personal_site/_thesis/2_Background/2.2_HKM_Model.html

166 lines
6.6 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: Background - The Kitaev Honeycomb Model
excerpt:
layout: none
image:
---
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>Background - The Kitaev Honeycomb Model</title>
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
<script src="/assets/js/thesis_scrollspy.js"></script>
<link rel="stylesheet" href="/assets/css/styles.css">
<script src="/assets/js/index.js"></script>
</head>
<body>
<!--Capture the table of contents from pandoc as a jekyll variable -->
{% capture tableOfContents %}
<br>
<nav aria-label="Table of Contents" class="page-table-of-contents">
<ul>
<li><a href="#the-kitaev-honeycomb-model"
id="toc-the-kitaev-honeycomb-model">The Kitaev Honeycomb Model</a>
<ul>
<li><a href="#bg-hkm-model" id="toc-bg-hkm-model">The Model</a></li>
<li><a href="#a-mapping-to-majorana-fermions"
id="toc-a-mapping-to-majorana-fermions">A mapping to Majorana
Fermions</a></li>
<li><a href="#gauge-fields" id="toc-gauge-fields">Gauge Fields</a></li>
<li><a href="#anyons-topology-and-the-chern-number"
id="toc-anyons-topology-and-the-chern-number">Anyons, Topology and the
Chern number</a></li>
<li><a href="#phase-diagram" id="toc-phase-diagram">Phase
Diagram</a></li>
</ul></li>
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
</ul>
</nav>
{% endcapture %}
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
{% include header.html extra=tableOfContents %}
<main>
<!-- Table of Contents -->
<!-- <nav id="TOC" role="doc-toc">
<ul>
<li><a href="#the-kitaev-honeycomb-model"
id="toc-the-kitaev-honeycomb-model">The Kitaev Honeycomb Model</a>
<ul>
<li><a href="#bg-hkm-model" id="toc-bg-hkm-model">The Model</a></li>
<li><a href="#a-mapping-to-majorana-fermions"
id="toc-a-mapping-to-majorana-fermions">A mapping to Majorana
Fermions</a></li>
<li><a href="#gauge-fields" id="toc-gauge-fields">Gauge Fields</a></li>
<li><a href="#anyons-topology-and-the-chern-number"
id="toc-anyons-topology-and-the-chern-number">Anyons, Topology and the
Chern number</a></li>
<li><a href="#phase-diagram" id="toc-phase-diagram">Phase
Diagram</a></li>
</ul></li>
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
</ul>
</nav>
-->
<!-- Main Page Body -->
<div id="page-header">
<p>2 Background</p>
<hr />
</div>
<section id="the-kitaev-honeycomb-model" class="level1">
<h1>The Kitaev Honeycomb Model</h1>
<p><strong>papers</strong> Jos on dynamics
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.115127</p>
<p><strong>intro</strong> - strong spin orbit coupling leads to
anisotropic spin exchange (as opposed to isotropic exchange like the
Heisenberg model) - geometrical frustration leads to QSL ground state
with long range entanglement (not simple paramagnet)</p>
<ul>
<li>RuCl_3 is the classic QSL candidate material</li>
<li>really follows the Kitaev-Heisenberg model</li>
<li>experimental probes include inelastic neutron scattering, Raman
scattering</li>
</ul>
<section id="bg-hkm-model" class="level2">
<h2>The Model</h2>
<div id="fig:intro_figure_by_hand" class="fignos">
<figure>
<img
src="/assets/thesis/amk_chapter/intro/honeycomb_zoom/intro_figure_by_hand.svg"
data-short-caption="The Kitaev Honeycomb Model" style="width:100.0%"
alt="Figure 1: (a) The standard Kitaev model is defined on a honeycomb lattice. The special feature of the honeycomb lattice that makes the model solvable is that each vertex is joined by exactly three bonds, i.e. the lattice is trivalent. One of three labels is assigned to each (b). We represent the antisymmetric gauge degree of freedom u_{jk} = \pm 1 with arrows that point in the direction u_{jk} = +1 (c). The Majorana transformation can be visualised as breaking each spin into four Majoranas which then pair along the bonds. The pairs of x,y and z Majoranas become part of the classical \mathbb{Z}_2 gauge field u_{ij}. This leavies a single Majorana c_i per site." />
<figcaption aria-hidden="true"><span>Figure 1:</span>
<strong>(a)</strong> The standard Kitaev model is defined on a honeycomb
lattice. The special feature of the honeycomb lattice that makes the
model solvable is that each vertex is joined by exactly three bonds,
i.e. the lattice is trivalent. One of three labels is assigned to each
<strong>(b)</strong>. We represent the antisymmetric gauge degree of
freedom <span class="math inline">\(u_{jk} = \pm 1\)</span> with arrows
that point in the direction <span class="math inline">\(u_{jk} =
+1\)</span> <strong>(c)</strong>. The Majorana transformation can be
visualised as breaking each spin into four Majoranas which then pair
along the bonds. The pairs of x,y and z Majoranas become part of the
classical <span class="math inline">\(\mathbb{Z}_2\)</span> gauge field
<span class="math inline">\(u_{ij}\)</span>. This leavies a single
Majorana <span class="math inline">\(c_i\)</span> per site.</figcaption>
</figure>
</div>
<ul>
<li>strong spin orbit coupling yields spatial anisotropic spin exchange
leading to compass models <span class="citation"
data-cites="kugelJahnTellerEffectMagnetism1982"> [<a
href="#ref-kugelJahnTellerEffectMagnetism1982"
role="doc-biblioref">1</a>]</span></li>
<li>spin model of the Kitaev model is one</li>
<li>has extensively many conserved fluxes</li>
<li></li>
</ul>
</section>
<section id="a-mapping-to-majorana-fermions" class="level2">
<h2>A mapping to Majorana Fermions</h2>
</section>
<section id="gauge-fields" class="level2">
<h2>Gauge Fields</h2>
</section>
<section id="anyons-topology-and-the-chern-number" class="level2">
<h2>Anyons, Topology and the Chern number</h2>
</section>
<section id="phase-diagram" class="level2">
<h2>Phase Diagram</h2>
<div class="sourceCode" id="cb1"><pre
class="sourceCode python"><code class="sourceCode python"></code></pre></div>
<p>Next Section: <a
href="../2_Background/2.3_Disorder.html#bg-disorder-and-localisation">Disorder
and Localisation</a></p>
</section>
</section>
<section id="bibliography" class="level1 unnumbered">
<h1 class="unnumbered">Bibliography</h1>
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
<div id="ref-kugelJahnTellerEffectMagnetism1982" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[1] </div><div class="csl-right-inline">K.
I. Kugel and D. I. Khomskiĭ, <em><a
href="https://doi.org/10.1070/PU1982v025n04ABEH004537">The Jahn-Teller
Effect and Magnetism: Transition Metal Compounds</a></em>, Sov. Phys.
Usp. <strong>25</strong>, 231 (1982).</div>
</div>
</div>
</section>
</main>
</body>
</html>