: 2.2_HKM_Model
|
||
excerpt:
|
||
layout: none
|
||
image:
|
||
|
||
---
|
||
<!DOCTYPE html>
|
||
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
|
||
<head>
|
||
<meta charset="utf-8" />
|
||
<meta name="generator" content="pandoc" />
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
|
||
<title>2.2_HKM_Model</title>
|
||
<!-- <style>
|
||
html {
|
||
line-height: 1.5;
|
||
font-family: Georgia, serif;
|
||
font-size: 20px;
|
||
color: #1a1a1a;
|
||
background-color: #fdfdfd;
|
||
}
|
||
body {
|
||
margin: 0 auto;
|
||
max-width: 36em;
|
||
padding-left: 50px;
|
||
padding-right: 50px;
|
||
padding-top: 50px;
|
||
padding-bottom: 50px;
|
||
hyphens: auto;
|
||
overflow-wrap: break-word;
|
||
text-rendering: optimizeLegibility;
|
||
font-kerning: normal;
|
||
}
|
||
@media (max-width: 600px) {
|
||
body {
|
||
font-size: 0.9em;
|
||
padding: 1em;
|
||
}
|
||
h1 {
|
||
font-size: 1.8em;
|
||
}
|
||
}
|
||
@media print {
|
||
body {
|
||
background-color: transparent;
|
||
color: black;
|
||
font-size: 12pt;
|
||
}
|
||
p, h2, h3 {
|
||
orphans: 3;
|
||
widows: 3;
|
||
}
|
||
h2, h3, h4 {
|
||
page-break-after: avoid;
|
||
}
|
||
}
|
||
p {
|
||
margin: 1em 0;
|
||
}
|
||
a {
|
||
color: #1a1a1a;
|
||
}
|
||
a:visited {
|
||
color: #1a1a1a;
|
||
}
|
||
img {
|
||
max-width: 100%;
|
||
}
|
||
h1, h2, h3, h4, h5, h6 {
|
||
margin-top: 1.4em;
|
||
}
|
||
h5, h6 {
|
||
font-size: 1em;
|
||
font-style: italic;
|
||
}
|
||
h6 {
|
||
font-weight: normal;
|
||
}
|
||
ol, ul {
|
||
padding-left: 1.7em;
|
||
margin-top: 1em;
|
||
}
|
||
li > ol, li > ul {
|
||
margin-top: 0;
|
||
}
|
||
blockquote {
|
||
margin: 1em 0 1em 1.7em;
|
||
padding-left: 1em;
|
||
border-left: 2px solid #e6e6e6;
|
||
color: #606060;
|
||
}
|
||
code {
|
||
font-family: Menlo, Monaco, 'Lucida Console', Consolas, monospace;
|
||
font-size: 85%;
|
||
margin: 0;
|
||
}
|
||
pre {
|
||
margin: 1em 0;
|
||
overflow: auto;
|
||
}
|
||
pre code {
|
||
padding: 0;
|
||
overflow: visible;
|
||
overflow-wrap: normal;
|
||
}
|
||
.sourceCode {
|
||
background-color: transparent;
|
||
overflow: visible;
|
||
}
|
||
hr {
|
||
background-color: #1a1a1a;
|
||
border: none;
|
||
height: 1px;
|
||
margin: 1em 0;
|
||
}
|
||
table {
|
||
margin: 1em 0;
|
||
border-collapse: collapse;
|
||
width: 100%;
|
||
overflow-x: auto;
|
||
display: block;
|
||
font-variant-numeric: lining-nums tabular-nums;
|
||
}
|
||
table caption {
|
||
margin-bottom: 0.75em;
|
||
}
|
||
tbody {
|
||
margin-top: 0.5em;
|
||
border-top: 1px solid #1a1a1a;
|
||
border-bottom: 1px solid #1a1a1a;
|
||
}
|
||
th {
|
||
border-top: 1px solid #1a1a1a;
|
||
padding: 0.25em 0.5em 0.25em 0.5em;
|
||
}
|
||
td {
|
||
padding: 0.125em 0.5em 0.25em 0.5em;
|
||
}
|
||
header {
|
||
margin-bottom: 4em;
|
||
text-align: center;
|
||
}
|
||
#TOC li {
|
||
list-style: none;
|
||
}
|
||
#TOC ul {
|
||
padding-left: 1.3em;
|
||
}
|
||
#TOC > ul {
|
||
padding-left: 0;
|
||
}
|
||
#TOC a:not(:hover) {
|
||
text-decoration: none;
|
||
}
|
||
code{white-space: pre-wrap;}
|
||
span.smallcaps{font-variant: small-caps;}
|
||
span.underline{text-decoration: underline;}
|
||
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
||
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
||
ul.task-list{list-style: none;}
|
||
pre > code.sourceCode { white-space: pre; position: relative; }
|
||
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
|
||
pre > code.sourceCode > span:empty { height: 1.2em; }
|
||
.sourceCode { overflow: visible; }
|
||
code.sourceCode > span { color: inherit; text-decoration: inherit; }
|
||
div.sourceCode { margin: 1em 0; }
|
||
pre.sourceCode { margin: 0; }
|
||
@media screen {
|
||
div.sourceCode { overflow: auto; }
|
||
}
|
||
@media print {
|
||
pre > code.sourceCode { white-space: pre-wrap; }
|
||
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
|
||
}
|
||
pre.numberSource code
|
||
{ counter-reset: source-line 0; }
|
||
pre.numberSource code > span
|
||
{ position: relative; left: -4em; counter-increment: source-line; }
|
||
pre.numberSource code > span > a:first-child::before
|
||
{ content: counter(source-line);
|
||
position: relative; left: -1em; text-align: right; vertical-align: baseline;
|
||
border: none; display: inline-block;
|
||
-webkit-touch-callout: none; -webkit-user-select: none;
|
||
-khtml-user-select: none; -moz-user-select: none;
|
||
-ms-user-select: none; user-select: none;
|
||
padding: 0 4px; width: 4em;
|
||
color: #aaaaaa;
|
||
}
|
||
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
|
||
div.sourceCode
|
||
{ }
|
||
@media screen {
|
||
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
|
||
}
|
||
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
|
||
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
|
||
code span.at { color: #7d9029; } /* Attribute */
|
||
code span.bn { color: #40a070; } /* BaseN */
|
||
code span.bu { } /* BuiltIn */
|
||
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
|
||
code span.ch { color: #4070a0; } /* Char */
|
||
code span.cn { color: #880000; } /* Constant */
|
||
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
|
||
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
|
||
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
|
||
code span.dt { color: #902000; } /* DataType */
|
||
code span.dv { color: #40a070; } /* DecVal */
|
||
code span.er { color: #ff0000; font-weight: bold; } /* Error */
|
||
code span.ex { } /* Extension */
|
||
code span.fl { color: #40a070; } /* Float */
|
||
code span.fu { color: #06287e; } /* Function */
|
||
code span.im { } /* Import */
|
||
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
|
||
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
|
||
code span.op { color: #666666; } /* Operator */
|
||
code span.ot { color: #007020; } /* Other */
|
||
code span.pp { color: #bc7a00; } /* Preprocessor */
|
||
code span.sc { color: #4070a0; } /* SpecialChar */
|
||
code span.ss { color: #bb6688; } /* SpecialString */
|
||
code span.st { color: #4070a0; } /* String */
|
||
code span.va { color: #19177c; } /* Variable */
|
||
code span.vs { color: #4070a0; } /* VerbatimString */
|
||
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
|
||
div.csl-bib-body { }
|
||
div.csl-entry {
|
||
clear: both;
|
||
}
|
||
.hanging div.csl-entry {
|
||
margin-left:2em;
|
||
text-indent:-2em;
|
||
}
|
||
div.csl-left-margin {
|
||
min-width:2em;
|
||
float:left;
|
||
}
|
||
div.csl-right-inline {
|
||
margin-left:2em;
|
||
padding-left:1em;
|
||
}
|
||
div.csl-indent {
|
||
margin-left: 2em;
|
||
}
|
||
</style> -->
|
||
|
||
<!-- <script
|
||
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js"
|
||
type="text/javascript"></script>
|
||
-->
|
||
|
||
<!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
|
||
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3.0.1/es5/tex-mml-chtml.js"></script>
|
||
-->
|
||
|
||
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
|
||
|
||
|
||
<!--[if lt IE 9]>
|
||
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
|
||
<![endif]-->
|
||
<link rel="stylesheet" href="/assets/css/styles.css">
|
||
<script src="/assets/js/index.js"></script>
|
||
</head>
|
||
<body>
|
||
|
||
<!--Capture the table of contents from pandoc as a jekyll variable -->
|
||
{% capture tableOfContents %}
|
||
<br>
|
||
Contents:
|
||
<ul>
|
||
<li><a href="#the-kitaev-honeycomb-model"
|
||
id="toc-the-kitaev-honeycomb-model">The Kitaev Honeycomb Model</a>
|
||
<ul>
|
||
<li><a href="#the-model" id="toc-the-model">The Model</a></li>
|
||
<li><a href="#a-mapping-to-majorana-fermions"
|
||
id="toc-a-mapping-to-majorana-fermions">A mapping to Majorana
|
||
Fermions</a></li>
|
||
<li><a href="#gauge-fields" id="toc-gauge-fields">Gauge Fields</a></li>
|
||
<li><a href="#anyons-topology-and-the-chern-number"
|
||
id="toc-anyons-topology-and-the-chern-number">Anyons, Topology and the
|
||
Chern number</a></li>
|
||
<li><a href="#phase-diagram" id="toc-phase-diagram">Phase
|
||
Diagram</a></li>
|
||
</ul></li>
|
||
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
|
||
</ul>
|
||
{% endcapture %}
|
||
|
||
<!-- Give the table of contents to header as a variable -->
|
||
{% include header.html extra=tableOfContents %}
|
||
|
||
<main>
|
||
<!-- <nav id="TOC" role="doc-toc">
|
||
<ul>
|
||
<li><a href="#the-kitaev-honeycomb-model"
|
||
id="toc-the-kitaev-honeycomb-model">The Kitaev Honeycomb Model</a>
|
||
<ul>
|
||
<li><a href="#the-model" id="toc-the-model">The Model</a></li>
|
||
<li><a href="#a-mapping-to-majorana-fermions"
|
||
id="toc-a-mapping-to-majorana-fermions">A mapping to Majorana
|
||
Fermions</a></li>
|
||
<li><a href="#gauge-fields" id="toc-gauge-fields">Gauge Fields</a></li>
|
||
<li><a href="#anyons-topology-and-the-chern-number"
|
||
id="toc-anyons-topology-and-the-chern-number">Anyons, Topology and the
|
||
Chern number</a></li>
|
||
<li><a href="#phase-diagram" id="toc-phase-diagram">Phase
|
||
Diagram</a></li>
|
||
</ul></li>
|
||
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
|
||
</ul>
|
||
</nav>
|
||
-->
|
||
<h1 id="the-kitaev-honeycomb-model">The Kitaev Honeycomb Model</h1>
|
||
<p><strong>papers</strong> Jos on dynamics
|
||
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.115127</p>
|
||
<p><strong>intro</strong> - strong spin orbit coupling leads to
|
||
anisotropic spin exchange (as opposed to isotropic exchange like the
|
||
Heisenberg model) - geometrical frustration leads to QSL ground state
|
||
with long range entanglement (not simple paramagnet)</p>
|
||
<ul>
|
||
<li>RuCl_3 is the classic QSL candidate material</li>
|
||
<li>really follows the Kitaev-Heisenberg model</li>
|
||
<li>experimental probes include inelastic neutron scattering, Raman
|
||
scattering</li>
|
||
</ul>
|
||
<h2 id="the-model">The Model</h2>
|
||
<div id="fig:intro_figure_by_hand" class="fignos">
|
||
<figure>
|
||
<img
|
||
src="/assets/thesis/amk_chapter/intro/honeycomb_zoom/intro_figure_by_hand.svg"
|
||
data-short-caption="The Kitaev Honeycomb Model" style="width:100.0%"
|
||
alt="Figure 1: (a) The standard Kitaev model is defined on a honeycomb lattice. The special feature of the honeycomb lattice that makes the model solvable is that each vertex is joined by exactly three bonds, i.e. the lattice is trivalent. One of three labels is assigned to each (b). We represent the antisymmetric gauge degree of freedom u_{jk} = \pm 1 with arrows that point in the direction u_{jk} = +1 (c). The Majorana transformation can be visualised as breaking each spin into four Majoranas which then pair along the bonds. The pairs of x,y and z Majoranas become part of the classical \mathbb{Z}_2 gauge field u_{ij}. This leavies a single Majorana c_i per site." />
|
||
<figcaption aria-hidden="true"><span>Figure 1:</span>
|
||
<strong>(a)</strong> The standard Kitaev model is defined on a honeycomb
|
||
lattice. The special feature of the honeycomb lattice that makes the
|
||
model solvable is that each vertex is joined by exactly three bonds,
|
||
i.e. the lattice is trivalent. One of three labels is assigned to each
|
||
<strong>(b)</strong>. We represent the antisymmetric gauge degree of
|
||
freedom <span class="math inline">\(u_{jk} = \pm 1\)</span> with arrows
|
||
that point in the direction <span class="math inline">\(u_{jk} =
|
||
+1\)</span> <strong>(c)</strong>. The Majorana transformation can be
|
||
visualised as breaking each spin into four Majoranas which then pair
|
||
along the bonds. The pairs of x,y and z Majoranas become part of the
|
||
classical <span class="math inline">\(\mathbb{Z}_2\)</span> gauge field
|
||
<span class="math inline">\(u_{ij}\)</span>. This leavies a single
|
||
Majorana <span class="math inline">\(c_i\)</span> per site.</figcaption>
|
||
</figure>
|
||
</div>
|
||
<ul>
|
||
<li>strong spin orbit coupling yields spatial anisotropic spin exchange
|
||
leading to compass models <span class="citation"
|
||
data-cites="kugelJahnTellerEffectMagnetism1982"> [<a
|
||
href="#ref-kugelJahnTellerEffectMagnetism1982"
|
||
role="doc-biblioref">1</a>]</span></li>
|
||
<li>spin model of the Kitaev model is one</li>
|
||
<li>has extensively many conserved fluxes</li>
|
||
<li></li>
|
||
</ul>
|
||
<h2 id="a-mapping-to-majorana-fermions">A mapping to Majorana
|
||
Fermions</h2>
|
||
<h2 id="gauge-fields">Gauge Fields</h2>
|
||
<h2 id="anyons-topology-and-the-chern-number">Anyons, Topology and the
|
||
Chern number</h2>
|
||
<h2 id="phase-diagram">Phase Diagram</h2>
|
||
<div class="sourceCode" id="cb1"><pre
|
||
class="sourceCode python"><code class="sourceCode python"></code></pre></div>
|
||
<h1 class="unnumbered" id="bibliography">Bibliography</h1>
|
||
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
|
||
<div id="ref-kugelJahnTellerEffectMagnetism1982" class="csl-entry"
|
||
role="doc-biblioentry">
|
||
<div class="csl-left-margin">[1] </div><div class="csl-right-inline">K.
|
||
I. Kugel’ and D. I. Khomskiĭ, <em><a
|
||
href="https://doi.org/10.1070/PU1982v025n04ABEH004537">The Jahn-Teller
|
||
Effect and Magnetism: Transition Metal Compounds</a></em>, Sov. Phys.
|
||
Usp. <strong>25</strong>, 231 (1982).</div>
|
||
</div>
|
||
</div>
|
||
</main>
|
||
</body>
|
||
</html>
|