personal_site/_thesis/2.3_AMK_Results.html
2022-08-03 12:53:50 +01:00

1549 lines
77 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: The Amorphous Kitaev Model - Results
excerpt: The Amorphous Kitaev model is a chiral spin liquid!
layout: none
image:
---
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<meta name="description" content="The Amorphous Kitaev model is a chiral spin liquid!" />
<title>The Amorphous Kitaev Model - Results</title>
<!-- <style>
html {
line-height: 1.5;
font-family: Georgia, serif;
font-size: 20px;
color: #1a1a1a;
background-color: #fdfdfd;
}
body {
margin: 0 auto;
max-width: 36em;
padding-left: 50px;
padding-right: 50px;
padding-top: 50px;
padding-bottom: 50px;
hyphens: auto;
overflow-wrap: break-word;
text-rendering: optimizeLegibility;
font-kerning: normal;
}
@media (max-width: 600px) {
body {
font-size: 0.9em;
padding: 1em;
}
h1 {
font-size: 1.8em;
}
}
@media print {
body {
background-color: transparent;
color: black;
font-size: 12pt;
}
p, h2, h3 {
orphans: 3;
widows: 3;
}
h2, h3, h4 {
page-break-after: avoid;
}
}
p {
margin: 1em 0;
}
a {
color: #1a1a1a;
}
a:visited {
color: #1a1a1a;
}
img {
max-width: 100%;
}
h1, h2, h3, h4, h5, h6 {
margin-top: 1.4em;
}
h5, h6 {
font-size: 1em;
font-style: italic;
}
h6 {
font-weight: normal;
}
ol, ul {
padding-left: 1.7em;
margin-top: 1em;
}
li > ol, li > ul {
margin-top: 0;
}
blockquote {
margin: 1em 0 1em 1.7em;
padding-left: 1em;
border-left: 2px solid #e6e6e6;
color: #606060;
}
code {
font-family: Menlo, Monaco, 'Lucida Console', Consolas, monospace;
font-size: 85%;
margin: 0;
}
pre {
margin: 1em 0;
overflow: auto;
}
pre code {
padding: 0;
overflow: visible;
overflow-wrap: normal;
}
.sourceCode {
background-color: transparent;
overflow: visible;
}
hr {
background-color: #1a1a1a;
border: none;
height: 1px;
margin: 1em 0;
}
table {
margin: 1em 0;
border-collapse: collapse;
width: 100%;
overflow-x: auto;
display: block;
font-variant-numeric: lining-nums tabular-nums;
}
table caption {
margin-bottom: 0.75em;
}
tbody {
margin-top: 0.5em;
border-top: 1px solid #1a1a1a;
border-bottom: 1px solid #1a1a1a;
}
th {
border-top: 1px solid #1a1a1a;
padding: 0.25em 0.5em 0.25em 0.5em;
}
td {
padding: 0.125em 0.5em 0.25em 0.5em;
}
header {
margin-bottom: 4em;
text-align: center;
}
#TOC li {
list-style: none;
}
#TOC ul {
padding-left: 1.3em;
}
#TOC > ul {
padding-left: 0;
}
#TOC a:not(:hover) {
text-decoration: none;
}
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
div.csl-bib-body { }
div.csl-entry {
clear: both;
}
.hanging div.csl-entry {
margin-left:2em;
text-indent:-2em;
}
div.csl-left-margin {
min-width:2em;
float:left;
}
div.csl-right-inline {
margin-left:2em;
padding-left:1em;
}
div.csl-indent {
margin-left: 2em;
}
</style> -->
<!-- <script
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js"
type="text/javascript"></script>
-->
<!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3.0.1/es5/tex-mml-chtml.js"></script>
-->
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
<!--[if lt IE 9]>
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
<![endif]-->
<link rel="stylesheet" href="/assets/css/styles.css">
<script src="/assets/js/index.js"></script>
</head>
<body>
{% include header.html %}
<main>
<nav id="TOC" role="doc-toc">
<ul>
<li><a href="#results" id="toc-results">Results</a>
<ul>
<li><a href="#the-ground-state" id="toc-the-ground-state">The Ground
State</a></li>
<li><a href="#ground-state-phase-diagram"
id="toc-ground-state-phase-diagram">Ground State Phase Diagram</a></li>
<li><a href="#the-flux-gap" id="toc-the-flux-gap">The Flux Gap</a></li>
</ul></li>
<li><a href="#conclusion" id="toc-conclusion">Conclusion</a>
<ul>
<li><a href="#discussion" id="toc-discussion">Discussion</a></li>
<li><a href="#future-work" id="toc-future-work">Future Work</a></li>
<li><a href="#fluxes-and-the-ground-state"
id="toc-fluxes-and-the-ground-state">Fluxes and the Ground
State</a></li>
<li><a href="#zero-temperature-phase-diagram"
id="toc-zero-temperature-phase-diagram">Zero Temperature Phase
Diagram</a>
<ul>
<li><a href="#chern-number-and-edge-modes"
id="toc-chern-number-and-edge-modes">Chern Number and Edge
Modes</a></li>
</ul></li>
<li><a href="#anderson-transition-to-a-thermal-metal"
id="toc-anderson-transition-to-a-thermal-metal">Anderson Transition to a
Thermal Metal</a></li>
<li><a href="#discussion-and-conclusions"
id="toc-discussion-and-conclusions">Discussion and Conclusions</a></li>
</ul></li>
<li><a href="#apx:ground_state" id="toc-apx:ground_state">Numerical
Evidence for the Ground State Flux Sector</a></li>
</ul>
</nav>
<h1 id="results">Results</h1>
<h2 id="the-ground-state">The Ground State</h2>
<div id="fig:fermion_gap_vs_L" class="fignos">
<figure>
<img
src="/assets/thesis/amk_chapter/results/fermion_gap_vs_L/fermion_gap_vs_L.svg"
style="width:100.0%"
alt="Figure 1: Within a flux sector, the fermion gap \Delta_f measures the energy between the fermionic ground state and the first excited state. This graph shows the fermion gap as a function of system size for the ground state flux sector and for a configuration of random fluxes. We see that the disorder induced by an putting the Kitaev model on an amorphous lattice does not close the gap in the ground state. The gap closes in the flux disordered limit is good evidence that the system transitions to a gapless thermal metal state at high temperature. Each point shows an average over 100 lattice realisations. System size L is defined \sqrt{N} where N is the number of plaquettes in the system. Error bars shown are 3 times the standard error of the mean. The lines shown are fits of \tfrac{\Delta_f}{J} = aL ^ b with fit parameters: Ground State: a = 0.138 \pm 0.002, b = -0.0972 \pm 0.004 Random Flux Sector: a = 1.8 \pm 0.2, b = -2.21 \pm 0.03" />
<figcaption aria-hidden="true"><span>Figure 1:</span> Within a flux
sector, the fermion gap <span class="math inline">\(\Delta_f\)</span>
measures the energy between the fermionic ground state and the first
excited state. This graph shows the fermion gap as a function of system
size for the ground state flux sector and for a configuration of random
fluxes. We see that the disorder induced by an putting the Kitaev model
on an amorphous lattice does not close the gap in the ground state. The
gap closes in the flux disordered limit is good evidence that the system
transitions to a gapless thermal metal state at high temperature. Each
point shows an average over 100 lattice realisations. System size <span
class="math inline">\(L\)</span> is defined <span
class="math inline">\(\sqrt{N}\)</span> where N is the number of
plaquettes in the system. Error bars shown are <span
class="math inline">\(3\)</span> times the standard error of the mean.
The lines shown are fits of <span
class="math inline">\(\tfrac{\Delta_f}{J} = aL ^ b\)</span> with fit
parameters: Ground State: <span class="math inline">\(a = 0.138 \pm
0.002, b = -0.0972 \pm 0.004\)</span> Random Flux Sector: <span
class="math inline">\(a = 1.8 \pm 0.2, b = -2.21 \pm
0.03\)</span></figcaption>
</figure>
</div>
<h2 id="ground-state-phase-diagram">Ground State Phase Diagram</h2>
<h2 id="the-flux-gap">The Flux Gap</h2>
<h1 id="conclusion">Conclusion</h1>
<h2 id="discussion">Discussion</h2>
<h2 id="future-work">Future Work</h2>
<p>The Kitaev Honeycomb can be quite easily turned into a quantum error
correcting code <a
href="https://errorcorrectionzoo.org/c/honeycomb">like this</a>, the
same idea applies to our model.</p>
<p>In contrast to the honeycomb case, the amorphous KSLs are gapless
only along certain critical lines. These manifolds separate two gapped
KSLs that are topologically differentiated by a local Chern number <span
class="math inline">\(\nu\)</span><span class="citation"
data-cites="peru_preprint mitchellAmorphousTopologicalInsulators2018"><sup><a
href="#ref-peru_preprint" role="doc-biblioref">1</a>,<a
href="#ref-mitchellAmorphousTopologicalInsulators2018"
role="doc-biblioref">2</a></sup></span> in analogy with the KSLs on the
decorated honeycomb lattice<span class="citation"
data-cites="yaoExactChiralSpin2007"><sup><a
href="#ref-yaoExactChiralSpin2007"
role="doc-biblioref">3</a></sup></span>.</p>
<p>The <span class="math inline">\(\nu=0\)</span> phase is the amorphous
analogue of the abelian toric-code QSL<span class="citation"
data-cites="kitaev_fault-tolerant_2003"><sup><a
href="#ref-kitaev_fault-tolerant_2003"
role="doc-biblioref">4</a></sup></span>, whereas the <span
class="math inline">\(\nu=\pm1\)</span> KSLs is a non-Abelian chiral
spin liquid (CSL).</p>
<p>We study two specific features of the latter liquid: topologically
protected edge states and a thermal-induced Anderson transition to a
thermal metal phase<span class="citation"
data-cites="selfThermallyInducedMetallic2019"><sup><a
href="#ref-selfThermallyInducedMetallic2019"
role="doc-biblioref">5</a></sup></span>.</p>
<p>Amorphous materials are glassy condensed matter systems characterised
by short-range constraints in the absence of long-range crystalline
order as first studied in amorphous semiconductors <span
class="citation" data-cites="Yonezawa1983 zallen2008physics"><sup><a
href="#ref-Yonezawa1983" role="doc-biblioref">6</a>,<a
href="#ref-zallen2008physics" role="doc-biblioref">7</a></sup></span>.
In general, the bonds of a whole range of covalent compounds enforce
local constraints around each ion, e.g. a fixed coordination number
<span class="math inline">\(z\)</span>, which has enabled the prediction
of energy gaps even in lattices without translational symmetry <span
class="citation" data-cites="Weaire1976 gaskell1979structure"><sup><a
href="#ref-Weaire1976" role="doc-biblioref">8</a>,<a
href="#ref-gaskell1979structure"
role="doc-biblioref">9</a></sup></span>, the most famous example being
amorphous Ge and Si with <span class="math inline">\(z=4\)</span> <span
class="citation" data-cites="Weaire1971 betteridge1973possible"><sup><a
href="#ref-Weaire1971" role="doc-biblioref">10</a>,<a
href="#ref-betteridge1973possible"
role="doc-biblioref">11</a></sup></span>. Recently, following the
discovery of topological insulators (TIs) it has been shown that similar
phases can exist in amorphous systems characterized by protected edge
states and topological bulk invariants <span class="citation"
data-cites="mitchellAmorphousTopologicalInsulators2018 agarwala2019topological marsalTopologicalWeaireThorpeModels2020 costa2019toward agarwala2020higher spring2021amorphous corbae2019evidence"><sup><a
href="#ref-mitchellAmorphousTopologicalInsulators2018"
role="doc-biblioref">2</a>,<a href="#ref-agarwala2019topological"
role="doc-biblioref">12</a><a href="#ref-corbae2019evidence"
role="doc-biblioref">17</a></sup></span>. However, research on
electronic systems has been mostly focused on non-interacting systems
with a few notable exceptions for understanding the occurrence of
superconductivity <span class="citation"
data-cites="buckel1954einfluss mcmillan1981electron bergmann1976amorphous"><sup><a
href="#ref-buckel1954einfluss" role="doc-biblioref">18</a><a
href="#ref-bergmann1976amorphous"
role="doc-biblioref">20</a></sup></span> <span
class="math inline">\(\textbf{J}\)</span>K: CECK OLD EMAIL WITH THEORY
WORKS in amorphous materials and recently the effect of strong repulsion
in amorphous TIs <span class="citation"
data-cites="kim2022fractionalization"><sup><a
href="#ref-kim2022fractionalization"
role="doc-biblioref">21</a></sup></span>.</p>
<p>Magnetic phases in amorphous systems have been investigated since the
1960s, mostly through the adaptation of theoretical tools developed for
disordered systems<span class="citation"
data-cites="aharony1975critical Petrakovski1981 kaneyoshi1992introduction Kaneyoshi2018"><sup><a
href="#ref-aharony1975critical" role="doc-biblioref">22</a><a
href="#ref-Kaneyoshi2018" role="doc-biblioref">25</a></sup></span> and
numerical methods <span class="citation"
data-cites="fahnle1984monte plascak2000ising"><sup><a
href="#ref-fahnle1984monte" role="doc-biblioref">26</a>,<a
href="#ref-plascak2000ising" role="doc-biblioref">27</a></sup></span>.
Research focused on classical Heisenberg and Ising models which have
been shown to account for observed behavior of ferromagnetism,
disordered antiferromagnetism and widely observed spin glass
behaviour <span class="citation" data-cites="coey1978amorphous"><sup><a
href="#ref-coey1978amorphous" role="doc-biblioref">28</a></sup></span>.
However, the role of spin-anisotropic interactions and quantum effects
has not been addressed. Similarly, it is an open question whether
magnetic frustration in amorphous quantum magnets can give rise to
long-range entangled quantum spin liquid (QSL) phases.</p>
<p>Two intentional simplifications of Andreevs and Marchenkos theory
were the neglect of spin-orbit coupling induced anisotropies and the
effects arising from the local structure of amorphous lattices. It is
then expected that their theory is invalid for amorphous compounds
generated from crystalline magnets with strong spin-orbit coupling with
tight geometrical arrangements. Several instances of these magnets were
synthesized in the last decade, among which we highlight the Kitaev
materials<span class="citation"
data-cites="Jackeli2009 HerrmannsAnRev2018 Winter2017 TrebstPhysRep2022 Takagi2019"><sup><a
href="#ref-Jackeli2009" role="doc-biblioref">29</a><a
href="#ref-Takagi2019" role="doc-biblioref">33</a></sup></span>. It was
suggested (and later observed) that heavy-ion Mott insulators formed by
edge-sharing octahedra could be good platforms for the celebrated Kitaev
model on the honeycomb lattice<span class="citation"
data-cites="Jackeli2009"><sup><a href="#ref-Jackeli2009"
role="doc-biblioref">29</a></sup></span>, an exactly solvable model
whose ground state is a quantum spin liquid (QSL) <span class="citation"
data-cites="Anderson1973 Knolle2019 Savary2016 Lacroix2011"><sup><a
href="#ref-Anderson1973" role="doc-biblioref">34</a><a
href="#ref-Lacroix2011" role="doc-biblioref">37</a></sup></span>
characterized by a static <span class="math inline">\(\mathbb
Z_2\)</span> gauge field and Majorana fermion excitations<span
class="citation" data-cites="kitaevAnyonsExactlySolved2006"><sup><a
href="#ref-kitaevAnyonsExactlySolved2006"
role="doc-biblioref">38</a></sup></span>. The model displays
bond-dependent Ising-like exchanges that give rise to local symmetries,
which are essential to its mapping onto a free fermion problem<span
class="citation" data-cites="Baskaran2007 Baskaran2008"><sup><a
href="#ref-Baskaran2007" role="doc-biblioref">39</a>,<a
href="#ref-Baskaran2008" role="doc-biblioref">40</a></sup></span>. Such
a mapping is rigorously extendable to any three-coordinated graph in two
or three dimensions satisfying a simple geometrical condition<span
class="citation"
data-cites="Nussinov2009 OBrienPRB2016 yaoExactChiralSpin2007 Peri2020"><sup><a
href="#ref-yaoExactChiralSpin2007" role="doc-biblioref">3</a>,<a
href="#ref-Nussinov2009" role="doc-biblioref">41</a><a
href="#ref-Peri2020" role="doc-biblioref">43</a></sup></span>. Thus, it
reasonable to suppose that the Kitaev model is also analytically
treatable on certain amorphous lattices, therefore becoming a realistic
starting point to study the overlooked possibility of QSLs in amorphous
magnets.</p>
<p>In this letter, we study Kitaev spin liquids (KSLs) stabilized by the
<span class="math inline">\(S=1/2\)</span> Kitaev model<span
class="citation" data-cites="kitaevAnyonsExactlySolved2006"><sup><a
href="#ref-kitaevAnyonsExactlySolved2006"
role="doc-biblioref">38</a></sup></span> on coordination number <span
class="math inline">\(z=3\)</span> random networks generated via Voronoi
tessellation<span class="citation"
data-cites="mitchellAmorphousTopologicalInsulators2018 marsalTopologicalWeaireThorpeModels2020"><sup><a
href="#ref-mitchellAmorphousTopologicalInsulators2018"
role="doc-biblioref">2</a>,<a
href="#ref-marsalTopologicalWeaireThorpeModels2020"
role="doc-biblioref">13</a></sup></span>. On these lattices, the KSLs
generically break time-reversal symmetry (TRS), as expected for any
Majorana QSL in graphs containing odd-sided plaquettes<span
class="citation"
data-cites="Chua2011 ChuaPRB2011 Fiete2012 Natori2016 Wu2009 WangHaoranPRB2021"><sup><a
href="#ref-Chua2011" role="doc-biblioref">44</a><a
href="#ref-WangHaoranPRB2021" role="doc-biblioref">49</a></sup></span>.
An extensive numerical study showed that the <span
class="math inline">\(\mathbb Z_2\)</span> gauge fluxes on the ground
state can be described by a conjecture consistent with Liebs
theorem<span class="citation" data-cites="lieb_flux_1994"><sup><a
href="#ref-lieb_flux_1994" role="doc-biblioref">50</a></sup></span>. In
contrast to the honeycomb case, the amorphous KSLs are gapless only
along certain critical lines. These manifolds separate two gapped KSLs
that are topologically differentiated by a local Chern number <span
class="math inline">\(\nu\)</span><span class="citation"
data-cites="peru_preprint mitchellAmorphousTopologicalInsulators2018"><sup><a
href="#ref-peru_preprint" role="doc-biblioref">1</a>,<a
href="#ref-mitchellAmorphousTopologicalInsulators2018"
role="doc-biblioref">2</a></sup></span> in analogy with the KSLs on the
decorated honeycomb lattice<span class="citation"
data-cites="yaoExactChiralSpin2007"><sup><a
href="#ref-yaoExactChiralSpin2007"
role="doc-biblioref">3</a></sup></span>. The <span
class="math inline">\(\nu=0\)</span> phase is the amorphous analogue of
the abelian toric-code QSL<span class="citation"
data-cites="kitaev_fault-tolerant_2003"><sup><a
href="#ref-kitaev_fault-tolerant_2003"
role="doc-biblioref">4</a></sup></span>, whereas the <span
class="math inline">\(\nu=\pm1\)</span> KSLs is a non-Abelian chiral
spin liquid (CSL). We study two specific features of the latter liquid:
topologically protected edge states and a thermal-induced Anderson
transition to a thermal metal phase<span class="citation"
data-cites="selfThermallyInducedMetallic2019"><sup><a
href="#ref-selfThermallyInducedMetallic2019"
role="doc-biblioref">5</a></sup></span>.</p>
<p>Once the three-edge colouring has been found, the Kitaev Hamiltonian
is mapped onto eqn. <a href="#eqn:majorana_hamiltonian"
data-reference-type="ref"
data-reference="eqn:majorana_hamiltonian">[eqn:majorana_hamiltonian]</a>,
which corresponds to the spin fractionalization in terms of a static
<span class="math inline">\(\mathbb Z_2\)</span> gauge fields and <span
class="math inline">\(c\)</span> matter as indicated in  <a
href="#fig:example_lattice" data-reference-type="ref"
data-reference="fig:example_lattice">[fig:example_lattice]</a>(b)<span
class="citation" data-cites="Baskaran2007"><sup><a
href="#ref-Baskaran2007" role="doc-biblioref">39</a></sup></span>.</p>
<p>Strictly speaking, the Majorana system is equivalent to the original
spin system after applying a projector operator<span class="citation"
data-cites="pedrocchiPhysicalSolutionsKitaev2011 Zschocke_Physical_states2015 selfThermallyInducedMetallic2019"><sup><a
href="#ref-selfThermallyInducedMetallic2019"
role="doc-biblioref">5</a>,<a
href="#ref-pedrocchiPhysicalSolutionsKitaev2011"
role="doc-biblioref">51</a>,<a href="#ref-Zschocke_Physical_states2015"
role="doc-biblioref">52</a></sup></span>, whose form is presented in <a
href="#apx:projector" data-reference-type="ref"
data-reference="apx:projector">4</a>.</p>
<p>Despite this caveat, one can still use eqn. <a
href="#eqn:majorana_hamiltonian" data-reference-type="ref"
data-reference="eqn:majorana_hamiltonian">[eqn:majorana_hamiltonian]</a>
to evaluate the expectation values of operators conserving <span
class="math inline">\(\hat u_{jk}\)</span> in the thermodynamic
limit<span class="citation"
data-cites="Yao2009 knolle_dynamics_2016"><sup><a href="#ref-Yao2009"
role="doc-biblioref">53</a>,<a href="#ref-knolle_dynamics_2016"
role="doc-biblioref">54</a></sup></span>. This type of operator is
exemplified by the Hamiltonian itself, for which the ground state energy
of a fixed sector is the sum of the negative eigenvalues of <span
class="math inline">\(iA/4\)</span> in eqn. <a
href="#eqn:majorana_hamiltonian" data-reference-type="ref"
data-reference="eqn:majorana_hamiltonian">[eqn:majorana_hamiltonian]</a>,
and whose excitations are extracted from the positive eigenvalues of the
same matrix.</p>
<h2 id="fluxes-and-the-ground-state">Fluxes and the Ground State</h2>
<p>Let us now consider the conserved operators <span
class="math inline">\(W_p = \prod
\sigma_j^{\alpha}\sigma_k^{\alpha}\)</span> on amorphous lattices. When
represented in the Majorana Hilbert space, these operators correspond to
ordered products of <span class="math inline">\(\hat u_{jk}\)</span>,
and their fixed eigenvalues are written as <span
class="math display">\[\label{eqn:flux_definition}
\phi_p = \prod_{(j,k) \in \partial p} (-iu_{jk}),\]</span> where the
pairs <span class="math inline">\(j,k\)</span> are crossed around the
border <span class="math inline">\(\partial p\)</span> of the plaquette
on the <em>clockwise</em> orientation.</p>
<p>In periodic boundaries there is an additional pair of global <span
class="math inline">\(\mathbb{Z}_2\)</span> fluxes <span
class="math inline">\(\Phi_x\)</span> and <span
class="math inline">\(\Phi_y\)</span>, which are calculated along an
arbitrary closed path that wraps the torus in the <span
class="math inline">\(x\)</span> and <span
class="math inline">\(y\)</span> directions respectively. The energy
difference between distinct flux sectors decays exponentially with
system size, so that the ground state of any flux sector in the
thermodynamic limit displays a <strong>fourfold</strong> topological
degeneracy<span class="citation"
data-cites="kitaev_fault-tolerant_2003"><sup><a
href="#ref-kitaev_fault-tolerant_2003"
role="doc-biblioref">4</a></sup></span>.</p>
<h2 id="zero-temperature-phase-diagram">Zero Temperature Phase
Diagram</h2>
<p>We numerically found that the amorphous KSLs are generally gapped,
except along the critical lines displayed.</p>
<p>We believe that the <span class="math inline">\(A_x, A_y,
A_z\)</span> phases remain Abelian as they are in the Kitaev model while
the <span class="math inline">\(B\)</span> phase is non-Abelian. The B
phase corresponds to the same extended kitaev honeycomb model.</p>
<h3 id="chern-number-and-edge-modes">Chern Number and Edge Modes</h3>
<p>The QSLs separated by these lines are distinguished by a real-space
analogue of the Chern number<span class="citation"
data-cites="bianco_mapping_2011 Hastings_Almost_2010"><sup><a
href="#ref-bianco_mapping_2011" role="doc-biblioref">55</a>,<a
href="#ref-Hastings_Almost_2010"
role="doc-biblioref">56</a></sup></span>. A similar topological number
was discussed by Kitaev on the honeycomb lattice<span class="citation"
data-cites="kitaevAnyonsExactlySolved2006"><sup><a
href="#ref-kitaevAnyonsExactlySolved2006"
role="doc-biblioref">38</a></sup></span> that we shall use here with a
slight modification<span class="citation"
data-cites="peru_preprint mitchellAmorphousTopologicalInsulators2018"><sup><a
href="#ref-peru_preprint" role="doc-biblioref">1</a>,<a
href="#ref-mitchellAmorphousTopologicalInsulators2018"
role="doc-biblioref">2</a></sup></span>. For a choice of flux sector, we
calculate the projector <span class="math inline">\(P\)</span> onto the
negative energy eigenstates of the matrix <span
class="math inline">\(iA\)</span> defined in eqn. <a
href="#eqn:majorana_hamiltonian" data-reference-type="ref"
data-reference="eqn:majorana_hamiltonian">[eqn:majorana_hamiltonian]</a>.
The local Chern number around a point <span
class="math inline">\(\textbf{R}\)</span> in the bulk is given by <span
class="math display">\[\begin{aligned}
\nu (\textbf{R}) = 4\pi \Im \mathrm{Tr}_{\mathrm{Bulk}}
\left (
P\theta_{R_x} P \theta_{R_y} P
\right ),\end{aligned}\]</span> where <span
class="math inline">\(\theta_{R_x}\)</span> is a step function in the
<span class="math inline">\(x\)</span>-direction, with the step located
at <span class="math inline">\(x = R_x\)</span>, <span
class="math inline">\(\theta_{R_y}\)</span> is defined analogously. The
trace is taken over a region around <span
class="math inline">\(\textbf{R}\)</span> in the bulk of the material,
where care must be taken not to include any points close to the edges.
Provided that the point <span class="math inline">\(\textbf{R}\)</span>
is sufficiently far from the edges, this quantity will be very close to
quantised to the Chern number.</p>
<p>The local Chern marker distinguishes between an Abelian phase (A)
with <span class="math inline">\(\nu = 0\)</span>, and a non-Abelian (B)
phase characterized by <span class="math inline">\(\nu = \pm 1\)</span>.
The (A) phase is equivalent to the toric code on an amorphous
system<span class="citation"
data-cites="kitaev_fault-tolerant_2003"><sup><a
href="#ref-kitaev_fault-tolerant_2003"
role="doc-biblioref">4</a></sup></span>.</p>
<p>Since the (A) phase displays the "topological" degeneracy described
above, I think that "topologically trivial" is not a good term to
describe it. Another thing that I think it should be considered here.
The abelian phase is expected to have 2x4 degeneracy, where the factor
of 2 comes from time-reversal. On the other hand, the non-Abelian phase
should display 2x3 degeneracy, as discussed by<span class="citation"
data-cites="yaoExactChiralSpin2007"><sup><a
href="#ref-yaoExactChiralSpin2007"
role="doc-biblioref">3</a></sup></span>. Did you get any evidence of
this?</p>
<p>By contrast, the (B) phase is a <em>chiral spin liquid</em>, the
magnetic analogue of the fractional quantum Hall state. Topologically
protected edge modes are predicted to occur in these states on periodic
boundary conditions following the bulk-boundary correspondence<span
class="citation" data-cites="qi_general_2006"><sup><a
href="#ref-qi_general_2006" role="doc-biblioref">57</a></sup></span>.
The probability density of one such edge mode is given in <a
href="#fig:edge_modes" data-reference-type="ref"
data-reference="fig:edge_modes">1</a> (a), where it is shown to be
exponentially localised to the boundary of the system. The localization
of these modes can be quantified by their inverse participation ratio
(IPR), <span class="math display">\[\mathrm{IPR} = \int
d^2r|\psi(\mathbf{r})|^4 \propto L^{-\tau},\]</span> where <span
class="math inline">\(L\sim\sqrt{N}\)</span> is the characteristic
linear dimension of the amorphous lattices and <span
class="math inline">\(\tau\)</span> dimensional scaling exponent of
IPR.</p>
<p>Finally, the CSL density of states in open boundary conditions
indicates the low-energy modes within the gap of Majorana bands in <a
href="#fig:edge_modes" data-reference-type="ref"
data-reference="fig:edge_modes">1</a> (b).</p>
<p>The phase diagram of the amorphous model in <a
href="#fig:example_lattice" data-reference-type="ref"
data-reference="fig:example_lattice">[fig:example_lattice]</a>(c)
displays a reduced parameter space for the non-Abelian phase when
compared to the honeycomb model. Interestingly, similar inward
deformations of the critical lines were found on the Kitaev honeycomb
model subject to disorder by proliferating flux vortices<span
class="citation" data-cites="Nasu_Thermal_2015"><sup><a
href="#ref-Nasu_Thermal_2015" role="doc-biblioref">58</a></sup></span>
or exchange disorder<span class="citation"
data-cites="knolle_dynamics_2016"><sup><a
href="#ref-knolle_dynamics_2016"
role="doc-biblioref">54</a></sup></span>.</p>
<h2 id="anderson-transition-to-a-thermal-metal">Anderson Transition to a
Thermal Metal</h2>
<p>An Ising non-Abelian anyon is formed by Majorana zero-modes bound to
a topological defect<span class="citation"
data-cites="Beenakker2013"><sup><a href="#ref-Beenakker2013"
role="doc-biblioref">59</a></sup></span>. Interactions between anyons
are modeled by pairwise projectors whose strength absolute value decays
exponentially with the separation between the particles, and whose sign
oscillates in analogy to RKKY exchanges<span class="citation"
data-cites="Laumann2012 Lahtinen_2011 lahtinenTopologicalLiquidNucleation2012"><sup><a
href="#ref-Laumann2012" role="doc-biblioref">60</a><a
href="#ref-lahtinenTopologicalLiquidNucleation2012"
role="doc-biblioref">62</a></sup></span>. Disorder can induce a finite
density of anyons whose hybridization lead to a macroscopically
degenerate state known as <em>thermal metal</em><span class="citation"
data-cites="Laumann2012"><sup><a href="#ref-Laumann2012"
role="doc-biblioref">60</a></sup></span>. One instance of this phase can
be settled on the Kitaev CSL. In this case, the topological defects
correspond to the <span class="math inline">\(W_p \neq +1\)</span>
fluxes, which naturally emerge from thermal fluctuations at nonzero
temperature<span class="citation"
data-cites="selfThermallyInducedMetallic2019"><sup><a
href="#ref-selfThermallyInducedMetallic2019"
role="doc-biblioref">5</a></sup></span>.</p>
<p>We demonstrated that the amorphous CSL undergoes the same form of
Anderson transition by studying its properties as a function of
disorder. Unfortunately, we could not perform a complete study of its
properties as a function of the temperature as it was not feasible to
evaluate an ever-present boundary condition dependent factor<span
class="citation"
data-cites="pedrocchiPhysicalSolutionsKitaev2011 Zschocke_Physical_states2015"><sup><a
href="#ref-pedrocchiPhysicalSolutionsKitaev2011"
role="doc-biblioref">51</a>,<a href="#ref-Zschocke_Physical_states2015"
role="doc-biblioref">52</a></sup></span> for random networks. Instead,
we evaluated the fermionic density of states (DOS) and the IPR as a
function of the vortex density <span class="math inline">\(\rho\)</span>
as a proxy for temperature. This approximation is exact in the limits
<span class="math inline">\(T = 0\)</span> (corresponding to <span
class="math inline">\(\rho = 0\)</span>) and <span
class="math inline">\(T \to \infty\)</span> (corresponding to <span
class="math inline">\(\rho = 0.5\)</span>). At intermediate temperatures
the method neglects to include the influence of defect-defect
correlations.</p>
<p>However, such an approximation is enough to show the onset of
low-energy excitations for <span class="math inline">\(\rho \sim
10^{-2}-10^{-1}\)</span>, as displayed on the top graphic of <a
href="#fig:DOS_Oscillations" data-reference-type="ref"
data-reference="fig:DOS_Oscillations">[fig:DOS_Oscillations]</a>(a). We
characterized these gapless excitations using the dimensional scaling
exponential <span class="math inline">\(\tau\)</span> of the IPR on the
bottom graphic of the same figure. At small <span
class="math inline">\(\rho\)</span>, the states populating the gap
possess <span class="math inline">\(\tau\approx0\)</span>, indicating
that they are localised states pinned to the defects, and the system
remains insulating. At large <span class="math inline">\(\rho\)</span>,
the in-gap states merge with the bulk band and become extensive, closing
the gap, and the system transitions to a metallic phase.</p>
<p>The thermal metal DOS displays a logarithmic divergence at zero
energy and characteristic oscillations at small energies.<span
class="citation"
data-cites="bocquet_disordered_2000 selfThermallyInducedMetallic2019"><sup><a
href="#ref-selfThermallyInducedMetallic2019"
role="doc-biblioref">5</a>,<a href="#ref-bocquet_disordered_2000"
role="doc-biblioref">63</a></sup></span>. These features were indeed
observed by the averaged density of states in the <span
class="math inline">\(\rho = 0.5\)</span> case shown in <a
href="#fig:DOS_Oscillations" data-reference-type="ref"
data-reference="fig:DOS_Oscillations">[fig:DOS_Oscillations]</a>(b) for
amorphous lattice. We emphasize that the CSL studied here emerges
without an applied magnetic field as opposed to the CSL on the honeycomb
lattice studied in Ref.<span class="citation"
data-cites="selfThermallyInducedMetallic2019"><sup><a
href="#ref-selfThermallyInducedMetallic2019"
role="doc-biblioref">5</a></sup></span> I have the impression that <a
href="#fig:DOS_Oscillations" data-reference-type="ref"
data-reference="fig:DOS_Oscillations">[fig:DOS_Oscillations]</a>(b) on
the top is very similar to Fig. 3 of<span class="citation"
data-cites="selfThermallyInducedMetallic2019"><sup><a
href="#ref-selfThermallyInducedMetallic2019"
role="doc-biblioref">5</a></sup></span>. Maybe a more instructive figure
would be the DOS of the amorphous toric code at the infinite temperature
limit. In this case, the lack of non-Abelian anyons would be reflected
by a gap on the DOS, which would contrast nicely to the thermal metal
phase</p>
<h2 id="discussion-and-conclusions">Discussion and Conclusions</h2>
<p>We have studied an extension of the Kitaev honeycomb model to
amorphous lattices with coordination number <span
class="math inline">\(z= 3\)</span>. We found that it is able to support
two quantum spin liquid phases that can be distinguished using a
real-space generalisation of the Chern number. The presence of odd-sided
plaquettes on these lattices let to a spontaneous breaking of time
reversal symmetry, leading to the emergence of a chiral spin liquid
phase. Furthermore we found evidence that the amorphous system undergoes
an Anderson transition to a thermal metal phase, driven by the
proliferation of vortices with increasing temperature. The next step is
to search for an experimental realisation in amorphous Kitaev materials,
which can be created from crystalline ones using several methods<span
class="citation"
data-cites="Weaire1976 Petrakovski1981 Kaneyoshi2018"><sup><a
href="#ref-Weaire1976" role="doc-biblioref">8</a>,<a
href="#ref-Petrakovski1981" role="doc-biblioref">23</a>,<a
href="#ref-Kaneyoshi2018" role="doc-biblioref">25</a></sup></span>.</p>
<p>Following the evidence for an induced chiral spin liquid phase in
crystalline Kitaev materials<span class="citation"
data-cites="Kasahara2018 Yokoi2021 Yamashita2020 Bruin2022"><sup><a
href="#ref-Kasahara2018" role="doc-biblioref">64</a><a
href="#ref-Bruin2022" role="doc-biblioref">67</a></sup></span>, it would
be interesting to investigate if a similar state is produced on its
amorphous counterpart. Besides the usual half-quantized signature on
thermal Hall effect<span class="citation"
data-cites="Kasahara2018 Yokoi2021 Yamashita2020 Bruin2022"><sup><a
href="#ref-Kasahara2018" role="doc-biblioref">64</a><a
href="#ref-Bruin2022" role="doc-biblioref">67</a></sup></span>, such a
CSL could be also characterized using local probes such as
spin-polarized scanning-tunneling microscopy<span class="citation"
data-cites="Feldmeier2020 Konig2020 Udagawa2021"><sup><a
href="#ref-Feldmeier2020" role="doc-biblioref">68</a><a
href="#ref-Udagawa2021" role="doc-biblioref">70</a></sup></span>. The
same probes would also be useful to manipulate non-Abelian anyons<span
class="citation" data-cites="Pereira2020"><sup><a
href="#ref-Pereira2020" role="doc-biblioref">71</a></sup></span>,
thereby implementing elementary operations for topological quantum
computation. Finally, the thermal metal phase can be diagnosed using
bulk heat transport measurements<span class="citation"
data-cites="Beenakker2013"><sup><a href="#ref-Beenakker2013"
role="doc-biblioref">59</a></sup></span>.</p>
<p>This work can be generalized in several ways. Introduction of
symmetry allowed perturbations on the model<span class="citation"
data-cites="Rau2014 Chaloupka2010 Chaloupka2013 Chaloupka2015 Winter2016"><sup><a
href="#ref-Rau2014" role="doc-biblioref">72</a><a
href="#ref-Winter2016" role="doc-biblioref">76</a></sup></span>.
Generalizations to higher-spin models in random networks with different
coordination numbers<span class="citation"
data-cites="Baskaran2008 Yao2009 Nussinov2009 Yao2011 Chua2011 Natori2020 Chulliparambil2020 Chulliparambil2021 Seifert2020 WangHaoranPRB2021 Wu2009"><sup><a
href="#ref-Baskaran2008" role="doc-biblioref">40</a>,<a
href="#ref-Nussinov2009" role="doc-biblioref">41</a>,<a
href="#ref-Chua2011" role="doc-biblioref">44</a>,<a href="#ref-Wu2009"
role="doc-biblioref">48</a>,<a href="#ref-WangHaoranPRB2021"
role="doc-biblioref">49</a>,<a href="#ref-Yao2009"
role="doc-biblioref">53</a>,<a href="#ref-Yao2011"
role="doc-biblioref">77</a><a href="#ref-Seifert2020"
role="doc-biblioref">81</a></sup></span></p>
<p>Probably one way to make this theory experimentally relevant is to do
experiments on amorphous phases of Kitaev materials. These phases can be
obtained by liquifying the material and cooling it fast. Apparently,
most of crystalline magnets can be transformed into amorphous ones
through this process.</p>
<h1 id="apx:ground_state">Numerical Evidence for the Ground State Flux
Sector</h1>
<p>In this section we detail the numerical evidence collected to support
the claim that, for an arbitrary lattice, a gapped ground state flux
sector is found by setting the flux through each plaquette to <span
class="math inline">\(\phi_{\mathrm{g.s.}} = -(\pm
i)^{n_{\mathrm{sides}}}\)</span>. This was done by generating a large
number (<span class="math inline">\(\sim\)</span> 25,000) of lattices
and exhaustively checking every possible flux sector to find the
configuration with the lowest energy. We checked both the isotropic
point (<span class="math inline">\(J^\alpha = 1\)</span>), as well as in
the toric code phase (<span class="math inline">\(J^x = J^y = 0.25, J^z
= 1\)</span>).</p>
<p>The argument has one complication: for a graph with <span
class="math inline">\(n_p\)</span> plaquettes, there are <span
class="math inline">\(2^{n_p - 1}\)</span> distinct flux sectors to
search over, with an added factor of 4 when the global fluxes <span
class="math inline">\(\Phi_x\)</span> and <span
class="math inline">\(\Phi_y\)</span> are taken into account. Note that
the <span class="math inline">\(-1\)</span> appears in this counting
because fluxes can only be flipped in pairs. To be able to search over
the entire flux space, one is necessarily restricted to looking at small
system sizes we were able to check all flux sectors for systems with
<span class="math inline">\(n_p \leq 16\)</span> in a reasonable amount
of time. However, at such small system size we find that finite size
effects are substantial enough to destroy our results. In order to
overcome these effects we tile the system and use Blochs theorem (a
trick that we shall refer to as <em>twist-averaging</em> for reasons
that shall become clear) to efficiently find the energy of a much larger
(but periodic) lattice. Thus we are able to suppress finite size
effects, at the expense of losing long-range disorder in the
lattice.</p>
<p>Our argument has three parts: First we shall detail the techniques
used to exhaustively search the flux space for a given lattice. Next, we
discuss finite-size effects and explain the way that our methods are
modified by the twist-averaging procedure. Finally, we demonstrate that
as the size of the disordered system is increased, the effect of
twist-averaging becomes negligible suggesting that our conclusions
still apply in the case of large disordered lattices.</p>
<p><em>Testing All Flux Sectors —</em> For a given lattice and flux
sector, defined by <span class="math inline">\(\{ u_{jk}\}\)</span>, the
fermionic ground state energy is calculated by taking the sum of the
negative eigenvalues of the matrix <span
class="math display">\[\begin{aligned}
M_{jk} = \frac{i}{2} J^{\alpha} u_{jk}.\end{aligned}\]</span> The
set of bond variables <span class="math inline">\(u_{jk}\)</span>, which
we are free to choose, determine the <span class="math inline">\(\mathbb
Z_2\)</span> gauge field. However only the fluxes, defined for each
plaquette according to eqn. <a href="#eqn:flux_definition"
data-reference-type="ref"
data-reference="eqn:flux_definition">[eqn:flux_definition]</a>, have any
effect on the energies. Thus, there is enormous degeneracy in the <span
class="math inline">\(u_{jk}\)</span> degrees of freedom. Flipping the
bonds along any closed loop on the dual lattice has no effect on the
fluxes, since each plaquette has had an even number of its constituent
bonds flipped - as is shown in the following diagram:</p>
<div class="center">
</div>
<p>where the flipped bonds are shown in red. In order to explore every
possible flux sector using the <span
class="math inline">\(u_{jk}\)</span> variables, we restrict ourselves
to change only a subset of the bonds in the system. In particular, we
construct a spanning tree on the dual lattice, which passes through
every plaquette in the system, but contains no loops.</p>
<div class="center">
</div>
<p>The tree contains <span class="math inline">\(n_p - 1\)</span> edges,
shown in red, whose configuration space has a <span
class="math inline">\(1:1\)</span> mapping onto the <span
class="math inline">\(2^{n_p - 1}\)</span> distinct flux sectors. Each
flux sector can be created in precisely one way by flipping edges only
on the tree (provided all other bond variables not on the tree remain
fixed). Thus, all possible flux sectors can be accessed by iterating
over all configurations of edges on this spanning tree.</p>
<p><em>Finite Size Effects —</em> In our numerical investigation, the
objective was to test as many example lattices as possible. We aim for
the largest lattice size that could be efficiently solved, requiring a
balance between lattice size and cases tested. Each added plaquette
doubles the number of flux sectors that must be checked. 25,000 lattices
containing 16 plaquettes were used. However, in his numerical
investigation of the honeycomb model, Kitaev demonstrated that finite
size effects persist up to much larger lattice sizes than we were able
to access<span class="citation"
data-cites="kitaevAnyonsExactlySolved2006"><sup><a
href="#ref-kitaevAnyonsExactlySolved2006"
role="doc-biblioref">38</a></sup></span>.</p>
<p>In order to circumvent this problem, we treat the 16-plaquette
amorphous lattice as a unit cell in an arbitrarily large periodic
system. The bonds that originally connected across the periodic
boundaries now connect adjacent unit cells. This infinite periodic
Hamiltonian can then be solved using Blochs theorem, since the larger
system is diagonalised by a plane wave ansatz. For a given crystal
momentum <span class="math inline">\(\textbf{q} \in [0,2\pi)^2\)</span>,
we are left with a Bloch Hamiltonian, which is identical to the original
Hamiltonian aside from an extra phase on edges that cross the periodic
boundaries in the <span class="math inline">\(x\)</span> and <span
class="math inline">\(y\)</span> directions, <span
class="math display">\[\begin{aligned}
M_{jk}(\textbf{q}) = \frac{i}{2} J^{\alpha} u_{jk} e^{i
q_{jk}},\end{aligned}\]</span> where <span class="math inline">\(q_{jk}
= q_x\)</span> for a bond that crosses the <span
class="math inline">\(x\)</span>-periodic boundary in the positive
direction, with the analogous definition for <span
class="math inline">\(y\)</span>-crossing bonds. We also have <span
class="math inline">\(q_{jk} = -q_{kj}\)</span>. Finally <span
class="math inline">\(q_{jk} = 0\)</span> if the edge does not cross any
boundaries at all in essence we are imposing twisted boundary
conditions on our system. The total energy of the tiled system can be
calculated by summing the energy of <span class="math inline">\(M(
\textbf{q})\)</span> for every value of <span
class="math inline">\(\textbf{q}\)</span>. In practice we constructed a
lattice of <span class="math inline">\(50 \times 50\)</span> values of
<span class="math inline">\(\textbf{q}\)</span> spanning the Brillouin
zone. The procedure is called twist averaging because the
energy-per-unit cell is equivalent to the average energy over the full
range of twisted boundary conditions.</p>
<p><em>Evidence for the Ground State Ansatz —</em> For each lattice with
16 plaquettes, <span class="math inline">\(2^{15} =\)</span> 32,768 flux
sectors are generated. In each case we find the energy (averaged over
all twist values) and the size of the fermion gap, which is defined as
the lowest energy excitation for any value of $ }$. We then check if the
lowest energy flux sector aligns with our ansatz (eqn. <a
href="#eqn:gnd_flux" data-reference-type="ref"
data-reference="eqn:gnd_flux">[eqn:gnd_flux]</a>) and whether this flux
sector is gapped.</p>
<p>In the isotropic case (<span class="math inline">\(J^\alpha =
1\)</span>), all 25,000 examples conformed to our guess for the ground
state flux sector. A tiny minority (<span class="math inline">\(\sim
10\)</span>) of the systems were found to be gapless. As we shall see
shortly, the proportion of gapless systems vanishes as we increase the
size of the amorphous lattice. An example of the energies and gaps for
one of the systems tested is shown in fig. <a
href="#fig:energy_gaps_example" data-reference-type="ref"
data-reference="fig:energy_gaps_example">[fig:energy_gaps_example]</a>.
For the anisotropic phase (we used <span class="math inline">\(J^x, J^y
= 0.25, J^z = 1\)</span>) the overwhelming majority of cases adhered to
our ansatz, however a small minority (<span class="math inline">\(\sim
0.5 \%\)</span>) did not. In these cases, however, the energy difference
between our ansatz and the ground state was at most of order <span
class="math inline">\(10^{-6}\)</span>. Further investigation would need
to be undertaken to determine whether these anomalous systems are a
finite size effect due to the small amorphous system sizes used or a
genuine feature of the toric code phase on such lattices.</p>
<p><em>A Gapped Ground State —</em> Now that we have collected
sufficient evidence to support our guess for the ground state flux
sector, we turn our attention to checking that this sector is gapped. We
no longer need to exhaustively search over flux space for the ground
state, so it is possible to go to much larger system size. We generate
40 sets of systems with plaquette numbers ranging from 9 to 1600. For
each system size, 1000 distinct lattices are generated and the energy
and gap size are calculated without phase twisting, since the effect is
negligible for such large system sizes. As can be seen, for very small
system size a small minority of gapless systems appear, however beyond
around 20 plaquettes all systems had a stable fermion gap in the ground
state.</p>
<div id="refs" class="references csl-bib-body" data-line-spacing="2"
role="doc-bibliography">
<div id="ref-peru_preprint" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">1. </div><div
class="csl-right-inline">dOrnellas, P., Barnett, R. &amp; Lee, D. K. K.
Quantised bulk conductivity as a local chern marker. <em>arXiv
preprint</em> (2022) doi:<a
href="https://doi.org/10.48550/ARXIV.2207.01389">10.48550/ARXIV.2207.01389</a>.</div>
</div>
<div id="ref-mitchellAmorphousTopologicalInsulators2018"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">2. </div><div
class="csl-right-inline">Mitchell, N. P., Nash, L. M., Hexner, D.,
Turner, A. M. &amp; Irvine, W. T. M. <a
href="https://doi.org/10.1038/s41567-017-0024-5">Amorphous topological
insulators constructed from random point sets</a>. <em>Nature Phys</em>
<strong>14</strong>, 380385 (2018).</div>
</div>
<div id="ref-yaoExactChiralSpin2007" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">3. </div><div class="csl-right-inline">Yao,
H. &amp; Kivelson, S. A. <a
href="https://doi.org/10.1103/PhysRevLett.99.247203">An exact chiral
spin liquid with non-<span>Abelian</span> anyons</a>. <em>Phys. Rev.
Lett.</em> <strong>99</strong>, 247203 (2007).</div>
</div>
<div id="ref-kitaev_fault-tolerant_2003" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">4. </div><div
class="csl-right-inline">Kitaev, A. Y. <a
href="https://doi.org/10.1016/S0003-4916(02)00018-0">Fault-tolerant
quantum computation by anyons</a>. <em>Annals of Physics</em>
<strong>303</strong>, 230 (2003).</div>
</div>
<div id="ref-selfThermallyInducedMetallic2019" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">5. </div><div
class="csl-right-inline">Self, C. N., Knolle, J., Iblisdir, S. &amp;
Pachos, J. K. <a
href="https://doi.org/10.1103/PhysRevB.99.045142">Thermally induced
metallic phase in a gapped quantum spin liquid: <span>Monte</span> carlo
study of the kitaev model with parity projection</a>. <em>Phys. Rev.
B</em> <strong>99</strong>, 045142 (2019-01-25, 2019).</div>
</div>
<div id="ref-Yonezawa1983" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">6. </div><div
class="csl-right-inline"><em>Topological disorder in condensed
matter</em>. vol. 46 (<span>Springer-Verlag</span>, 1983).</div>
</div>
<div id="ref-zallen2008physics" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">7. </div><div
class="csl-right-inline">Zallen, R. <em>The physics of amorphous
solids</em>. (<span>John Wiley &amp; Sons</span>, 2008).</div>
</div>
<div id="ref-Weaire1976" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">8. </div><div
class="csl-right-inline">Weaire, D. &amp; Thorpe, M. F. <a
href="https://doi.org/10.1080/00107517608210851">The structure of
amorphous solids</a>. <em>Contemporary Physics</em> <strong>17</strong>,
173191 (1976).</div>
</div>
<div id="ref-gaskell1979structure" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">9. </div><div
class="csl-right-inline">Gaskell, P. On the structure of simple
inorganic amorphous solids. <em>Journal of Physics C: Solid State
Physics</em> <strong>12</strong>, 4337 (1979).</div>
</div>
<div id="ref-Weaire1971" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">10. </div><div
class="csl-right-inline">Weaire, D. &amp; Thorpe, M. F. <a
href="https://doi.org/10.1103/PhysRevB.4.2508">Electronic properties of
an amorphous solid. <span>I</span>. <span>A</span> simple tight-binding
theory</a>. <em>Phys. Rev. B</em> <strong>4</strong>, 25082520
(1971).</div>
</div>
<div id="ref-betteridge1973possible" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">11. </div><div
class="csl-right-inline">Betteridge, G. A possible model of amorphous
silicon and germanium. <em>Journal of Physics C: Solid State
Physics</em> <strong>6</strong>, L427 (1973).</div>
</div>
<div id="ref-agarwala2019topological" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">12. </div><div
class="csl-right-inline">Agarwala, A. Topological insulators in
amorphous systems. in <em>Excursions in ill-condensed quantum
matter</em> 6179 (<span>Springer</span>, 2019).</div>
</div>
<div id="ref-marsalTopologicalWeaireThorpeModels2020" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">13. </div><div
class="csl-right-inline">Marsal, Q., Varjas, D. &amp; Grushin, A. G. <a
href="https://doi.org/10.1073/pnas.2007384117">Topological
<span>Weaire-Thorpe</span> models of amorphous matter</a>. <em>Proc.
Natl. Acad. Sci. U.S.A.</em> <strong>117</strong>, 3026030265
(2020).</div>
</div>
<div id="ref-costa2019toward" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">14. </div><div
class="csl-right-inline">Costa, M., Schleder, G. R., Buongiorno
Nardelli, M., Lewenkopf, C. &amp; Fazzio, A. Toward realistic amorphous
topological insulators. <em>Nano letters</em> <strong>19</strong>,
89418946 (2019).</div>
</div>
<div id="ref-agarwala2020higher" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">15. </div><div
class="csl-right-inline">Agarwala, A., Juričić, V. &amp; Roy, B.
Higher-order topological insulators in amorphous solids. <em>Physical
Review Research</em> <strong>2</strong>, 012067 (2020).</div>
</div>
<div id="ref-spring2021amorphous" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">16. </div><div
class="csl-right-inline">Spring, H., Akhmerov, A. &amp; Varjas, D.
Amorphous topological phases protected by continuous rotation symmetry.
<em>SciPost Physics</em> <strong>11</strong>, 022 (2021).</div>
</div>
<div id="ref-corbae2019evidence" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">17. </div><div
class="csl-right-inline">Corbae, P. <em>et al.</em> Evidence for
topological surface states in amorphous <span>Bi</span> _ {2}
<span>Se</span> _ {3}. <em>arXiv preprint arXiv:1910.13412</em>
(2019).</div>
</div>
<div id="ref-buckel1954einfluss" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">18. </div><div
class="csl-right-inline">Buckel, W. &amp; Hilsch, R. Einfluß der
kondensation bei tiefen temperaturen auf den elektrischen widerstand und
die supraleitung für verschiedene metalle. <em>Zeitschrift für
Physik</em> <strong>138</strong>, 109120 (1954).</div>
</div>
<div id="ref-mcmillan1981electron" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">19. </div><div
class="csl-right-inline">McMillan, W. &amp; Mochel, J. Electron
tunneling experiments on amorphous ge 1- x au x. <em>Physical Review
Letters</em> <strong>46</strong>, 556 (1981).</div>
</div>
<div id="ref-bergmann1976amorphous" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">20. </div><div
class="csl-right-inline">Bergmann, G. Amorphous metals and their
superconductivity. <em>Physics Reports</em> <strong>27</strong>, 159185
(1976).</div>
</div>
<div id="ref-kim2022fractionalization" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">21. </div><div
class="csl-right-inline">Kim, S., Agarwala, A. &amp; Chowdhury, D.
Fractionalization and topology in amorphous electronic solids. <em>arXiv
preprint arXiv:2205.11523</em> (2022).</div>
</div>
<div id="ref-aharony1975critical" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">22. </div><div
class="csl-right-inline">Aharony, A. Critical behavior of amorphous
magnets. <em>Physical Review B</em> <strong>12</strong>, 1038
(1975).</div>
</div>
<div id="ref-Petrakovski1981" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">23. </div><div
class="csl-right-inline">Petrakovskiı̆, G. A. <a
href="https://doi.org/10.1070/pu1981v024n06abeh004850">Amorphous
magnetic materials</a>. <em>Soviet Physics Uspekhi</em>
<strong>24</strong>, 511525 (1981).</div>
</div>
<div id="ref-kaneyoshi1992introduction" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">24. </div><div
class="csl-right-inline">Kaneyoshi, T. <em>Introduction to amorphous
magnets</em>. (<span>World Scientific Publishing Company</span>,
1992).</div>
</div>
<div id="ref-Kaneyoshi2018" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">25. </div><div
class="csl-right-inline"><em>Amorphous magnetism</em>. (<span>CRC
Press</span>, 2018).</div>
</div>
<div id="ref-fahnle1984monte" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">26. </div><div
class="csl-right-inline">Fähnle, M. Monte <span>Carlo</span> study of
phase transitions in bond-and site-disordered <span>Ising</span> and
classical <span>Heisenberg</span> ferromagnets. <em>Journal of magnetism
and magnetic materials</em> <strong>45</strong>, 279287 (1984).</div>
</div>
<div id="ref-plascak2000ising" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">27. </div><div
class="csl-right-inline">Plascak, J., Zamora, L. E. &amp; Alcazar, G. P.
Ising model for disordered ferromagnetic <span>Fe- Al</span> alloys.
<em>Physical Review B</em> <strong>61</strong>, 3188 (2000).</div>
</div>
<div id="ref-coey1978amorphous" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">28. </div><div
class="csl-right-inline">Coey, J. Amorphous magnetic order. <em>Journal
of Applied Physics</em> <strong>49</strong>, 16461652 (1978).</div>
</div>
<div id="ref-Jackeli2009" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">29. </div><div
class="csl-right-inline">Jackeli, G. &amp; Khaliullin, G. <a
href="https://doi.org/10.1103/PhysRevLett.102.017205">Mott insulators in
the strong spin-orbit coupling limit: From <span>Heisenberg</span> to a
quantum compass and <span>Kitaev</span> models</a>. <em>Physical Review
Letters</em> <strong>102</strong>, 017205 (2009).</div>
</div>
<div id="ref-HerrmannsAnRev2018" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">30. </div><div
class="csl-right-inline">Hermanns, M., Kimchi, I. &amp; Knolle, J. <a
href="https://doi.org/10.1146/annurev-conmatphys-033117-053934">Physics
of the kitaev model: <span>Fractionalization</span>, dynamic
correlations, and material connections</a>. <em>Annual Review of
Condensed Matter Physics</em> <strong>9</strong>, 1733 (2018).</div>
</div>
<div id="ref-Winter2017" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">31. </div><div
class="csl-right-inline">Winter, S. M. <em>et al.</em> Models and
materials for generalized <span>Kitaev</span> magnetism. <em>Journal of
Physics: Condensed Matter</em> <strong>29</strong>, 493002 (2017).</div>
</div>
<div id="ref-TrebstPhysRep2022" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">32. </div><div
class="csl-right-inline">Trebst, S. &amp; Hickey, C. <a
href="https://doi.org/10.1016/j.physrep.2021.11.003">Kitaev
materials</a>. <em>Physics Reports</em> <strong>950</strong>, 137
(2022).</div>
</div>
<div id="ref-Takagi2019" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">33. </div><div
class="csl-right-inline">Takagi, H., Takayama, T., Jackeli, G.,
Khaliullin, G. &amp; Nagler, S. E. Concept and realization of
<span>Kitaev</span> quantum spin liquids. <em>Nature Reviews
Physics</em> <strong>1</strong>, 264280 (2019).</div>
</div>
<div id="ref-Anderson1973" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">34. </div><div
class="csl-right-inline">Anderson, P. W. Resonating valence bonds: A new
kind of insulator? <em>Mater. Res. Bull.</em> <strong>8</strong>,
153160 (1973).</div>
</div>
<div id="ref-Knolle2019" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">35. </div><div
class="csl-right-inline">Knolle, J. &amp; Moessner, R. <a
href="https://doi.org/10.1146/annurev-conmatphys-031218-013401">A field
guide to spin liquids</a>. <em>Annual Review of Condensed Matter
Physics</em> <strong>10</strong>, 451472 (2019).</div>
</div>
<div id="ref-Savary2016" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">36. </div><div
class="csl-right-inline">Savary, L. &amp; Balents, L. Quantum spin
liquids: A review. <em>Reports on Progress in Physics</em>
<strong>80</strong>, 016502 (2017).</div>
</div>
<div id="ref-Lacroix2011" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">37. </div><div
class="csl-right-inline"><em>Introduction to frustrated magnetism</em>.
vol. 164 (<span>Springer-Verlag</span>, 2011).</div>
</div>
<div id="ref-kitaevAnyonsExactlySolved2006" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">38. </div><div
class="csl-right-inline">Kitaev, A. <a
href="https://doi.org/10.1016/j.aop.2005.10.005">Anyons in an exactly
solved model and beyond</a>. <em>Annals of Physics</em>
<strong>321</strong>, 2111 (2006-01-01, 2006).</div>
</div>
<div id="ref-Baskaran2007" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">39. </div><div
class="csl-right-inline">Baskaran, G., Mandal, S. &amp; Shankar, R. <a
href="https://doi.org/10.1103/PhysRevLett.98.247201">Exact results for
spin dynamics and fractionalization in the kitaev model</a>. <em>Phys.
Rev. Lett.</em> <strong>98</strong>, 247201 (2007).</div>
</div>
<div id="ref-Baskaran2008" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">40. </div><div
class="csl-right-inline">Baskaran, G., Sen, D. &amp; Shankar, R. <a
href="https://doi.org/10.1103/PhysRevB.78.115116">Spin-<span>S
Kitaev</span> model: <span>Classical</span> ground states, order from
disorder, and exact correlation functions</a>. <em>Phys. Rev. B</em>
<strong>78</strong>, 115116 (2008).</div>
</div>
<div id="ref-Nussinov2009" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">41. </div><div
class="csl-right-inline">Nussinov, Z. &amp; Ortiz, G. <a
href="https://doi.org/10.1103/PhysRevB.79.214440">Bond algebras and
exact solvability of <span>Hamiltonians</span>: Spin
<span>S</span>=<span><span
class="math inline">\(\frac{1}{2}\)</span></span> multilayer
systems</a>. <em>Physical Review B</em> <strong>79</strong>, 214440
(2009).</div>
</div>
<div id="ref-OBrienPRB2016" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">42. </div><div
class="csl-right-inline">OBrien, K., Hermanns, M. &amp; Trebst, S. <a
href="https://doi.org/10.1103/PhysRevB.93.085101">Classification of
gapless <span>Z</span><span><span
class="math inline">\(_2\)</span></span> spin liquids in
three-dimensional <span>Kitaev</span> models</a>. <em>Phys. Rev. B</em>
<strong>93</strong>, 085101 (2016).</div>
</div>
<div id="ref-Peri2020" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">43. </div><div
class="csl-right-inline">Peri, V. <em>et al.</em> <a
href="https://doi.org/10.1103/PhysRevB.101.041114">Non-<span>Abelian</span>
chiral spin liquid on a simple non-<span>Archimedean</span> lattice</a>.
<em>Phys. Rev. B</em> <strong>101</strong>, 041114 (2020).</div>
</div>
<div id="ref-Chua2011" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">44. </div><div
class="csl-right-inline">Chua, V., Yao, H. &amp; Fiete, G. A. <a
href="https://doi.org/10.1103/PhysRevB.83.180412">Exact chiral spin
liquid with stable spin <span>Fermi</span> surface on the kagome
lattice</a>. <em>Phys. Rev. B</em> <strong>83</strong>, 180412
(2011).</div>
</div>
<div id="ref-ChuaPRB2011" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">45. </div><div
class="csl-right-inline">Chua, V. &amp; Fiete, G. A. <a
href="https://doi.org/10.1103/PhysRevB.84.195129">Exactly solvable
topological chiral spin liquid with random exchange</a>. <em>Phys. Rev.
B</em> <strong>84</strong>, 195129 (2011).</div>
</div>
<div id="ref-Fiete2012" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">46. </div><div
class="csl-right-inline">Fiete, G. A. <em>et al.</em> <a
href="https://doi.org/10.1016/j.physe.2011.11.011">Topological
insulators and quantum spin liquids</a>. <em>Physica E: Low-dimensional
Systems and Nanostructures</em> <strong>44</strong>, 845859
(2012).</div>
</div>
<div id="ref-Natori2016" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">47. </div><div
class="csl-right-inline">Natori, W. M. H., Andrade, E. C., Miranda, E.
&amp; Pereira, R. G. Chiral spin-orbital liquids with nodal lines.
<em>Phys. Rev. Lett.</em> <strong>117</strong>, 017204 (2016).</div>
</div>
<div id="ref-Wu2009" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">48. </div><div class="csl-right-inline">Wu,
C., Arovas, D. &amp; Hung, H.-H. <span><span
class="math inline">\(\Gamma\)</span></span>-matrix generalization of
the <span>Kitaev</span> model. <em>Physical Review B</em>
<strong>79</strong>, 134427 (2009).</div>
</div>
<div id="ref-WangHaoranPRB2021" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">49. </div><div
class="csl-right-inline">Wang, H. &amp; Principi, A. <a
href="https://doi.org/10.1103/PhysRevB.104.214422">Majorana edge and
corner states in square and kagome quantum spin-<span><span
class="math inline">\(^{3}\fracslash_2\)</span></span> liquids</a>.
<em>Phys. Rev. B</em> <strong>104</strong>, 214422 (2021).</div>
</div>
<div id="ref-lieb_flux_1994" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">50. </div><div
class="csl-right-inline">Lieb, E. H. <a
href="https://doi.org/10.1103/PhysRevLett.73.2158">Flux
<span>Phase</span> of the <span>Half-Filled Band</span></a>.
<em>Physical Review Letters</em> <strong>73</strong>, 21582161
(1994).</div>
</div>
<div id="ref-pedrocchiPhysicalSolutionsKitaev2011" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">51. </div><div
class="csl-right-inline">Pedrocchi, F. L., Chesi, S. &amp; Loss, D. <a
href="https://doi.org/10.1103/PhysRevB.84.165414">Physical solutions of
the <span>Kitaev</span> honeycomb model</a>. <em>Phys. Rev. B</em>
<strong>84</strong>, 165414 (2011).</div>
</div>
<div id="ref-Zschocke_Physical_states2015" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">52. </div><div
class="csl-right-inline">Zschocke, F. &amp; Vojta, M. <a
href="https://doi.org/10.1103/PhysRevB.92.014403">Physical states and
finite-size effects in <span>Kitaev</span>s honeycomb model:
<span>Bond</span> disorder, spin excitations, and <span>NMR</span> line
shape</a>. <em>Phys. Rev. B</em> <strong>92</strong>, 014403
(2015).</div>
</div>
<div id="ref-Yao2009" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">53. </div><div
class="csl-right-inline">Yao, H., Zhang, S.-C. &amp; Kivelson, S. A. <a
href="https://doi.org/10.1103/PhysRevLett.102.217202">Algebraic spin
liquid in an exactly solvable spin model</a>. <em>Phys. Rev. Lett.</em>
<strong>102</strong>, 217202 (2009).</div>
</div>
<div id="ref-knolle_dynamics_2016" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">54. </div><div
class="csl-right-inline">Knolle, J. Dynamics of a quantum spin liquid.
(Max Planck Institute for the Physics of Complex Systems, Dresden,
2016).</div>
</div>
<div id="ref-bianco_mapping_2011" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">55. </div><div
class="csl-right-inline">Bianco, R. &amp; Resta, R. <a
href="https://doi.org/10.1103/PhysRevB.84.241106">Mapping topological
order in coordinate space</a>. <em>Physical Review B</em>
<strong>84</strong>, 241106 (2011).</div>
</div>
<div id="ref-Hastings_Almost_2010" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">56. </div><div
class="csl-right-inline">Hastings, M. B. &amp; Loring, T. A. <a
href="https://doi.org/10.1063/1.3274817">Almost commuting matrices,
localized <span>Wannier</span> functions, and the quantum
<span>Hall</span> effect</a>. <em>Journal of Mathematical Physics</em>
<strong>51</strong>, 015214 (2010).</div>
</div>
<div id="ref-qi_general_2006" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">57. </div><div class="csl-right-inline">Qi,
X.-L., Wu, Y.-S. &amp; Zhang, S.-C. <a
href="https://doi.org/10.1103/PhysRevB.74.045125">General theorem
relating the bulk topological number to edge states in two-dimensional
insulators</a>. <em>Physical Review B</em> <strong>74</strong>, 045125
(2006).</div>
</div>
<div id="ref-Nasu_Thermal_2015" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">58. </div><div
class="csl-right-inline">Nasu, J., Udagawa, M. &amp; Motome, Y. <a
href="https://doi.org/10.1103/PhysRevB.92.115122">Thermal
fractionalization of quantum spins in a <span>Kitaev</span> model: <span
class="nocase">Temperature-linear</span> specific heat and coherent
transport of <span>Majorana</span> fermions</a>. <em>Phys. Rev. B</em>
<strong>92</strong>, 115122 (2015).</div>
</div>
<div id="ref-Beenakker2013" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">59. </div><div
class="csl-right-inline">Beenakker, C. W. J. <a
href="https://doi.org/10.1146/annurev-conmatphys-030212-184337">Search
for majorana fermions in superconductors</a>. <em>Annual Review of
Condensed Matter Physics</em> <strong>4</strong>, 113136 (2013).</div>
</div>
<div id="ref-Laumann2012" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">60. </div><div
class="csl-right-inline">Laumann, C. R., Ludwig, A. W. W., Huse, D. A.
&amp; Trebst, S. <a
href="https://doi.org/10.1103/PhysRevB.85.161301">Disorder-induced
<span>Majorana</span> metal in interacting non-<span>Abelian</span>
anyon systems</a>. <em>Phys. Rev. B</em> <strong>85</strong>, 161301
(2012).</div>
</div>
<div id="ref-Lahtinen_2011" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">61. </div><div
class="csl-right-inline">Lahtinen, V. <a
href="https://doi.org/10.1088/1367-2630/13/7/075009">Interacting
non-<span>Abelian</span> anyons as <span>Majorana</span> fermions in the
honeycomb lattice model</a>. <em>New Journal of Physics</em>
<strong>13</strong>, 075009 (2011).</div>
</div>
<div id="ref-lahtinenTopologicalLiquidNucleation2012" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">62. </div><div
class="csl-right-inline">Lahtinen, V., Ludwig, A. W. W., Pachos, J. K.
&amp; Trebst, S. <a
href="https://doi.org/10.1103/PhysRevB.86.075115">Topological liquid
nucleation induced by vortex-vortex interactions in
<span>Kitaev</span>s honeycomb model</a>. <em>Phys. Rev. B</em>
<strong>86</strong>, 075115 (2012).</div>
</div>
<div id="ref-bocquet_disordered_2000" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">63. </div><div
class="csl-right-inline">Bocquet, M., Serban, D. &amp; Zirnbauer, M. R.
<a href="https://doi.org/10.1016/S0550-3213(00)00208-X">Disordered 2d
quasiparticles in class <span>D</span>: <span>Dirac</span> fermions with
random mass, and dirty superconductors</a>. <em>Nuclear Physics B</em>
<strong>578</strong>, 628680 (2000).</div>
</div>
<div id="ref-Kasahara2018" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">64. </div><div
class="csl-right-inline">Kasahara, Y., Ohnishi, T., Mizukami, Y., <em>et
al.</em> <a href="https://doi.org/10.1038/s41586-018-0274-0">Majorana
quantization and half-integer thermal quantum <span>Hall</span> effect
in a <span>Kitaev</span> spin liquid</a>. <em>Nature</em>
<strong>559</strong>, 227231 (2018).</div>
</div>
<div id="ref-Yokoi2021" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">65. </div><div
class="csl-right-inline">Yokoi, T., Ma, S., Kasahara, Y., <em>et
al.</em> <a href="https://doi.org/10.1126/science.aay5551">Majorana
quantization and half-integer thermal quantum <span>Hall</span> effect
in a <span>Kitaev</span> spin liquid</a>. <em>Science</em>
<strong>373</strong>, 568572 (2021).</div>
</div>
<div id="ref-Yamashita2020" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">66. </div><div
class="csl-right-inline">Yamashita, M., Gouchi, J., Uwatoko, Y., Kurita,
N. &amp; Tanaka, H. <a
href="https://doi.org/10.1103/PhysRevB.102.220404">Sample dependence of
half-integer quantized thermal <span>Hall</span> effect in the
<span>Kitaev</span> spin-liquid candidate <span><span
class="math inline">\(\alpha\)</span></span>-<span>RuCl</span><span><span
class="math inline">\(_{3}\)</span></span></a>. <em>Phys. Rev. B</em>
<strong>102</strong>, 220404 (2020).</div>
</div>
<div id="ref-Bruin2022" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">67. </div><div
class="csl-right-inline">Bruin, J. A. N. <em>et al.</em> <a
href="https://doi.org/10.1038/s41567-021-01501-y">Majorana quantization
and half-integer thermal quantum <span>Hall</span> effect in a
<span>Kitaev</span> spin liquid</a>. <em>Nature Physics</em>
<strong>18</strong>, 401405 (2022).</div>
</div>
<div id="ref-Feldmeier2020" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">68. </div><div
class="csl-right-inline">Feldmeier, J., Natori, W., Knap, M. &amp;
Knolle, J. <a href="https://doi.org/10.1103/PhysRevB.102.134423">Local
probes for charge-neutral edge states in two-dimensional quantum
magnets</a>. <em>Phys. Rev. B</em> <strong>102</strong>, 134423
(2020).</div>
</div>
<div id="ref-Konig2020" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">69. </div><div
class="csl-right-inline">König, E. J., Randeria, M. T. &amp; Jäck, B. <a
href="https://doi.org/10.1103/PhysRevLett.125.267206">Tunneling
spectroscopy of quantum spin liquids</a>. <em>Phys. Rev. Lett.</em>
<strong>125</strong>, 267206 (2020).</div>
</div>
<div id="ref-Udagawa2021" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">70. </div><div
class="csl-right-inline">Udagawa, M., Takayoshi, S. &amp; Oka, T. <a
href="https://doi.org/10.1103/PhysRevLett.126.127201">Scanning tunneling
microscopy as a single majorana detector of kitaevs chiral spin
liquid</a>. <em>Phys. Rev. Lett.</em> <strong>126</strong>, 127201
(2021).</div>
</div>
<div id="ref-Pereira2020" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">71. </div><div
class="csl-right-inline">Pereira, R. G. &amp; Egger, R. <a
href="https://doi.org/10.1103/PhysRevLett.125.227202">Electrical access
to ising anyons in kitaev spin liquids</a>. <em>Phys. Rev. Lett.</em>
<strong>125</strong>, 227202 (2020).</div>
</div>
<div id="ref-Rau2014" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">72. </div><div
class="csl-right-inline">Rau, J. G., Lee, E. K.-H. &amp; Kee, H.-Y. <a
href="https://doi.org/10.1103/PhysRevLett.112.077204">Generic spin model
for the honeycomb iridates beyond the kitaev limit</a>. <em>Phys. Rev.
Lett.</em> <strong>112</strong>, 077204 (2014).</div>
</div>
<div id="ref-Chaloupka2010" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">73. </div><div
class="csl-right-inline">Chaloupka, J., Jackeli, G. &amp; Khaliullin, G.
Kitaev-<span>Heisenberg</span> model on a honeycomb lattice: Possible
exotic phases in iridium oxides <span>A</span><span><span
class="math inline">\(_{2}\)</span></span><span>IrO</span><span><span
class="math inline">\(_{3}\)</span></span>. <em>Phys. Rev. Lett.</em>
<strong>105</strong>, 027204 (2010).</div>
</div>
<div id="ref-Chaloupka2013" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">74. </div><div
class="csl-right-inline">Chaloupka, J., Jackeli, G. &amp; Khaliullin, G.
<a href="https://doi.org/10.1103/PhysRevLett.110.097204">Zigzag magnetic
order in the iridium oxide <span>Na</span><span><span
class="math inline">\(_{2}\)</span></span><span>IrO</span><span><span
class="math inline">\(_{3}\)</span></span></a>. <em>Phys. Rev.
Lett.</em> <strong>110</strong>, 097204 (2013).</div>
</div>
<div id="ref-Chaloupka2015" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">75. </div><div
class="csl-right-inline">Chaloupka, J. &amp; Khaliullin, G. Hidden
symmetries of the extended <span>Kitaev-Heisenberg</span> model:
<span>Implications</span> for honeycomb lattice iridates
<span>A</span><span><span
class="math inline">\(_{2}\)</span></span><span>IrO</span><span><span
class="math inline">\(_{3}\)</span></span>. <em>Phys. Rev. B</em>
<strong>92</strong>, 024413 (2015).</div>
</div>
<div id="ref-Winter2016" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">76. </div><div
class="csl-right-inline">Winter, S. M., Li, Y., Jeschke, H. O. &amp;
Valentí, R. <a
href="https://doi.org/10.1103/PhysRevB.93.214431">Challenges in design
of <span>Kitaev</span> materials: <span>Magnetic</span> interactions
from competing energy scales</a>. <em>Phys. Rev. B</em>
<strong>93</strong>, 214431 (2016).</div>
</div>
<div id="ref-Yao2011" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">77. </div><div
class="csl-right-inline">Yao, H. &amp; Lee, D.-H. <a
href="https://doi.org/10.1103/PhysRevLett.107.087205">Fermionic magnons,
non-abelian spinons, and the spin quantum hall effect from an exactly
solvable spin-1/2 kitaev model with <span>SU</span>(2) symmetry</a>.
<em>Phys. Rev. Lett.</em> <strong>107</strong>, 087205 (2011).</div>
</div>
<div id="ref-Natori2020" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">78. </div><div
class="csl-right-inline">Natori, W. M. H. &amp; Knolle, J. <a
href="https://doi.org/10.1103/PhysRevLett.125.067201">Dynamics of a
two-dimensional quantum spin-orbital liquid: <span>Spectroscopic</span>
signatures of fermionic magnons</a>. <em>Phys. Rev. Lett.</em>
<strong>125</strong>, 067201 (2020).</div>
</div>
<div id="ref-Chulliparambil2020" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">79. </div><div
class="csl-right-inline">Chulliparambil, S., Seifert, U. F. P., Vojta,
M., Janssen, L. &amp; Tu, H.-H. <a
href="https://doi.org/10.1103/PhysRevB.102.201111">Microscopic models
for <span>Kitaev</span>s sixteenfold way of anyon theories</a>.
<em>Phys. Rev. B</em> <strong>102</strong>, 201111 (2020).</div>
</div>
<div id="ref-Chulliparambil2021" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">80. </div><div
class="csl-right-inline">Chulliparambil, S., Janssen, L., Vojta, M., Tu,
H.-H. &amp; Seifert, U. F. P. <a
href="https://doi.org/10.1103/PhysRevB.103.075144">Flux crystals,
<span>Majorana</span> metals, and flat bands in exactly solvable
spin-orbital liquids</a>. <em>Phys. Rev. B</em> <strong>103</strong>,
075144 (2021).</div>
</div>
<div id="ref-Seifert2020" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">81. </div><div
class="csl-right-inline">Seifert, U. F. P. <em>et al.</em> <a
href="https://doi.org/10.1103/PhysRevLett.125.257202">Fractionalized
fermionic quantum criticality in spin-orbital mott insulators</a>.
<em>Phys. Rev. Lett.</em> <strong>125</strong>, 257202 (2020).</div>
</div>
</div>
</main>
</body>
</html>