personal_site/_thesis/6_Appendices/A.1_Particle_Hole_Symmetry.html

136 lines
5.4 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: Particle-Hole Symmetry
excerpt:
layout: none
image:
---
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>Particle-Hole Symmetry</title>
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
<script src="/assets/js/thesis_scrollspy.js"></script>
<link rel="stylesheet" href="/assets/css/styles.css">
<script src="/assets/js/index.js"></script>
</head>
<body>
<!--Capture the table of contents from pandoc as a jekyll variable -->
{% capture tableOfContents %}
<br>
<nav aria-label="Table of Contents" class="page-table-of-contents">
<ul>
<li><a href="#particle-hole-symmetry"
id="toc-particle-hole-symmetry">Particle-Hole Symmetry</a></li>
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
</ul>
</nav>
{% endcapture %}
<!-- Give the table of contents to header as a variable so it can be put into the sidebar-->
{% include header.html extra=tableOfContents %}
<main>
<!-- Table of Contents -->
<!-- <nav id="TOC" role="doc-toc">
<ul>
<li><a href="#particle-hole-symmetry"
id="toc-particle-hole-symmetry">Particle-Hole Symmetry</a></li>
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
</ul>
</nav>
-->
<!-- Main Page Body -->
<div id="page-header">
<p>Appendices</p>
<hr />
</div>
<section id="particle-hole-symmetry" class="level1">
<h1>Particle-Hole Symmetry</h1>
<p>The Hubbard and FK models on a bipartite lattice have particle-hole
(PH) symmetry <span class="math inline">\(\mathcal{P}^\dagger H
\mathcal{P} = - H\)</span>, accordingly they have symmetric energy
spectra. The associated symmetry operator <span
class="math inline">\(\mathcal{P}\)</span> exchanges creation and
annihilation operators along with a sign change between the two
sublattices. In the language of the Hubbard model of electrons <span
class="math inline">\(c_{\alpha,i}\)</span> with spin <span
class="math inline">\(\alpha\)</span> at site <span
class="math inline">\(i\)</span> the particle hole operator corresponds
to the substitution of new fermion operators <span
class="math inline">\(d^\dagger_{\alpha,i}\)</span> and number operators
<span class="math inline">\(m_{\alpha,i}\)</span> where</p>
<p><span class="math display">\[d^\dagger_{\alpha,i} = \epsilon_i
c_{\alpha,i}\]</span> <span class="math display">\[m_{\alpha,i} =
d^\dagger_{\alpha,i}d_{\alpha,i}\]</span></p>
<p>the lattices must be bipartite because to make this work we set <span
class="math inline">\(\epsilon_i = +1\)</span> for the A sublattice and
<span class="math inline">\(-1\)</span> for the even sublattice <span
class="citation" data-cites="gruberFalicovKimballModel2005"> [<a
href="#ref-gruberFalicovKimballModel2005"
role="doc-biblioref">1</a>]</span>.</p>
<p>The entirely filled state <span class="math inline">\(\ket{\Omega} =
\sum_{\alpha,i} c^\dagger_{\alpha,i} \ket{0}\)</span> becomes the new
vacuum state <span class="math display">\[d_{i\sigma} \ket{\Omega} =
(-1)^i c^\dagger_{i\sigma} \sum_{j\rho} c^\dagger_{j\rho} \ket{0} =
0.\]</span></p>
<p>The number operator <span class="math inline">\(m_{\alpha,i} =
0,1\)</span> counts holes rather than electrons <span
class="math display">\[ m_{\alpha,i} = c_{\alpha,i} c^\dagger_{\alpha,i}
= 1 - c^\dagger_{\alpha,i} c_{\alpha,i}.\]</span></p>
<p>With the last equality following from the fermionic commutation
relations. In the case of nearest neighbour hopping on a bipartite
lattice this transformation also leaves the hopping term unchanged
because <span class="math inline">\(\epsilon_i \epsilon_j = -1\)</span>
when <span class="math inline">\(i\)</span> and <span
class="math inline">\(j\)</span> are on different sublattices: <span
class="math display">\[ d^\dagger_{\alpha,i} d_{\alpha,j} = \epsilon_i
\epsilon_j c_{\alpha,i} c^\dagger_{\alpha,j} = c^\dagger_{\alpha,i}
c_{\alpha,j} \]</span></p>
<p>Defining the particle density <span
class="math inline">\(\rho\)</span> as the number of fermions per site:
<span class="math display">\[
\rho = \frac{1}{N} \sum_i \left( n_{i \uparrow} + n_{i \downarrow}
\right)
\]</span></p>
<p>The PH symmetry maps the Hamiltonian to itself with the sign of the
chemical potential reversed and the density inverted about half filling:
<span class="math display">\[ \text{PH} : H(t, U, \mu) \rightarrow H(t,
U, -\mu) \]</span> <span class="math display">\[ \rho \rightarrow 2 -
\rho \]</span></p>
<p>The Hamiltonian is symmetric under PH at <span
class="math inline">\(\mu = 0\)</span> and so must all the observables,
hence half filling <span class="math inline">\(\rho = 1\)</span> occurs
here. This symmetry and known observable acts as a useful test for the
numerical calculations.</p>
<p>Next Section: <a
href="../6_Appendices/A.2_Markov_Chain_Monte_Carlo.html#applying-mcmc-to-the-fk-model">Applying
MCMC to the FK model</a></p>
</section>
<section id="bibliography" class="level1 unnumbered">
<h1 class="unnumbered">Bibliography</h1>
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
<div id="ref-gruberFalicovKimballModel2005" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[1] </div><div class="csl-right-inline">C.
Gruber and D. Ueltschi, <em><a
href="http://arxiv.org/abs/math-ph/0502041">The Falicov-Kimball
Model</a></em>, arXiv:math-Ph/0502041 (2005).</div>
</div>
</div>
</section>
</main>
</body>
</html>