1322 lines
68 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: Introduction
excerpt: Why do we do Condensed Matter theory at all?
layout: none
image:
---
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<meta name="description" content="Why do we do Condensed Matter theory at all?" />
<title>Introduction</title>
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
<script src="/assets/js/thesis_scrollspy.js"></script>
<link rel="stylesheet" href="/assets/css/styles.css">
<script src="/assets/js/index.js"></script>
</head>
<body>
<!--Capture the table of contents from pandoc as a jekyll variable -->
{% capture tableOfContents %}
<br>
<nav aria-label="Table of Contents" class="page-table-of-contents">
<ul>
<li><a href="#interacting-quantum-many-body-systems"
id="toc-interacting-quantum-many-body-systems">Interacting Quantum Many
Body Systems</a></li>
<li><a href="#mott-insulators" id="toc-mott-insulators">Mott
Insulators</a></li>
<li><a href="#quantum-spin-liquids"
id="toc-quantum-spin-liquids">Quantum Spin Liquids</a></li>
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
</ul>
</nav>
{% endcapture %}
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
{% include header.html extra=tableOfContents %}
<main>
<!-- Table of Contents -->
<!-- <nav id="TOC" role="doc-toc">
<ul>
<li><a href="#interacting-quantum-many-body-systems"
id="toc-interacting-quantum-many-body-systems">Interacting Quantum Many
Body Systems</a></li>
<li><a href="#mott-insulators" id="toc-mott-insulators">Mott
Insulators</a></li>
<li><a href="#quantum-spin-liquids"
id="toc-quantum-spin-liquids">Quantum Spin Liquids</a></li>
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
</ul>
</nav>
-->
<!-- Main Page Body -->
<div id="page-header">
<p>1 Introduction</p>
<hr />
</div>
<section id="interacting-quantum-many-body-systems" class="level1">
<h1>Interacting Quantum Many Body Systems</h1>
<p>When you take many objects and let them interact together, it is
often simpler to describe the behaviour of the group differently from
the way one would describe the individual objects. Consider a flock of
starlings like that of fig. <a href="#fig:Studland_Starlings">1</a>.
Watching the flock youll see that it has a distinct outline, that waves
of density will sometimes propagate through the closely packed birds and
that the flock seems to respond to predators as a distinct object. The
natural description of this phenomena is couched in terms of the flock
rather than of the individual birds.</p>
<p>The behaviours of the flock are an <em>emergent phenomena</em>. The
starlings are only interacting with their immediate six or seven
neighbours <span class="citation"
data-cites="king2012murmurations balleriniInteractionRulingAnimal2008"> [<a
href="#ref-king2012murmurations" role="doc-biblioref">1</a>,<a
href="#ref-balleriniInteractionRulingAnimal2008"
role="doc-biblioref">2</a>]</span>, what a physicist would call a
<em>local interaction</em>. There is much philosophical debate about how
exactly to define emergence <span class="citation"
data-cites="andersonMoreDifferent1972 kivelsonDefiningEmergencePhysics2016"> [<a
href="#ref-andersonMoreDifferent1972" role="doc-biblioref">3</a>,<a
href="#ref-kivelsonDefiningEmergencePhysics2016"
role="doc-biblioref">4</a>]</span> but for our purposes it enough to say
that emergence is the fact that the aggregate behaviour of many
interacting objects may necessitate a description very different from
that of the individual objects.</p>
<div id="fig:Studland_Starlings" class="fignos">
<figure>
<img src="/assets/thesis/intro_chapter/Studland_Starlings.jpeg"
data-short-caption="A murmuration of Starlings" style="width:100.0%"
alt="Figure 1: A murmuration of starlings. Dorset, UK. Credit Tanya Hart, “Studland Starlings”, 2017, CC BY-SA 3.0" />
<figcaption aria-hidden="true"><span>Figure 1:</span> A murmuration of
starlings. Dorset, UK. Credit <a
href="https://twitter.com/arripay">Tanya Hart</a>, “Studland Starlings”,
2017, <a
href="https://creativecommons.org/licenses/by-sa/3.0/deed.en">CC BY-SA
3.0</a></figcaption>
</figure>
</div>
<p>To give an example closer to the topic at hand, our understanding of
thermodynamics began with bulk properties like heat, energy, pressure
and temperature <span class="citation"
data-cites="saslowHistoryThermodynamicsMissing2020"> [<a
href="#ref-saslowHistoryThermodynamicsMissing2020"
role="doc-biblioref">5</a>]</span>. It was only later that we gained an
understanding of how these properties emerge from microscopic
interactions between very large numbers of particles <span
class="citation" data-cites="flammHistoryOutlookStatistical1998"> [<a
href="#ref-flammHistoryOutlookStatistical1998"
role="doc-biblioref">6</a>]</span>.</p>
<p>Condensed Matter is, at its heart, the study of what behaviours
emerge from large numbers of interacting quantum objects at low energy.
When these three properties are present together: a large number of
objects, those objects being quantum and there are interaction between
the objects, we call it an interacting quantum many body system. From
these three ingredients nature builds all manner of weird and wonderful
materials.</p>
<p>Historically, we made initial headway in the study of many-body
systems, ignoring interactions and quantum properties. The ideal gas law
and the Drude classical electron gas <span class="citation"
data-cites="ashcroftSolidStatePhysics1976"> [<a
href="#ref-ashcroftSolidStatePhysics1976"
role="doc-biblioref">7</a>]</span> are good examples. Including
interactions into many-body physics leads to the Ising model <span
class="citation" data-cites="isingBeitragZurTheorie1925"> [<a
href="#ref-isingBeitragZurTheorie1925"
role="doc-biblioref">8</a>]</span>, Landau theory <span class="citation"
data-cites="landau2013fluid"> [<a href="#ref-landau2013fluid"
role="doc-biblioref">9</a>]</span> and the classical theory of phase
transitions <span class="citation"
data-cites="jaegerEhrenfestClassificationPhase1998"> [<a
href="#ref-jaegerEhrenfestClassificationPhase1998"
role="doc-biblioref">10</a>]</span>. In contrast, condensed matter
theory got it state in quantum many-body theory. Blochs theorem <span
class="citation"
data-cites="blochÜberQuantenmechanikElektronen1929"> [<a
href="#ref-blochÜberQuantenmechanikElektronen1929"
role="doc-biblioref">11</a>]</span> predicted the properties of
non-interacting electrons in crystal lattices, leading to band theory.
In the same vein, advances were made in understanding the quantum
origins of magnetism, including ferromagnetism and
antiferromagnetism <span class="citation"
data-cites="MagnetismCondensedMatter"> [<a
href="#ref-MagnetismCondensedMatter"
role="doc-biblioref">12</a>]</span>.</p>
<p>The development of Landau-Fermi Liquid theory explained why band
theory works so well even in cases where an analysis of the relevant
energies suggests that it should not <span class="citation"
data-cites="wenQuantumFieldTheory2007"> [<a
href="#ref-wenQuantumFieldTheory2007"
role="doc-biblioref">13</a>]</span>. Landau Fermi Liquid theory
demonstrates that in many cases where electron-electron interactions are
significant, the system can still be described in terms on generalised
non-interacting quasiparticles.</p>
<p>However there are systems where even Landau Fermi Liquid theory
fails. An effective theoretical description of these systems must
include electron-electron correlations and they are thus called Strongly
Correlated Materials <span class="citation"
data-cites="morosanStronglyCorrelatedMaterials2012"> [<a
href="#ref-morosanStronglyCorrelatedMaterials2012"
role="doc-biblioref">14</a>]</span>, Correlated Electron systems or
Quantum Materials. The canonical examples are superconductivity <span
class="citation" data-cites="MicroscopicTheorySuperconductivity"> [<a
href="#ref-MicroscopicTheorySuperconductivity"
role="doc-biblioref">15</a>]</span>, the fractional quantum hall
effect <span class="citation"
data-cites="feldmanFractionalChargeFractional2021"> [<a
href="#ref-feldmanFractionalChargeFractional2021"
role="doc-biblioref">16</a>]</span> and the Mott insulators <span
class="citation"
data-cites="mottBasisElectronTheory1949 fisherMottInsulatorsSpin1999"> [<a
href="#ref-mottBasisElectronTheory1949" role="doc-biblioref">17</a>,<a
href="#ref-fisherMottInsulatorsSpin1999"
role="doc-biblioref">18</a>]</span>. Well start by looking at the
latter but shall see that there are many links between three topics.</p>
</section>
<section id="mott-insulators" class="level1">
<h1>Mott Insulators</h1>
<p>Mott Insulators are remarkable because their electrical insulator
properties come from electron-electron interactions. Electrical
conductivity, the bulk movement of electrons, requires both that there
are electronic states very close in energy to the ground state and that
those states are delocalised so that they can contribute to macroscopic
transport. Band insulators are systems whose Fermi level falls within a
gap in the density of states and thus fail the first criteria. Band
insulators derive their character from the characteristics of the
underlying lattice. Anderson Insulators have only localised electronic
states near the fermi level and therefore fail the second criteria. We
will discuss Anderson insulators and disorder in a later section.</p>
<p>Both band and Anderson insulators occur without electron-electron
interactions. Mott insulators, by contrast, require a many body picture
to understand and thus elude band theory and single-particle
methods.</p>
<div id="fig:venn_diagram" class="fignos">
<figure>
<img src="/assets/thesis/intro_chapter/venn_diagram.svg"
data-short-caption="Interacting Quantum Many Body Systems Venn Diagram"
style="width:100.0%"
alt="Figure 2: Three key adjectives. Many Body, the fact of describing systems in the limit of large numbers of particles. Quantum, objects whose behaviour requires quantum mechanics to describe accurately. Interacting, the constituent particles of the system affect one another via forces, either directly or indirectly. When taken together, these three properties can give rise to what are called strongly correlated materials." />
<figcaption aria-hidden="true"><span>Figure 2:</span> Three key
adjectives. Many Body, the fact of describing systems in the limit of
large numbers of particles. Quantum, objects whose behaviour requires
quantum mechanics to describe accurately. Interacting, the constituent
particles of the system affect one another via forces, either directly
or indirectly. When taken together, these three properties can give rise
to what are called strongly correlated materials.</figcaption>
</figure>
</div>
<p>The theory of Mott insulators developed out of the observation that
many transition metal oxides are erroneously predicted by band theory to
be conductive <span class="citation"
data-cites="boerSemiconductorsPartiallyCompletely1937"> [<a
href="#ref-boerSemiconductorsPartiallyCompletely1937"
role="doc-biblioref">19</a>]</span> leading to the suggestion that
electron-electron interactions were the cause of this effect <span
class="citation" data-cites="mottDiscussionPaperBoer1937"> [<a
href="#ref-mottDiscussionPaperBoer1937"
role="doc-biblioref">20</a>]</span>. Interest grew with the discovery of
high temperature superconductivity in the cuprates in 1986 <span
class="citation"
data-cites="bednorzPossibleHighTcSuperconductivity1986"> [<a
href="#ref-bednorzPossibleHighTcSuperconductivity1986"
role="doc-biblioref">21</a>]</span> which is believed to arise as the
result of a doped Mott insulator state <span class="citation"
data-cites="leeDopingMottInsulator2006"> [<a
href="#ref-leeDopingMottInsulator2006"
role="doc-biblioref">22</a>]</span>.</p>
<p>The canonical toy model of the Mott insulator is the Hubbard
model <span class="citation"
data-cites="gutzwillerEffectCorrelationFerromagnetism1963 kanamoriElectronCorrelationFerromagnetism1963 hubbardj.ElectronCorrelationsNarrow1963"> [<a
href="#ref-gutzwillerEffectCorrelationFerromagnetism1963"
role="doc-biblioref">23</a><a
href="#ref-hubbardj.ElectronCorrelationsNarrow1963"
role="doc-biblioref">25</a>]</span> of <span
class="math inline">\(1/2\)</span> fermions hopping on the lattice with
hopping parameter <span class="math inline">\(t\)</span> and
electron-electron repulsion <span class="math inline">\(U\)</span></p>
<p><span class="math display">\[ H_{\mathrm{H}} = -t \sum_{\langle i,j
\rangle \alpha} c^\dagger_{i\alpha} c_{j\alpha} + U \sum_i n_{i\uparrow}
n_{i\downarrow} - \mu \sum_{i,\alpha} n_{i\alpha}\]</span></p>
<p>where <span class="math inline">\(c^\dagger_{i\alpha}\)</span>
creates a spin <span class="math inline">\(\alpha\)</span> electron at
site <span class="math inline">\(i\)</span> and the number operator
<span class="math inline">\(n_{i\alpha}\)</span> measures the number of
electrons with spin <span class="math inline">\(\alpha\)</span> at site
<span class="math inline">\(i\)</span>. The sum runs over lattice
neighbours <span class="math inline">\(\langle i,j \rangle\)</span>
including both <span class="math inline">\(\langle i,j \rangle\)</span>
and <span class="math inline">\(\langle j,i \rangle\)</span> so that the
model is Hermition.</p>
<p>In the non-interacting limit <span class="math inline">\(U &lt;&lt;
t\)</span>, the model reduces to free fermions and the many-body ground
state is a separable product of Bloch waves filled up to the Fermi
level. In the interacting limit <span class="math inline">\(U &gt;&gt;
t\)</span> on the other hand, the system breaks up into a product of
local moments, each in one the four states <span
class="math inline">\(|0\rangle, |\uparrow\rangle, |\downarrow\rangle,
|\uparrow\downarrow\rangle\)</span> depending on the filing.</p>
<p>The Mott insulating phase occurs at half filling <span
class="math inline">\(\mu = \tfrac{U}{2}\)</span> where there is one
electron per lattice site <span class="citation"
data-cites="hubbardElectronCorrelationsNarrow1964"> [<a
href="#ref-hubbardElectronCorrelationsNarrow1964"
role="doc-biblioref">26</a>]</span>. Here the model can be rewritten in
a symmetric form <span class="math display">\[ H_{\mathrm{H}} = -t
\sum_{\langle i,j \rangle \alpha} c^\dagger_{i\alpha} c_{j\alpha} + U
\sum_i (n_{i\uparrow} - \tfrac{1}{2})(n_{i\downarrow} -
\tfrac{1}{2})\]</span></p>
<p>The basic reason that the half filled state is insulating seems is
trivial. Any excitation must include states of double occupancy that
cost energy <span class="math inline">\(U\)</span>, hence the system has
a finite bandgap and is an interaction driven Mott insulator. Depending
on the lattice, the local moments may then order antiferromagnetically.
Originally it was proposed that this antiferromagnetic order was the
cause of the gap opening <span class="citation"
data-cites="mottMetalInsulatorTransitions1990"> [<a
href="#ref-mottMetalInsulatorTransitions1990"
role="doc-biblioref">27</a>]</span>. However, Mott insulators have been
found <span class="citation"
data-cites="law1TTaS2QuantumSpin2017 ribakGaplessExcitationsGround2017"> [<a
href="#ref-law1TTaS2QuantumSpin2017" role="doc-biblioref">28</a>,<a
href="#ref-ribakGaplessExcitationsGround2017"
role="doc-biblioref">29</a>]</span> without magnetic order. Instead the
local moments may form a highly entangled state known as a quantum spin
liquid, which will be discussed shortly.</p>
<p>Various theoretical treatments of the Hubbard model have been made,
including those based on Fermi liquid theory, mean field treatments, the
local density approximation (LDA) <span class="citation"
data-cites="slaterMagneticEffectsHartreeFock1951"> [<a
href="#ref-slaterMagneticEffectsHartreeFock1951"
role="doc-biblioref">30</a>]</span> and dynamical mean-field
theory <span class="citation"
data-cites="greinerQuantumPhaseTransition2002"> [<a
href="#ref-greinerQuantumPhaseTransition2002"
role="doc-biblioref">31</a>]</span>. None of these approaches are
perfect. Strong correlations are poorly described by the Fermi liquid
theory and the LDA approaches while mean field approximations do poorly
in low dimensional systems. This theoretical difficulty has made the
Hubbard model a target for cold atom simulations <span class="citation"
data-cites="mazurenkoColdatomFermiHubbard2017"> [<a
href="#ref-mazurenkoColdatomFermiHubbard2017"
role="doc-biblioref">32</a>]</span>.</p>
<p>From here the discussion will branch two directions. First, we will
discuss a limit of the Hubbard model called the Falikov-Kimball Model.
Second, we will look at quantum spin liquids and the Kitaev honeycomb
model.</p>
<p><strong>The Falikov-Kimball Model</strong></p>
<p>Though not the original reason for its introduction, the
Falikov-Kimball (FK) model is the limit of the Hubbard model as the mass
ratio of the spin up and spin down electron is taken to infinity. This
gives a model with two fermion species, one itinerant and one entirely
immobile. The number operators for the immobile fermions are therefore
conserved quantities and can be be treated like classical degrees of
freedom. For our purposes it will be useful to replace the immobile
fermions with a classical Ising background field <span
class="math inline">\(S_i = \pm1\)</span>.</p>
<p><span class="math display">\[\begin{aligned}
H_{\mathrm{FK}} = &amp; -\;t \sum_{\langle i,j \rangle}
c^\dagger_{i}c_{j} + \;U \sum_{i} S_i\;(c^\dagger_{i}c_{i} -
\tfrac{1}{2}). \\
\end{aligned}\]</span></p>
<p>Given that the physics of states near the metal-insulator (MI)
transition is still poorly understood <span class="citation"
data-cites="belitzAndersonMottTransition1994 baskoMetalInsulatorTransition2006"> [<a
href="#ref-belitzAndersonMottTransition1994"
role="doc-biblioref">33</a>,<a
href="#ref-baskoMetalInsulatorTransition2006"
role="doc-biblioref">34</a>]</span> the FK model provides a rich test
bed to explore interaction driven MI transition physics. Despite its
simplicity, the model has a rich phase diagram in <span
class="math inline">\(D \geq 2\)</span> dimensions. It shows an Mott
insulator transition even at high temperature, similar to the
corresponding Hubbard Model <span class="citation"
data-cites="brandtThermodynamicsCorrelationFunctions1989"> [<a
href="#ref-brandtThermodynamicsCorrelationFunctions1989"
role="doc-biblioref">35</a>]</span>. In 1D, the ground state
phenomenology as a function of filling can be rich <span
class="citation" data-cites="gruberGroundStatesSpinless1990"> [<a
href="#ref-gruberGroundStatesSpinless1990"
role="doc-biblioref">36</a>]</span> but the system is disordered for all
<span class="math inline">\(T &gt; 0\)</span> <span class="citation"
data-cites="kennedyItinerantElectronModel1986"> [<a
href="#ref-kennedyItinerantElectronModel1986"
role="doc-biblioref">37</a>]</span>. The model has also been a test-bed
for many-body methods, interest took off when an exact dynamical
mean-field theory solution in the infinite dimensional case was
found <span class="citation"
data-cites="antipovCriticalExponentsStrongly2014 ribicNonlocalCorrelationsSpectral2016 freericksExactDynamicalMeanfield2003 herrmannNonequilibriumDynamicalCluster2016"> [<a
href="#ref-antipovCriticalExponentsStrongly2014"
role="doc-biblioref">38</a><a
href="#ref-herrmannNonequilibriumDynamicalCluster2016"
role="doc-biblioref">41</a>]</span>.</p>
<p>In Chapter 3 I will introduce a generalized Falikov-Kimball model in
one dimension I call the Long-Range Falikov-Kimball model. With the
addition of long-range interactions in the background field, the model
shows a similarly rich phase diagram its higher dimensional cousins. I
use an exact Markov chain Monte Carlo method to map the phase diagram
and compute the energy-resolved localization properties of the fermions.
I then compare the behaviour of this transitionally invariant model to
an Anderson model of uncorrelated binary disorder about a background
charge density wave field which confirms that the fermionic sector only
fully localizes for very large system sizes.</p>
</section>
<section id="quantum-spin-liquids" class="level1">
<h1>Quantum Spin Liquids</h1>
<p>To turn to the other key topic of this thesis, we have already
discussed the AFM ordering of local moments in the Mott insulating
state. Landau-Ginzburg-Wilson theory characterises phases of matter as
inextricably linked to the emergence of long range order via a
spontaneously broken symmetry. So within this paradigm we would not
expect any interesting phases of matter not associated with AFM or other
long-range order. However, Anderson first proposed in 1973 <span
class="citation" data-cites="andersonResonatingValenceBonds1973"> [<a
href="#ref-andersonResonatingValenceBonds1973"
role="doc-biblioref">42</a>]</span> that if long range order is
suppressed by some mechanism, it might lead to a liquid-like state even
at zero temperature, the Quantum Spin Liquid (QSL).</p>
<p>This QSL state would exist at zero or very low temperatures, so we
would expect quantum effects to be very strong, which will turn out to
have far reaching consequences. It was the discovery of a different
phase, however that really kickstarted interest in the topic. The
fractional quantum Hall (FQH) state, discovered in the 1980s is an
explicit example of an interacting electron system that falls outside of
the Landau-Ginzburg-Wilson paradigm. It shares many phenomenological
properties with the QSL state. They both exhibit fractionalised
excitations, braiding statistics and non-trivial topological
properties <span class="citation"
data-cites="broholmQuantumSpinLiquids2020"> [<a
href="#ref-broholmQuantumSpinLiquids2020"
role="doc-biblioref">43</a>]</span>. The many-body ground state of such
systems acts as a complex and highly entangled vacuum. This vacuum can
support quasiparticle excitations with properties unbound from that of
the Dirac fermions of the standard model.</p>
<p>How do we actually make a QSL? Frustration is one mechanism that we
can use to suppress magnetic order in spin models <span class="citation"
data-cites="TrebstPhysRep2022"> [<a href="#ref-TrebstPhysRep2022"
role="doc-biblioref">44</a>]</span>. Frustration can be geometric,
triangular lattices for instance cannot support AFM order. It can also
come about as a result of spin-orbit coupling or other physics. There
are also other routes to QSLs besides frustrated spin systems that we
will not discuss here <span class="citation"
data-cites="balentsNodalLiquidTheory1998 balentsDualOrderParameter1999 linExactSymmetryWeaklyinteracting1998"> [<a
href="#ref-balentsNodalLiquidTheory1998" role="doc-biblioref">45</a><a
href="#ref-linExactSymmetryWeaklyinteracting1998"
role="doc-biblioref">47</a>]</span>.</p>
<!-- Experimentally, Mott insulating systems without magnetic order have been proposed as QSL systems\ [@law1TTaS2QuantumSpin2017; @ribakGaplessExcitationsGround2017]. -->
<!-- Other exampels: Quantum spin liquids are the analogous phase of matter for spin systems. Spin ice support deconfined magnetic monopoles. -->
<div id="fig:correlation_spin_orbit_PT" class="fignos">
<figure>
<img src="/assets/thesis/intro_chapter/correlation_spin_orbit_PT.png"
data-short-caption="Phase Diagram" style="width:100.0%"
alt="Figure 3: From  [44]." />
<figcaption aria-hidden="true"><span>Figure 3:</span> From <span
class="citation" data-cites="TrebstPhysRep2022"> [<a
href="#ref-TrebstPhysRep2022"
role="doc-biblioref">44</a>]</span>.</figcaption>
</figure>
</div>
<p>Spin-orbit coupling is a relativistic effect, that very roughly
corresponds to the fact that in the frame of reference of a moving
electron, the electric field of nearby nuclei look like magnetic fields
to which the electron spin couples. This effectively couples the spatial
and spin parts of the electron wavefunction, meaning that the lattice
structure can influence the form of the spin-spin interactions leading
to spatial anisotropy. This anisotropy will be how we frustrate the Mott
insulators <span class="citation"
data-cites="jackeliMottInsulatorsStrong2009 khaliullinOrbitalOrderFluctuations2005"> [<a
href="#ref-jackeliMottInsulatorsStrong2009"
role="doc-biblioref">48</a>,<a
href="#ref-khaliullinOrbitalOrderFluctuations2005"
role="doc-biblioref">49</a>]</span>. As we saw with the Hubbard model,
interaction effects are only strong or weak in comparison to the
bandwidth or hopping integral <span class="math inline">\(t\)</span> so
what we need to see strong frustration is a material with strong
spin-orbit coupling <span class="math inline">\(\lambda\)</span>
relative to its bandwidth <span class="math inline">\(t\)</span>.</p>
<p>In certain transition metal based compounds, such as those based on
Iridium and Ruthenium, the lattice structure, strong spin-orbit coupling
and narrow bandwidths lead to effective spin-<span
class="math inline">\(\tfrac{1}{2}\)</span> Mott insulating states with
strongly anisotropic spin-spin couplings. These transition metal
compounds, known Kitaev Materials, draw their name from the celebrated
Kitaev Honeycomb Model which is expected to model their low temperature
behaviour <span class="citation"
data-cites="Jackeli2009 HerrmannsAnRev2018 Winter2017 TrebstPhysRep2022 Takagi2019"> [<a
href="#ref-TrebstPhysRep2022" role="doc-biblioref">44</a>,<a
href="#ref-Jackeli2009" role="doc-biblioref">50</a><a
href="#ref-Takagi2019" role="doc-biblioref">53</a>]</span>.</p>
<p>At this point we can sketch out a phase diagram like that of fig. <a
href="#fig:correlation_spin_orbit_PT">3</a>. When both electron-electron
interactions <span class="math inline">\(U\)</span> and spin-orbit
couplings <span class="math inline">\(\lambda\)</span> are small
relative to the bandwidth <span class="math inline">\(t\)</span> we
recover standard band theory of band insulators and metals. In the upper
left we have the simple Mott insulating state as described by the
Hubbard model. In the lower right, strong spin-orbit coupling gives rise
to Topological insulators (TIs) characterised by symmetry protected edge
modes and non-zero Chern number. Kitaev materials occur in the region
where strong electron-electron interaction and spin-orbit coupling
interact. See <span class="citation"
data-cites="witczak-krempaCorrelatedQuantumPhenomena2014"> [<a
href="#ref-witczak-krempaCorrelatedQuantumPhenomena2014"
role="doc-biblioref">54</a>]</span> for a much more expansive version of
this diagram.</p>
<p>The Kitaev Honeycomb model <span class="citation"
data-cites="kitaevAnyonsExactlySolved2006"> [<a
href="#ref-kitaevAnyonsExactlySolved2006"
role="doc-biblioref">55</a>]</span> was the first concrete spin model
with a QSL ground state. It is defined on the two dimensional honeycomb
lattice and provides an exactly solvable model that can be reduced to a
free fermion problem via a mapping to Majorana fermions. This yields an
extensive number of static <span class="math inline">\(\mathbb
Z_2\)</span> fluxes tied to an emergent gauge field. The model is
remarkable not only for its QSL ground state but also for its
fractionalised excitations with non-trivial braiding statistics. It has
a rich phase diagram hosting gapless, Abelian and non-Abelian
phases <span class="citation"
data-cites="knolleDynamicsFractionalizationQuantum2015"> [<a
href="#ref-knolleDynamicsFractionalizationQuantum2015"
role="doc-biblioref">56</a>]</span> and a finite temperature phase
transition to a thermal metal state <span class="citation"
data-cites="selfThermallyInducedMetallic2019"> [<a
href="#ref-selfThermallyInducedMetallic2019"
role="doc-biblioref">57</a>]</span>. It been proposed that its
non-Abelian excitations could be used to support robust topological
quantum computing <span class="citation"
data-cites="kitaev_fault-tolerant_2003 freedmanTopologicalQuantumComputation2003 nayakNonAbelianAnyonsTopological2008"> [<a
href="#ref-kitaev_fault-tolerant_2003" role="doc-biblioref">58</a><a
href="#ref-nayakNonAbelianAnyonsTopological2008"
role="doc-biblioref">60</a>]</span>.</p>
<p>As Kitaev points out in his original paper, the model remains
solvable on any tri-coordinated <span class="math inline">\(z=3\)</span>
graph which can be 3-edge-coloured. Indeed many generalisations of the
model to  <span class="citation"
data-cites="Baskaran2007 Baskaran2008 Nussinov2009 OBrienPRB2016 hermanns2015weyl"> [<a
href="#ref-Baskaran2007" role="doc-biblioref">61</a><a
href="#ref-hermanns2015weyl" role="doc-biblioref">65</a>]</span>.
Notably, the Yao-Kivelson model <span class="citation"
data-cites="yaoExactChiralSpin2007"> [<a
href="#ref-yaoExactChiralSpin2007" role="doc-biblioref">66</a>]</span>
introduces triangular plaquettes to the honeycomb lattice leading to
spontaneous chiral symmetry breaking. These extensions all retain
translation symmetry, likely because edge-colouring and finding the
ground state become much harder without it. Finding the ground state
flux sector and understanding the QSL properties can still be
challenging <span class="citation"
data-cites="eschmann2019thermodynamics Peri2020"> [<a
href="#ref-eschmann2019thermodynamics" role="doc-biblioref">67</a>,<a
href="#ref-Peri2020" role="doc-biblioref">68</a>]</span>. Undeterred,
this gap lead us to wonder what might happen if we remove translation
symmetry from the Kitaev Model. This might would be a model of a
tri-coordinated, highly bond anisotropic but otherwise amorphous
material.</p>
<p>Amorphous materials do no have long-range lattice regularities but
covalent compounds can induce short-range regularities in the lattice
structure such as fixed coordination number <span
class="math inline">\(z\)</span>. The best examples being amorphous
Silicon and Germanium with <span class="math inline">\(z=4\)</span>
which are used to make thin-film solar cells <span class="citation"
data-cites="Weaire1971 betteridge1973possible"> [<a
href="#ref-Weaire1971" role="doc-biblioref">69</a>,<a
href="#ref-betteridge1973possible" role="doc-biblioref">70</a>]</span>.
Recently is has been shown that topological insulating (TI) phases can
exist in amorphous systems. Amorphous TIs are characterized by similar
protected edge states to their translation invariant cousins and
generalised topological bulk invariants <span class="citation"
data-cites="mitchellAmorphousTopologicalInsulators2018 agarwala2019topological marsalTopologicalWeaireThorpeModels2020 costa2019toward agarwala2020higher spring2021amorphous corbae2019evidence"> [<a
href="#ref-mitchellAmorphousTopologicalInsulators2018"
role="doc-biblioref">71</a><a href="#ref-corbae2019evidence"
role="doc-biblioref">77</a>]</span>. However, research on amorphous
electronic systems has been mostly focused on non-interacting systems
with a few exceptions, for example, to account for the observation of
superconductivity <span class="citation"
data-cites="buckel1954einfluss mcmillan1981electron meisel1981eliashberg bergmann1976amorphous mannaNoncrystallineTopologicalSuperconductors2022"> [<a
href="#ref-buckel1954einfluss" role="doc-biblioref">78</a><a
href="#ref-mannaNoncrystallineTopologicalSuperconductors2022"
role="doc-biblioref">82</a>]</span> in amorphous materials or very
recently to understand the effect of strong electron repulsion in
TIs <span class="citation" data-cites="kim2022fractionalization"> [<a
href="#ref-kim2022fractionalization"
role="doc-biblioref">83</a>]</span>.</p>
<p>Amorphous <em>magnetic</em> systems has been investigated since the
1960s, mostly through the adaptation of theoretical tools developed for
disordered systems <span class="citation"
data-cites="aharony1975critical Petrakovski1981 kaneyoshi1992introduction Kaneyoshi2018"> [<a
href="#ref-aharony1975critical" role="doc-biblioref">84</a><a
href="#ref-Kaneyoshi2018" role="doc-biblioref">87</a>]</span> and with
numerical methods <span class="citation"
data-cites="fahnle1984monte plascak2000ising"> [<a
href="#ref-fahnle1984monte" role="doc-biblioref">88</a>,<a
href="#ref-plascak2000ising" role="doc-biblioref">89</a>]</span>.
Research on classical Heisenberg and Ising models has been shown to
account for observed behaviour of ferromagnetism, disordered
antiferromagnetism and widely observed spin glass behaviour <span
class="citation" data-cites="coey1978amorphous"> [<a
href="#ref-coey1978amorphous" role="doc-biblioref">90</a>]</span>.
However, the role of spin-anisotropic interactions and quantum effects
in amorphous magnets has not been addressed. It is an open question
whether frustrated magnetic interactions on amorphous lattices can give
rise genuine quantum phases, i.e. to long-range entangled quantum spin
liquids (QSL) <span class="citation"
data-cites="Anderson1973 Knolle2019 Savary2016 Lacroix2011"> [<a
href="#ref-Anderson1973" role="doc-biblioref">91</a><a
href="#ref-Lacroix2011" role="doc-biblioref">94</a>]</span>.</p>
<p>In Chapter 4 I will introduce the Amorphous Kitaev model, a
generalisation of the Kitaev honeycomb model to random lattices with
fixed coordination number three. We will show that this model is a
soluble chiral amorphous quantum spin liquid. The model retains its
exact solubility but, as with the Yao-Kivelson model <span
class="citation" data-cites="yaoExactChiralSpin2007"> [<a
href="#ref-yaoExactChiralSpin2007" role="doc-biblioref">66</a>]</span>,
the presence of plaquettes with an odd number of sides leads to a
spontaneous breaking of time reversal symmetry. We will confirm prior
observations that the form of the ground state can be written in terms
of the number of sides of elementary plaquettes of the model <span
class="citation"
data-cites="OBrienPRB2016 eschmannThermodynamicClassificationThreedimensional2020"> [<a
href="#ref-OBrienPRB2016" role="doc-biblioref">64</a>,<a
href="#ref-eschmannThermodynamicClassificationThreedimensional2020"
role="doc-biblioref">95</a>]</span>. We unearth a rich phase diagram
displaying Abelian as well as a non-Abelian chiral spin liquid phases.
Furthermore, I show that the system undergoes a finite-temperature phase
transition to a conducting thermal metal state and discuss possible
experimental realisations.</p>
<p>The next chapter, Chapter 2, will introduce some necessary background
to the Falikov-Kimball Model, the Kitaev Honeycomb Model, disorder and
localisation. Then Chapter 3 introduces and studies the Long Range
Falikov-Kimball Model in one dimension while Chapter 4 focusses on the
Amorphous Kitaev Model.</p>
<p>Next Chapter: <a
href="../2_Background/2.1_FK_Model.html#the-falikov-kimball-model">2
Background</a></p>
</section>
<section id="bibliography" class="level1 unnumbered">
<h1 class="unnumbered">Bibliography</h1>
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
<div id="ref-king2012murmurations" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[1] </div><div class="csl-right-inline">A.
J. King and D. J. Sumpter, <em>Murmurations</em>, Current Biology
<strong>22</strong>, R112 (2012).</div>
</div>
<div id="ref-balleriniInteractionRulingAnimal2008" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[2] </div><div class="csl-right-inline">M.
Ballerini et al., <em><a
href="https://doi.org/10.1073/pnas.0711437105">Interaction Ruling Animal
Collective Behavior Depends on Topological Rather Than Metric Distance:
Evidence from a Field Study</a></em>, Proceedings of the National
Academy of Sciences <strong>105</strong>, 1232 (2008).</div>
</div>
<div id="ref-andersonMoreDifferent1972" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[3] </div><div class="csl-right-inline">P.
W. Anderson, <em><a
href="https://doi.org/10.1126/science.177.4047.393">More Is
Different</a></em>, Science <strong>177</strong>, 393 (1972).</div>
</div>
<div id="ref-kivelsonDefiningEmergencePhysics2016" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[4] </div><div class="csl-right-inline">S.
Kivelson and S. A. Kivelson, <em><a
href="https://doi.org/10.1038/npjquantmats.2016.24">Defining Emergence
in Physics</a></em>, Npj Quant Mater <strong>1</strong>, 1 (2016).</div>
</div>
<div id="ref-saslowHistoryThermodynamicsMissing2020" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[5] </div><div class="csl-right-inline">W.
M. Saslow, <em><a href="https://doi.org/10.3390/e22010077">A History of
Thermodynamics: The Missing Manual</a></em>, Entropy (Basel)
<strong>22</strong>, 77 (2020).</div>
</div>
<div id="ref-flammHistoryOutlookStatistical1998" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[6] </div><div class="csl-right-inline">D.
Flamm, <em><a
href="https://doi.org/10.48550/arXiv.physics/9803005">History and
Outlook of Statistical Physics</a></em>, arXiv:physics/9803005.</div>
</div>
<div id="ref-ashcroftSolidStatePhysics1976" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[7] </div><div class="csl-right-inline">N.
W. Ashcroft and N. D. Mermin, <em>Solid State Physics</em> (Holt,
Rinehart and Winston, 1976).</div>
</div>
<div id="ref-isingBeitragZurTheorie1925" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[8] </div><div class="csl-right-inline">E.
Ising, <em><a href="https://doi.org/10.1007/BF02980577">Beitrag zur
Theorie des Ferromagnetismus</a></em>, Z. Physik <strong>31</strong>,
253 (1925).</div>
</div>
<div id="ref-landau2013fluid" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[9] </div><div class="csl-right-inline">L.
D. Landau and E. M. Lifshitz, <em>Fluid Mechanics: Landau and Lifshitz:
Course of Theoretical Physics, Volume 6</em>, Vol. 6 (Elsevier,
2013).</div>
</div>
<div id="ref-jaegerEhrenfestClassificationPhase1998" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[10] </div><div class="csl-right-inline">G.
Jaeger, <em><a href="https://doi.org/10.1007/s004070050021">The
Ehrenfest Classification of Phase Transitions: Introduction and
Evolution</a></em>, Arch Hist Exact Sc. <strong>53</strong>, 51
(1998).</div>
</div>
<div id="ref-blochÜberQuantenmechanikElektronen1929" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[11] </div><div class="csl-right-inline">F.
Bloch, <em><a href="https://doi.org/10.1007/BF01339455">Über die
Quantenmechanik der Elektronen in Kristallgittern</a></em>, Z. Physik
<strong>52</strong>, 555 (1929).</div>
</div>
<div id="ref-MagnetismCondensedMatter" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[12] </div><div class="csl-right-inline">S.
Blundell, <em>Magnetism in Condensed Matter</em> (OUP Oxford,
2001).</div>
</div>
<div id="ref-wenQuantumFieldTheory2007" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[13] </div><div
class="csl-right-inline">X.-G. Wen, <em><a
href="https://doi.org/10.1093/acprof:oso/9780199227259.001.0001">Quantum
Field Theory of Many-Body Systems: From the Origin of Sound to an Origin
of Light and Electrons</a></em> (Oxford University Press, Oxford,
2007).</div>
</div>
<div id="ref-morosanStronglyCorrelatedMaterials2012" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[14] </div><div class="csl-right-inline">E.
Morosan, D. Natelson, A. H. Nevidomskyy, and Q. Si, <em><a
href="https://doi.org/10.1002/adma.201202018">Strongly Correlated
Materials</a></em>, Adv. Mater. <strong>24</strong>, 4896 (2012).</div>
</div>
<div id="ref-MicroscopicTheorySuperconductivity" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[15] </div><div class="csl-right-inline">J.
Bardeen, L. N. Cooper, and J. R. Schrieffer, <em><a
href="https://doi.org/10.1103/PhysRev.106.162">Microscopic Theory of
Superconductivity</a></em>, Phys. Rev. <strong>106</strong>, 162
(1957).</div>
</div>
<div id="ref-feldmanFractionalChargeFractional2021" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[16] </div><div class="csl-right-inline">D.
E. Feldman and B. I. Halperin, <em><a
href="https://doi.org/10.1088/1361-6633/ac03aa">Fractional Charge and
Fractional Statistics in the Quantum Hall Effects</a></em>, Rep. Prog.
Phys. <strong>84</strong>, 076501 (2021).</div>
</div>
<div id="ref-mottBasisElectronTheory1949" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[17] </div><div class="csl-right-inline">N.
F. Mott, <em><a href="https://doi.org/10.1088/0370-1298/62/7/303">The
Basis of the Electron Theory of Metals, with Special Reference to the
Transition Metals</a></em>, Proc. Phys. Soc. A <strong>62</strong>, 416
(1949).</div>
</div>
<div id="ref-fisherMottInsulatorsSpin1999" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[18] </div><div class="csl-right-inline">M.
P. A. Fisher, <em><a href="https://doi.org/10.1007/3-540-46637-1_8">Mott
Insulators, Spin Liquids and Quantum Disordered
Superconductivity</a></em>, in <em>Aspects Topologiques de La Physique
En Basse Dimension. Topological Aspects of Low Dimensional Systems</em>,
edited by A. Comtet, T. Jolicœur, S. Ouvry, and F. David, Vol. 69
(Springer Berlin Heidelberg, Berlin, Heidelberg, 1999), pp.
575641.</div>
</div>
<div id="ref-boerSemiconductorsPartiallyCompletely1937"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[19] </div><div class="csl-right-inline">J.
H. de Boer and E. J. W. Verwey, <em><a
href="https://doi.org/10.1088/0959-5309/49/4S/307">Semi-Conductors with
Partially and with Completely Filled 3d-Lattice Bands</a></em>, Proc.
Phys. Soc. <strong>49</strong>, 59 (1937).</div>
</div>
<div id="ref-mottDiscussionPaperBoer1937" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[20] </div><div class="csl-right-inline">N.
F. Mott and R. Peierls, <em><a
href="https://doi.org/10.1088/0959-5309/49/4S/308">Discussion of the
Paper by de Boer and Verwey</a></em>, Proc. Phys. Soc.
<strong>49</strong>, 72 (1937).</div>
</div>
<div id="ref-bednorzPossibleHighTcSuperconductivity1986"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[21] </div><div class="csl-right-inline">J.
G. Bednorz and K. A. Müller, <em><a
href="https://doi.org/10.1007/BF01303701">Possible highTc
Superconductivity in the BaLaCuO System</a></em>, Z. Physik B -
Condensed Matter <strong>64</strong>, 189 (1986).</div>
</div>
<div id="ref-leeDopingMottInsulator2006" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[22] </div><div class="csl-right-inline">P.
A. Lee, N. Nagaosa, and X.-G. Wen, <em><a
href="https://doi.org/10.1103/RevModPhys.78.17">Doping a Mott Insulator:
Physics of High-Temperature Superconductivity</a></em>, Rev. Mod. Phys.
<strong>78</strong>, 17 (2006).</div>
</div>
<div id="ref-gutzwillerEffectCorrelationFerromagnetism1963"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[23] </div><div class="csl-right-inline">M.
C. Gutzwiller, <em><a
href="https://doi.org/10.1103/PhysRevLett.10.159">Effect of Correlation
on the Ferromagnetism of Transition Metals</a></em>, Phys. Rev. Lett.
<strong>10</strong>, 159 (1963).</div>
</div>
<div id="ref-kanamoriElectronCorrelationFerromagnetism1963"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[24] </div><div class="csl-right-inline">J.
Kanamori, <em><a href="https://doi.org/10.1143/PTP.30.275">Electron
Correlation and Ferromagnetism of Transition Metals</a></em>, Progress
of Theoretical Physics <strong>30</strong>, 275 (1963).</div>
</div>
<div id="ref-hubbardj.ElectronCorrelationsNarrow1963" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[25] </div><div
class="csl-right-inline">Hubbard, J., <em><a
href="https://doi.org/10.1098/rspa.1963.0204">Electron Correlations in
Narrow Energy Bands</a></em>, Proceedings of the Royal Society of
London. Series A. Mathematical and Physical Sciences
<strong>276</strong>, 238 (1963).</div>
</div>
<div id="ref-hubbardElectronCorrelationsNarrow1964" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[26] </div><div class="csl-right-inline">J.
Hubbard and B. H. Flowers, <em><a
href="https://doi.org/10.1098/rspa.1964.0190">Electron Correlations in
Narrow Energy Bands III. An Improved Solution</a></em>, Proceedings of
the Royal Society of London. Series A. Mathematical and Physical
Sciences <strong>281</strong>, 401 (1964).</div>
</div>
<div id="ref-mottMetalInsulatorTransitions1990" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[27] </div><div class="csl-right-inline">N.
Mott, <em><a href="https://doi.org/10.1201/b12795">Metal-Insulator
Transitions</a></em> (CRC Press, London, 1990).</div>
</div>
<div id="ref-law1TTaS2QuantumSpin2017" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[28] </div><div class="csl-right-inline">K.
T. Law and P. A. Lee, <em><a
href="https://doi.org/10.1073/pnas.1706769114">1t-TaS2 as a Quantum Spin
Liquid</a></em>, Proceedings of the National Academy of Sciences
<strong>114</strong>, 6996 (2017).</div>
</div>
<div id="ref-ribakGaplessExcitationsGround2017" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[29] </div><div class="csl-right-inline">A.
Ribak, I. Silber, C. Baines, K. Chashka, Z. Salman, Y. Dagan, and A.
Kanigel, <em><a
href="https://doi.org/10.1103/PhysRevB.96.195131">Gapless Excitations in
the Ground State of
$1t\text{\ensuremath{-}}{\Mathrm{TaS}}_{2}$</a></em>, Phys. Rev. B
<strong>96</strong>, 195131 (2017).</div>
</div>
<div id="ref-slaterMagneticEffectsHartreeFock1951" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[30] </div><div class="csl-right-inline">J.
C. Slater, <em><a href="https://doi.org/10.1103/PhysRev.82.538">Magnetic
Effects and the Hartree-Fock Equation</a></em>, Phys. Rev.
<strong>82</strong>, 538 (1951).</div>
</div>
<div id="ref-greinerQuantumPhaseTransition2002" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[31] </div><div class="csl-right-inline">M.
Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, <em><a
href="https://doi.org/10.1038/415039a">Quantum Phase Transition from a
Superfluid to a Mott Insulator in a Gas of Ultracold Atoms</a></em>,
Nature <strong>415</strong>, 39 (2002).</div>
</div>
<div id="ref-mazurenkoColdatomFermiHubbard2017" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[32] </div><div class="csl-right-inline">A.
Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanász-Nagy, R. Schmidt,
F. Grusdt, E. Demler, D. Greif, and M. Greiner, <em><a
href="https://doi.org/10.1038/nature22362">A Cold-Atom FermiHubbard
Antiferromagnet</a></em>, Nature <strong>545</strong>, 462 (2017).</div>
</div>
<div id="ref-belitzAndersonMottTransition1994" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[33] </div><div class="csl-right-inline">D.
Belitz and T. R. Kirkpatrick, <em><a
href="https://doi.org/10.1103/RevModPhys.66.261">The Anderson-Mott
Transition</a></em>, Rev. Mod. Phys. <strong>66</strong>, 261
(1994).</div>
</div>
<div id="ref-baskoMetalInsulatorTransition2006" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[34] </div><div class="csl-right-inline">D.
M. Basko, I. L. Aleiner, and B. L. Altshuler, <em><a
href="https://doi.org/10.1016/j.aop.2005.11.014">MetalInsulator
Transition in a Weakly Interacting Many-Electron System with Localized
Single-Particle States</a></em>, Annals of Physics <strong>321</strong>,
1126 (2006).</div>
</div>
<div id="ref-brandtThermodynamicsCorrelationFunctions1989"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[35] </div><div class="csl-right-inline">U.
Brandt and C. Mielsch, <em><a
href="https://doi.org/10.1007/BF01321824">Thermodynamics and Correlation
Functions of the Falicov-Kimball Model in Large Dimensions</a></em>, Z.
Physik B - Condensed Matter <strong>75</strong>, 365 (1989).</div>
</div>
<div id="ref-gruberGroundStatesSpinless1990" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[36] </div><div class="csl-right-inline">C.
Gruber, J. Iwanski, J. Jedrzejewski, and P. Lemberger, <em><a
href="https://doi.org/10.1103/PhysRevB.41.2198">Ground States of the
Spinless Falicov-Kimball Model</a></em>, Phys. Rev. B
<strong>41</strong>, 2198 (1990).</div>
</div>
<div id="ref-kennedyItinerantElectronModel1986" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[37] </div><div class="csl-right-inline">T.
Kennedy and E. H. Lieb, <em><a
href="https://doi.org/10.1016/0378-4371(86)90188-3">An Itinerant
Electron Model with Crystalline or Magnetic Long Range Order</a></em>,
Physica A: Statistical Mechanics and Its Applications
<strong>138</strong>, 320 (1986).</div>
</div>
<div id="ref-antipovCriticalExponentsStrongly2014" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[38] </div><div class="csl-right-inline">A.
E. Antipov, E. Gull, and S. Kirchner, <em><a
href="https://doi.org/10.1103/PhysRevLett.112.226401">Critical Exponents
of Strongly Correlated Fermion Systems from Diagrammatic Multiscale
Methods</a></em>, Phys. Rev. Lett. <strong>112</strong>, 226401
(2014).</div>
</div>
<div id="ref-ribicNonlocalCorrelationsSpectral2016" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[39] </div><div class="csl-right-inline">T.
Ribic, G. Rohringer, and K. Held, <em><a
href="https://doi.org/10.1103/PhysRevB.93.195105">Nonlocal Correlations
and Spectral Properties of the Falicov-Kimball Model</a></em>, Phys.
Rev. B <strong>93</strong>, 195105 (2016).</div>
</div>
<div id="ref-freericksExactDynamicalMeanfield2003" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[40] </div><div class="csl-right-inline">J.
K. Freericks and V. Zlatić, <em><a
href="https://doi.org/10.1103/RevModPhys.75.1333">Exact Dynamical
Mean-Field Theory of the Falicov-Kimball Model</a></em>, Rev. Mod. Phys.
<strong>75</strong>, 1333 (2003).</div>
</div>
<div id="ref-herrmannNonequilibriumDynamicalCluster2016"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[41] </div><div class="csl-right-inline">A.
J. Herrmann, N. Tsuji, M. Eckstein, and P. Werner, <em><a
href="https://doi.org/10.1103/PhysRevB.94.245114">Nonequilibrium
Dynamical Cluster Approximation Study of the Falicov-Kimball
Model</a></em>, Phys. Rev. B <strong>94</strong>, 245114 (2016).</div>
</div>
<div id="ref-andersonResonatingValenceBonds1973" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[42] </div><div class="csl-right-inline">P.
W. Anderson, <em><a
href="https://doi.org/10.1016/0025-5408(73)90167-0">Resonating Valence
Bonds: A New Kind of Insulator?</a></em>, Materials Research Bulletin
<strong>8</strong>, 153 (1973).</div>
</div>
<div id="ref-broholmQuantumSpinLiquids2020" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[43] </div><div class="csl-right-inline">C.
Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, M. R. Norman, and T.
Senthil, <em><a href="https://doi.org/10.1126/science.aay0668">Quantum
Spin Liquids</a></em>, Science <strong>367</strong>, eaay0668
(2020).</div>
</div>
<div id="ref-TrebstPhysRep2022" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[44] </div><div class="csl-right-inline">S.
Trebst and C. Hickey, <em><a
href="https://doi.org/10.1016/j.physrep.2021.11.003">Kitaev
Materials</a></em>, Physics Reports <strong>950</strong>, 1
(2022).</div>
</div>
<div id="ref-balentsNodalLiquidTheory1998" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[45] </div><div class="csl-right-inline">L.
Balents, M. P. A. Fisher, and C. Nayak, <em><a
href="https://doi.org/10.1142/S0217979298000570">Nodal Liquid Theory of
the Pseudo-Gap Phase of High-Tc Superconductors</a></em>, Int. J. Mod.
Phys. B <strong>12</strong>, 1033 (1998).</div>
</div>
<div id="ref-balentsDualOrderParameter1999" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[46] </div><div class="csl-right-inline">L.
Balents, M. P. A. Fisher, and C. Nayak, <em><a
href="https://doi.org/10.1103/PhysRevB.60.1654">Dual Order Parameter for
the Nodal Liquid</a></em>, Phys. Rev. B <strong>60</strong>, 1654
(1999).</div>
</div>
<div id="ref-linExactSymmetryWeaklyinteracting1998" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[47] </div><div
class="csl-right-inline">H.-H. Lin, L. Balents, and M. P. A. Fisher,
<em><a href="https://doi.org/10.1103/PhysRevB.58.1794">Exact SO(8)
Symmetry in the Weakly-Interacting Two-Leg Ladder</a></em>, Phys. Rev. B
<strong>58</strong>, 1794 (1998).</div>
</div>
<div id="ref-jackeliMottInsulatorsStrong2009" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[48] </div><div class="csl-right-inline">G.
Jackeli and G. Khaliullin, <em><a
href="https://doi.org/10.1103/PhysRevLett.102.017205">Mott Insulators in
the Strong Spin-Orbit Coupling Limit: From Heisenberg to a Quantum
Compass and Kitaev Models</a></em>, Phys. Rev. Lett.
<strong>102</strong>, 017205 (2009).</div>
</div>
<div id="ref-khaliullinOrbitalOrderFluctuations2005" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[49] </div><div class="csl-right-inline">G.
Khaliullin, <em><a href="https://doi.org/10.1143/PTPS.160.155">Orbital
Order and Fluctuations in Mott Insulators</a></em>, Progress of
Theoretical Physics Supplement <strong>160</strong>, 155 (2005).</div>
</div>
<div id="ref-Jackeli2009" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[50] </div><div class="csl-right-inline">G.
Jackeli and G. Khaliullin, <em><a
href="https://doi.org/10.1103/PhysRevLett.102.017205">Mott Insulators in
the Strong Spin-Orbit Coupling Limit: From Heisenberg to a Quantum
Compass and Kitaev Models</a></em>, Physical Review Letters
<strong>102</strong>, 017205 (2009).</div>
</div>
<div id="ref-HerrmannsAnRev2018" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[51] </div><div class="csl-right-inline">M.
Hermanns, I. Kimchi, and J. Knolle, <em><a
href="https://doi.org/10.1146/annurev-conmatphys-033117-053934">Physics
of the Kitaev Model: Fractionalization, Dynamic Correlations, and
Material Connections</a></em>, Annual Review of Condensed Matter Physics
<strong>9</strong>, 17 (2018).</div>
</div>
<div id="ref-Winter2017" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[52] </div><div class="csl-right-inline">S.
M. Winter, A. A. Tsirlin, M. Daghofer, J. van den Brink, Y. Singh, P.
Gegenwart, and R. Valentí, <em>Models and Materials for Generalized
Kitaev Magnetism</em>, Journal of Physics: Condensed Matter
<strong>29</strong>, 493002 (2017).</div>
</div>
<div id="ref-Takagi2019" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[53] </div><div class="csl-right-inline">H.
Takagi, T. Takayama, G. Jackeli, G. Khaliullin, and S. E. Nagler,
<em>Concept and Realization of Kitaev Quantum Spin Liquids</em>, Nature
Reviews Physics <strong>1</strong>, 264 (2019).</div>
</div>
<div id="ref-witczak-krempaCorrelatedQuantumPhenomena2014"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[54] </div><div class="csl-right-inline">W.
Witczak-Krempa, G. Chen, Y. B. Kim, and L. Balents, <em><a
href="https://doi.org/10.1146/annurev-conmatphys-020911-125138">Correlated
Quantum Phenomena in the Strong Spin-Orbit Regime</a></em>, Annual
Review of Condensed Matter Physics <strong>5</strong>, 57 (2014).</div>
</div>
<div id="ref-kitaevAnyonsExactlySolved2006" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[55] </div><div class="csl-right-inline">A.
Kitaev, <em><a href="https://doi.org/10.1016/j.aop.2005.10.005">Anyons
in an Exactly Solved Model and Beyond</a></em>, Annals of Physics
<strong>321</strong>, 2 (2006).</div>
</div>
<div id="ref-knolleDynamicsFractionalizationQuantum2015"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[56] </div><div class="csl-right-inline">J.
Knolle, D. L. Kovrizhin, J. T. Chalker, and R. Moessner, <em><a
href="https://doi.org/10.1103/PhysRevB.92.115127">Dynamics of
Fractionalization in Quantum Spin Liquids</a></em>, Phys. Rev. B
<strong>92</strong>, 115127 (2015).</div>
</div>
<div id="ref-selfThermallyInducedMetallic2019" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[57] </div><div class="csl-right-inline">C.
N. Self, J. Knolle, S. Iblisdir, and J. K. Pachos, <em><a
href="https://doi.org/10.1103/PhysRevB.99.045142">Thermally Induced
Metallic Phase in a Gapped Quantum Spin Liquid - a Monte Carlo Study of
the Kitaev Model with Parity Projection</a></em>, Phys. Rev. B
<strong>99</strong>, 045142 (2019).</div>
</div>
<div id="ref-kitaev_fault-tolerant_2003" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[58] </div><div class="csl-right-inline">A.
Yu. Kitaev, <em><a
href="https://doi.org/10.1016/S0003-4916(02)00018-0">Fault-Tolerant
Quantum Computation by Anyons</a></em>, Annals of Physics
<strong>303</strong>, 2 (2003).</div>
</div>
<div id="ref-freedmanTopologicalQuantumComputation2003"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[59] </div><div class="csl-right-inline">M.
Freedman, A. Kitaev, M. Larsen, and Z. Wang, <em><a
href="https://doi.org/10.1090/S0273-0979-02-00964-3">Topological Quantum
Computation</a></em>, Bull. Amer. Math. Soc. <strong>40</strong>, 31
(2003).</div>
</div>
<div id="ref-nayakNonAbelianAnyonsTopological2008" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[60] </div><div class="csl-right-inline">C.
Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, <em><a
href="https://doi.org/10.1103/RevModPhys.80.1083">Non-Abelian Anyons and
Topological Quantum Computation</a></em>, Rev. Mod. Phys.
<strong>80</strong>, 1083 (2008).</div>
</div>
<div id="ref-Baskaran2007" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[61] </div><div class="csl-right-inline">G.
Baskaran, S. Mandal, and R. Shankar, <em><a
href="https://doi.org/10.1103/PhysRevLett.98.247201">Exact Results for
Spin Dynamics and Fractionalization in the Kitaev Model</a></em>, Phys.
Rev. Lett. <strong>98</strong>, 247201 (2007).</div>
</div>
<div id="ref-Baskaran2008" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[62] </div><div class="csl-right-inline">G.
Baskaran, D. Sen, and R. Shankar, <em><a
href="https://doi.org/10.1103/PhysRevB.78.115116">Spin- S Kitaev Model:
Classical Ground States, Order from Disorder, and Exact Correlation
Functions</a></em>, Phys. Rev. B <strong>78</strong>, 115116
(2008).</div>
</div>
<div id="ref-Nussinov2009" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[63] </div><div class="csl-right-inline">Z.
Nussinov and G. Ortiz, <em><a
href="https://doi.org/10.1103/PhysRevB.79.214440">Bond Algebras and
Exact Solvability of Hamiltonians: Spin S=½ Multilayer Systems</a></em>,
Physical Review B <strong>79</strong>, 214440 (2009).</div>
</div>
<div id="ref-OBrienPRB2016" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[64] </div><div class="csl-right-inline">K.
OBrien, M. Hermanns, and S. Trebst, <em><a
href="https://doi.org/10.1103/PhysRevB.93.085101">Classification of
Gapless Z₂ Spin Liquids in Three-Dimensional Kitaev Models</a></em>,
Phys. Rev. B <strong>93</strong>, 085101 (2016).</div>
</div>
<div id="ref-hermanns2015weyl" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[65] </div><div class="csl-right-inline">M.
Hermanns, K. OBrien, and S. Trebst, <em>Weyl Spin Liquids</em>,
Physical Review Letters <strong>114</strong>, 157202 (2015).</div>
</div>
<div id="ref-yaoExactChiralSpin2007" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[66] </div><div class="csl-right-inline">H.
Yao and S. A. Kivelson, <em><a
href="https://doi.org/10.1103/PhysRevLett.99.247203">An Exact Chiral
Spin Liquid with Non-Abelian Anyons</a></em>, Phys. Rev. Lett.
<strong>99</strong>, 247203 (2007).</div>
</div>
<div id="ref-eschmann2019thermodynamics" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[67] </div><div class="csl-right-inline">T.
Eschmann, P. A. Mishchenko, T. A. Bojesen, Y. Kato, M. Hermanns, Y.
Motome, and S. Trebst, <em>Thermodynamics of a Gauge-Frustrated Kitaev
Spin Liquid</em>, Physical Review Research <strong>1</strong>, 032011(R)
(2019).</div>
</div>
<div id="ref-Peri2020" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[68] </div><div class="csl-right-inline">V.
Peri, S. Ok, S. S. Tsirkin, T. Neupert, G. Baskaran, M. Greiter, R.
Moessner, and R. Thomale, <em><a
href="https://doi.org/10.1103/PhysRevB.101.041114">Non-Abelian Chiral
Spin Liquid on a Simple Non-Archimedean Lattice</a></em>, Phys. Rev. B
<strong>101</strong>, 041114 (2020).</div>
</div>
<div id="ref-Weaire1971" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[69] </div><div class="csl-right-inline">D.
Weaire and M. F. Thorpe, <em><a
href="https://doi.org/10.1103/PhysRevB.4.2508">Electronic Properties of
an Amorphous Solid. I. A Simple Tight-Binding Theory</a></em>, Phys.
Rev. B <strong>4</strong>, 2508 (1971).</div>
</div>
<div id="ref-betteridge1973possible" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[70] </div><div class="csl-right-inline">G.
Betteridge, <em>A Possible Model of Amorphous Silicon and
Germanium</em>, Journal of Physics C: Solid State Physics
<strong>6</strong>, L427 (1973).</div>
</div>
<div id="ref-mitchellAmorphousTopologicalInsulators2018"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[71] </div><div class="csl-right-inline">N.
P. Mitchell, L. M. Nash, D. Hexner, A. M. Turner, and W. T. M. Irvine,
<em><a href="https://doi.org/10.1038/s41567-017-0024-5">Amorphous
topological insulators constructed from random point sets</a></em>,
Nature Phys <strong>14</strong>, 380 (2018).</div>
</div>
<div id="ref-agarwala2019topological" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[72] </div><div class="csl-right-inline">A.
Agarwala, <em>Topological Insulators in Amorphous Systems</em>, in
<em>Excursions in Ill-Condensed Quantum Matter</em> (Springer, 2019),
pp. 6179.</div>
</div>
<div id="ref-marsalTopologicalWeaireThorpeModels2020" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[73] </div><div class="csl-right-inline">Q.
Marsal, D. Varjas, and A. G. Grushin, <em><a
href="https://doi.org/10.1073/pnas.2007384117">Topological Weaire-Thorpe
Models of Amorphous Matter</a></em>, Proc. Natl. Acad. Sci. U.S.A.
<strong>117</strong>, 30260 (2020).</div>
</div>
<div id="ref-costa2019toward" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[74] </div><div class="csl-right-inline">M.
Costa, G. R. Schleder, M. Buongiorno Nardelli, C. Lewenkopf, and A.
Fazzio, <em>Toward Realistic Amorphous Topological Insulators</em>, Nano
Letters <strong>19</strong>, 8941 (2019).</div>
</div>
<div id="ref-agarwala2020higher" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[75] </div><div class="csl-right-inline">A.
Agarwala, V. Juričić, and B. Roy, <em>Higher-Order Topological
Insulators in Amorphous Solids</em>, Physical Review Research
<strong>2</strong>, 012067 (2020).</div>
</div>
<div id="ref-spring2021amorphous" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[76] </div><div class="csl-right-inline">H.
Spring, A. Akhmerov, and D. Varjas, <em>Amorphous Topological Phases
Protected by Continuous Rotation Symmetry</em>, SciPost Physics
<strong>11</strong>, 022 (2021).</div>
</div>
<div id="ref-corbae2019evidence" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[77] </div><div class="csl-right-inline">P.
Corbae et al., <em>Evidence for Topological Surface States in Amorphous
Bi _ {2} Se _ {3}</em>, arXiv Preprint arXiv:1910.13412 (2019).</div>
</div>
<div id="ref-buckel1954einfluss" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[78] </div><div class="csl-right-inline">W.
Buckel and R. Hilsch, <em>Einfluß Der Kondensation Bei Tiefen
Temperaturen Auf Den Elektrischen Widerstand Und Die Supraleitung Für
Verschiedene Metalle</em>, Zeitschrift Für Physik <strong>138</strong>,
109 (1954).</div>
</div>
<div id="ref-mcmillan1981electron" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[79] </div><div class="csl-right-inline">W.
McMillan and J. Mochel, <em>Electron Tunneling Experiments on Amorphous
Ge 1- x Au x</em>, Physical Review Letters <strong>46</strong>, 556
(1981).</div>
</div>
<div id="ref-meisel1981eliashberg" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[80] </div><div class="csl-right-inline">L.
V. Meisel and P. J. Cote, <em><a
href="https://doi.org/10.1103/PhysRevB.23.5834">Eliashberg Function in
Amorphous Metals</a></em>, Phys. Rev. B <strong>23</strong>, 5834
(1981).</div>
</div>
<div id="ref-bergmann1976amorphous" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[81] </div><div class="csl-right-inline">G.
Bergmann, <em>Amorphous Metals and Their Superconductivity</em>, Physics
Reports <strong>27</strong>, 159 (1976).</div>
</div>
<div id="ref-mannaNoncrystallineTopologicalSuperconductors2022"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[82] </div><div class="csl-right-inline">S.
Manna, S. K. Das, and B. Roy, <em><a
href="http://arxiv.org/abs/2207.02203">Noncrystalline Topological
Superconductors</a></em>, arXiv:2207.02203.</div>
</div>
<div id="ref-kim2022fractionalization" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[83] </div><div class="csl-right-inline">S.
Kim, A. Agarwala, and D. Chowdhury, <em>Fractionalization and Topology
in Amorphous Electronic Solids</em>, arXiv Preprint arXiv:2205.11523
(2022).</div>
</div>
<div id="ref-aharony1975critical" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[84] </div><div class="csl-right-inline">A.
Aharony, <em>Critical Behavior of Amorphous Magnets</em>, Physical
Review B <strong>12</strong>, 1038 (1975).</div>
</div>
<div id="ref-Petrakovski1981" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[85] </div><div class="csl-right-inline">G.
A. Petrakovskii, <em><a
href="https://doi.org/10.1070/pu1981v024n06abeh004850">Amorphous
Magnetic Materials</a></em>, Soviet Physics Uspekhi <strong>24</strong>,
511 (1981).</div>
</div>
<div id="ref-kaneyoshi1992introduction" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[86] </div><div class="csl-right-inline">T.
Kaneyoshi, <em>Introduction to Amorphous Magnets</em> (World Scientific
Publishing Company, 1992).</div>
</div>
<div id="ref-Kaneyoshi2018" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[87] </div><div class="csl-right-inline">T.
Kaneyoshi, editor, <em>Amorphous Magnetism</em> (CRC Press, Boca Raton,
2018).</div>
</div>
<div id="ref-fahnle1984monte" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[88] </div><div class="csl-right-inline">M.
Fähnle, <em>Monte Carlo Study of Phase Transitions in Bond-and
Site-Disordered Ising and Classical Heisenberg Ferromagnets</em>,
Journal of Magnetism and Magnetic Materials <strong>45</strong>, 279
(1984).</div>
</div>
<div id="ref-plascak2000ising" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[89] </div><div class="csl-right-inline">J.
Plascak, L. E. Zamora, and G. P. Alcazar, <em>Ising Model for Disordered
Ferromagnetic Fe- Al Alloys</em>, Physical Review B <strong>61</strong>,
3188 (2000).</div>
</div>
<div id="ref-coey1978amorphous" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[90] </div><div class="csl-right-inline">J.
Coey, <em>Amorphous Magnetic Order</em>, Journal of Applied Physics
<strong>49</strong>, 1646 (1978).</div>
</div>
<div id="ref-Anderson1973" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[91] </div><div class="csl-right-inline">P.
W. Anderson, <em>Resonating Valence Bonds: A New Kind of
Insulator?</em>, Mater. Res. Bull. <strong>8</strong>, 153 (1973).</div>
</div>
<div id="ref-Knolle2019" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[92] </div><div class="csl-right-inline">J.
Knolle and R. Moessner, <em><a
href="https://doi.org/10.1146/annurev-conmatphys-031218-013401">A Field
Guide to Spin Liquids</a></em>, Annual Review of Condensed Matter
Physics <strong>10</strong>, 451 (2019).</div>
</div>
<div id="ref-Savary2016" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[93] </div><div class="csl-right-inline">L.
Savary and L. Balents, <em>Quantum Spin Liquids: A Review</em>, Reports
on Progress in Physics <strong>80</strong>, 016502 (2017).</div>
</div>
<div id="ref-Lacroix2011" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[94] </div><div class="csl-right-inline">C.
Lacroix, P. Mendels, and F. Mila, editors, <em>Introduction to
Frustrated Magnetism</em>, Vol. 164 (Springer-Verlag, Berlin Heidelberg,
2011).</div>
</div>
<div id="ref-eschmannThermodynamicClassificationThreedimensional2020"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[95] </div><div class="csl-right-inline">T.
Eschmann, P. A. Mishchenko, K. OBrien, T. A. Bojesen, Y. Kato, M.
Hermanns, Y. Motome, and S. Trebst, <em><a
href="https://doi.org/10.1103/PhysRevB.102.075125">Thermodynamic
Classification of Three-Dimensional Kitaev Spin Liquids</a></em>, Phys.
Rev. B <strong>102</strong>, 075125 (2020).</div>
</div>
</div>
</section>
</main>
</body>
</html>