personal_site/_thesis/1.1_FK_Intro.html
2022-08-12 13:18:27 +01:00

3098 lines
168 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: The Falikov-Kimball Model - Introduction
excerpt: The Falikov-Kimball is about the simplest possible testbed we could have for the many electron problem.
layout: none
image:
---
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<meta name="description" content="The Falikov-Kimball is about the simplest possible testbed we could have for the many electron problem." />
<title>The Falikov-Kimball Model - Introduction</title>
<!-- <style>
html {
line-height: 1.5;
font-family: Georgia, serif;
font-size: 20px;
color: #1a1a1a;
background-color: #fdfdfd;
}
body {
margin: 0 auto;
max-width: 36em;
padding-left: 50px;
padding-right: 50px;
padding-top: 50px;
padding-bottom: 50px;
hyphens: auto;
overflow-wrap: break-word;
text-rendering: optimizeLegibility;
font-kerning: normal;
}
@media (max-width: 600px) {
body {
font-size: 0.9em;
padding: 1em;
}
h1 {
font-size: 1.8em;
}
}
@media print {
body {
background-color: transparent;
color: black;
font-size: 12pt;
}
p, h2, h3 {
orphans: 3;
widows: 3;
}
h2, h3, h4 {
page-break-after: avoid;
}
}
p {
margin: 1em 0;
}
a {
color: #1a1a1a;
}
a:visited {
color: #1a1a1a;
}
img {
max-width: 100%;
}
h1, h2, h3, h4, h5, h6 {
margin-top: 1.4em;
}
h5, h6 {
font-size: 1em;
font-style: italic;
}
h6 {
font-weight: normal;
}
ol, ul {
padding-left: 1.7em;
margin-top: 1em;
}
li > ol, li > ul {
margin-top: 0;
}
blockquote {
margin: 1em 0 1em 1.7em;
padding-left: 1em;
border-left: 2px solid #e6e6e6;
color: #606060;
}
code {
font-family: Menlo, Monaco, 'Lucida Console', Consolas, monospace;
font-size: 85%;
margin: 0;
}
pre {
margin: 1em 0;
overflow: auto;
}
pre code {
padding: 0;
overflow: visible;
overflow-wrap: normal;
}
.sourceCode {
background-color: transparent;
overflow: visible;
}
hr {
background-color: #1a1a1a;
border: none;
height: 1px;
margin: 1em 0;
}
table {
margin: 1em 0;
border-collapse: collapse;
width: 100%;
overflow-x: auto;
display: block;
font-variant-numeric: lining-nums tabular-nums;
}
table caption {
margin-bottom: 0.75em;
}
tbody {
margin-top: 0.5em;
border-top: 1px solid #1a1a1a;
border-bottom: 1px solid #1a1a1a;
}
th {
border-top: 1px solid #1a1a1a;
padding: 0.25em 0.5em 0.25em 0.5em;
}
td {
padding: 0.125em 0.5em 0.25em 0.5em;
}
header {
margin-bottom: 4em;
text-align: center;
}
#TOC li {
list-style: none;
}
#TOC ul {
padding-left: 1.3em;
}
#TOC > ul {
padding-left: 0;
}
#TOC a:not(:hover) {
text-decoration: none;
}
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
div.csl-bib-body { }
div.csl-entry {
clear: both;
}
.hanging div.csl-entry {
margin-left:2em;
text-indent:-2em;
}
div.csl-left-margin {
min-width:2em;
float:left;
}
div.csl-right-inline {
margin-left:2em;
padding-left:1em;
}
div.csl-indent {
margin-left: 2em;
}
</style> -->
<!-- <script
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js"
type="text/javascript"></script>
-->
<!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3.0.1/es5/tex-mml-chtml.js"></script>
-->
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
<!--[if lt IE 9]>
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
<![endif]-->
<link rel="stylesheet" href="/assets/css/styles.css">
<script src="/assets/js/index.js"></script>
</head>
<body>
{% include header.html %}
<main>
<nav id="TOC" role="doc-toc">
<ul>
<li><a href="#contributions"
id="toc-contributions">Contributions</a></li>
<li><a href="#introduction" id="toc-introduction">Introduction</a>
<ul>
<li><a href="#localisation" id="toc-localisation">Localisation</a>
<ul>
<li><a href="#the-falikov-kimball-model"
id="toc-the-falikov-kimball-model">The Falikov Kimball Model</a></li>
</ul></li>
<li><a href="#falikov-kimball-and-hubbard-models"
id="toc-falikov-kimball-and-hubbard-models">Falikov Kimball and Hubbard
models</a>
<ul>
<li><a href="#hubbard-model" id="toc-hubbard-model">Hubbard
model</a></li>
<li><a href="#falikov-kimball-model"
id="toc-falikov-kimball-model">Falikov-Kimball model</a></li>
<li><a href="#thermodynamics-of-the-fk-model"
id="toc-thermodynamics-of-the-fk-model">Thermodynamics of the FK
model</a></li>
<li><a href="#thermodynamics"
id="toc-thermodynamics">Thermodynamics</a></li>
<li><a href="#markov-chain-monte-carlo"
id="toc-markov-chain-monte-carlo">Markov Chain Monte Carlo</a></li>
</ul></li>
<li><a href="#localisation-1" id="toc-localisation-1">Localisation</a>
<ul>
<li><a href="#thermalisation"
id="toc-thermalisation">Thermalisation</a></li>
<li><a href="#anderson-localisation"
id="toc-anderson-localisation">Anderson Localisation</a></li>
<li><a href="#many-body-localisation"
id="toc-many-body-localisation">Many Body Localisation</a></li>
<li><a href="#disorder-free-localisation"
id="toc-disorder-free-localisation">Disorder Free localisation</a></li>
<li><a href="#diagnostics-of-localisation"
id="toc-diagnostics-of-localisation">Diagnostics of
Localisation</a></li>
</ul></li>
<li><a href="#numerical-methods" id="toc-numerical-methods">Numerical
Methods</a>
<ul>
<li><a href="#markov-chain-monte-carlo-1"
id="toc-markov-chain-monte-carlo-1">Markov Chain Monte Carlo}</a></li>
<li><a href="#applying-mcmc-to-the-fk-model"
id="toc-applying-mcmc-to-the-fk-model">Applying MCMC to the FK
model}</a></li>
</ul></li>
<li><a href="#markov-chain-monte-carlo-in-practice"
id="toc-markov-chain-monte-carlo-in-practice">Markov Chain Monte-Carlo
in Practice}</a>
<ul>
<li><a href="#quick-intro-to-mcmc" id="toc-quick-intro-to-mcmc">Quick
Intro to MCMC}</a></li>
<li><a href="#convergence-time" id="toc-convergence-time">Convergence
Time}</a></li>
<li><a href="#auto-correlation-time"
id="toc-auto-correlation-time">Auto-correlation Time}</a></li>
<li><a href="#the-metropolis-hastings-algorithm"
id="toc-the-metropolis-hastings-algorithm">The Metropolis-Hastings
Algorithm}</a></li>
<li><a href="#choosing-the-proposal-distribution"
id="toc-choosing-the-proposal-distribution">Choosing the proposal
distribution}</a></li>
<li><a href="#two-step-trick" id="toc-two-step-trick">Two Step
Trick</a></li>
</ul></li>
</ul></li>
<li><a href="#introduction-1"
id="toc-introduction-1">Introduction</a></li>
<li><a href="#the-long-ranged-falikov-kimball-model"
id="toc-the-long-ranged-falikov-kimball-model">The Long-Ranged
Falikov-Kimball Model</a></li>
<li><a href="#the-phase-diagram" id="toc-the-phase-diagram">The Phase
Diagram</a></li>
<li><a href="#markov-chain-monte-carlo-and-emergent-disorder"
id="toc-markov-chain-monte-carlo-and-emergent-disorder">Markov Chain
Monte Carlo and Emergent Disorder</a></li>
<li><a href="#localisation-properties"
id="toc-localisation-properties">Localisation Properties</a></li>
<li><a href="#discussion-conclusion"
id="toc-discussion-conclusion">Discussion &amp; Conclusion</a></li>
<li><a href="#acknowledgments"
id="toc-acknowledgments">Acknowledgments</a></li>
<li><a href="#detailed-balance" id="toc-detailed-balance"><span
id="app:balance" label="app:balance"></span> DETAILED BALANCE</a></li>
<li><a href="#uncorrelated-disorder-model"
id="toc-uncorrelated-disorder-model"><span id="app:disorder_model"
label="app:disorder_model"></span> UNCORRELATED DISORDER MODEL</a></li>
</ul>
</nav>
<h1 id="contributions">Contributions</h1>
<p>This material is this chapter expands on work presented in</p>
<p><span class="citation"
data-cites="hodsonOnedimensionalLongRangeFalikovKimball2021"><sup><a
href="#ref-hodsonOnedimensionalLongRangeFalikovKimball2021"
role="doc-biblioref">1</a></sup></span> <a
href="https://link.aps.org/doi/10.1103/PhysRevB.104.045116">One-dimensional
long-range Falikov-Kimball model: Thermal phase transition and
disorder-free localization</a>, Hodson, T. and Willsher, J. and Knolle,
J., Phys. Rev. B, <strong>104</strong>, 4, 2021,</p>
<p>Johannes had the initial idea to use a long range Ising term to
stablise order in a one dimension Falikov-Kimball model. Josef developed
a proof of concept during a summer project at Imperial. The three of us
brought the project to fruition.</p>
<h1 id="introduction">Introduction</h1>
<h2 id="localisation">Localisation</h2>
<p>The discovery of localisation in quantum systems surprising at the
time given the seeming ubiquity of extended Bloch states. Later, when
thermalisation in quantum systems gained interest, localisation
phenomena again stood out as counterexamples to the eigenstate
thermalisation hypothesis<span class="citation"
data-cites="abaninRecentProgressManybody2017 srednickiChaosQuantumThermalization1994"><sup><a
href="#ref-abaninRecentProgressManybody2017"
role="doc-biblioref">2</a>,<a
href="#ref-srednickiChaosQuantumThermalization1994"
role="doc-biblioref">3</a></sup></span>, allowing quantum systems to
avoid to retain memory of their initial conditions in the face of
thermal noise.</p>
<p>The simplest and first discovered kind is Anderson localisation,
first studied in 1958<span class="citation"
data-cites="andersonAbsenceDiffusionCertain1958"><sup><a
href="#ref-andersonAbsenceDiffusionCertain1958"
role="doc-biblioref">4</a></sup></span> in the context of
non-interacting fermions subject to a static or quenched disorder
potential <span class="math inline">\(V_j\)</span> drawn uniformly from
the interval <span class="math inline">\([-W,W]\)</span></p>
<p><span class="math display">\[
H = -t\sum_{\langle jk \rangle} c^\daggerger_j c_k + \sum_j V_j
c_j^\daggerger c_j
\]</span></p>
<p>this model exhibits exponentially localised eigenfunctions <span
class="math inline">\(\psi(x) = f(x) e^{-x/\lambda}\)</span> which
cannot contribute to transport processes. Initially it was thought that
in one dimensional disordered models, all states would be localised,
however it was later shown that in the presence of correlated disorder,
bands of extended states can exist<span class="citation"
data-cites="izrailevLocalizationMobilityEdge1999 croyAndersonLocalization1D2011 izrailevAnomalousLocalizationLowDimensional2012"><sup><a
href="#ref-izrailevLocalizationMobilityEdge1999"
role="doc-biblioref">5</a><a
href="#ref-izrailevAnomalousLocalizationLowDimensional2012"
role="doc-biblioref">7</a></sup></span>.</p>
<p>Later localisation was found in interacting many-body systems with
quenched disorder:</p>
<p><span class="math display">\[
H = -t\sum_{\langle jk \rangle} c^\daggerger_j c_k + \sum_j V_j
c_j^\daggerger c_j + U\sum_{jk} n_j n_k
\]</span></p>
<p>where the number operators <span class="math inline">\(n_j =
c^\dagger_j c_j\)</span>. Here, in contrast to the Anderson model,
localisation phenomena can be proven robust to weak perturbations of the
Hamiltonian. This is called many-body localisation (MBL)<span
class="citation"
data-cites="imbrieManyBodyLocalizationQuantum2016"><sup><a
href="#ref-imbrieManyBodyLocalizationQuantum2016"
role="doc-biblioref">8</a></sup></span>.</p>
<p>Both MBL and Anderson localisation depend crucially on the presence
of quenched disorder. This has led to ongoing interest in the
possibility of disorder-free localisation, in which the disorder
necessary to generate localisation is generated entirely from the
dynamics of the model. This contracts with typical models of disordered
systems in which disorder is explicielty introduced into the Hamilton or
the initial state.</p>
<p>The concept of disorder-free localisation was first proposed in the
context of Helium mixtures<span class="citation"
data-cites="kagan1984localization"><sup><a
href="#ref-kagan1984localization"
role="doc-biblioref">9</a></sup></span> and then extended to heavy-light
mixtures in which multiple species with large mass ratios interact. The
idea is that the heavier particles act as an effective disorder
potential for the lighter ones, inducing localisation. Two such
models<span class="citation"
data-cites="yaoQuasiManyBodyLocalizationTranslationInvariant2016 schiulazDynamicsManybodyLocalized2015"><sup><a
href="#ref-yaoQuasiManyBodyLocalizationTranslationInvariant2016"
role="doc-biblioref">10</a>,<a
href="#ref-schiulazDynamicsManybodyLocalized2015"
role="doc-biblioref">11</a></sup></span> instead find that the models
thermalise exponentially slowly in system size, which Ref.<span
class="citation"
data-cites="yaoQuasiManyBodyLocalizationTranslationInvariant2016"><sup><a
href="#ref-yaoQuasiManyBodyLocalizationTranslationInvariant2016"
role="doc-biblioref">10</a></sup></span> dubs Quasi-MBL.</p>
<p>True disorder-free localisation does occur in exactly solveable
models with extensively many conserved quantities<span class="citation"
data-cites="smithDisorderFreeLocalization2017"><sup><a
href="#ref-smithDisorderFreeLocalization2017"
role="doc-biblioref">12</a></sup></span>. As conserved quantites have no
time dynamics this can be thought of as taking the separation of
timescales to the infinite limit.</p>
<h3 id="the-falikov-kimball-model">The Falikov Kimball Model</h3>
<p>In the Falikov Kimball (FK) model spinless fermions <span
class="math inline">\(c_{i\uparrow}\)</span> are coupled via a repulsive
on-site interaction to a classical degree of freedom <span
class="math inline">\(n_{i\downarrow}\)</span>.</p>
<p><span class="math display">\[\begin{aligned}
H &amp;= -t \sum_{&lt;ij&gt;} c^\daggerger_{i\uparrow}c_{j\uparrow} + U
\sum_{i} (n_{i \uparrow} - 1/2)( n_{i\downarrow} - 1/2) \\
&amp; - \mu \sum_i \left( n_{i \uparrow} + n_{i \downarrow}
\right) + \sum_{ij} V_{ij} (n_{i\downarrow} - 1/2)(n_{j\downarrow} -
1/2)
\end{aligned}\]</span> <strong>replace with hamiltonian from the
paper</strong></p>
<p>This notation emphasises that this can also be thought of as an
asymmetric Hubbard model in which the spin down electrons cannot hop and
are subject to an additional long range potential. However, to avoid the
confusion of talking about two distinct species of spinless electrons we
will use a different interpretation and refer to the classical degrees
of freedom as the “ionic sector” and the quantum degrees of freedom as
the “electronic sector”. The final term that induces interactions
between the classical particles has been added by us to stabilise the
formation of an ordered phase in 1D. The classical variables commute
with the Hamiltonian <span class="math inline">\([H, n_{i\downarrow}] =
0\)</span> so like the lattice gauge model in Ref<span class="citation"
data-cites="smithDisorderFreeLocalization2017"><sup><a
href="#ref-smithDisorderFreeLocalization2017"
role="doc-biblioref">12</a></sup></span>} the FK model has extensively
many conserved quantities which can act as an effective disorder
potential for the electronic sector.</p>
<p>Due to Pauli exclusion, the maximum filling occurs when one of each
species occupies each lattice site such that <span
class="math inline">\(\sum_i (n_{i\downarrow} + n_{i\uparrow} )/ N =
2\)</span>. Here we focus on the half filled case which also displays
particle-hole symmetry (see later).</p>
<h2 id="falikov-kimball-and-hubbard-models">Falikov Kimball and Hubbard
models</h2>
<p>We will first introduce the standard Hubbard and Falikov-Kimball (FK)
models then look at some of their properties. Well then cover why the
Falikov-Kimball model represents an interesting system in which to study
disorder free localisation.</p>
<h3 id="hubbard-model">Hubbard model</h3>
<p>The Hubbard model gives a very simple setting in which to study
interacting, itinerant electrons. It is a tight binding model of spin
half electrons with finite bandwidth <span
class="math inline">\(t\)</span> and a repulsive on-site interaction
<span class="math inline">\(U &gt; 0\)</span>.</p>
<p><span class="math display">\[
H = -\sum_{&lt;ij&gt;,\sigma} t_{\sigma}
c^\dagger_{i\sigma}c_{j\sigma} + U \sum_{i} (n_{i \uparrow} - 1/2)(
n_{i\downarrow} - 1/2) - \mu \sum_i \left( n_{i \uparrow} + n_{i
\downarrow} \right)
\]</span></p>
<p>in standard notation. The standard Hubbard model corresponds to the
case <span class="math inline">\(t_{\uparrow} = t_{\downarrow}\)</span>.
Here we have used the particle-hole symmetric version of the interaction
term, which is more often given as <span class="math inline">\(n_{i
\uparrow} n_{i\downarrow}\)</span>. The difference just amounts to a
redefinition of the chemical potential.</p>
<p>Hubbard originally used the model at half filling <span
class="math inline">\(\mu = 0\)</span> to explain the Mott
metal-insulator (MI) transition, however it has seen applications to
high-temperature superconductivity and become target for cold-atom
optical trap experiments.<span class="citation"
data-cites="HubbardModelHalf2013"><sup><a
href="#ref-HubbardModelHalf2013"
role="doc-biblioref">13</a></sup></span>, greiner_quantum_2002,
jordens_mott_2008}. While simple, only a few analytic results exist,
namely the Bethe ansatz<span class="citation"
data-cites="liebAbsenceMottTransition1968"><sup><a
href="#ref-liebAbsenceMottTransition1968"
role="doc-biblioref">14</a></sup></span>} which proves the absence of
even a zero temperature phase transition in the 1D model and Nagaokas
theorem<span class="citation"
data-cites="nagaokaFerromagnetismNarrowAlmost1966"><sup><a
href="#ref-nagaokaFerromagnetismNarrowAlmost1966"
role="doc-biblioref">15</a></sup></span>} which proves that the three
dimensional model has a ferromagnetic ground state in the vicinity of
half filling.</p>
<h3 id="falikov-kimball-model">Falikov-Kimball model</h3>
<p>The Falikov-Kimball model corresponds to the case <span
class="math inline">\(t_{\downarrow} = 0\)</span>. It can be interpreted
as two coupled spinless electron bands with infinite mass ratio. An
itinerant light species with creation operator <span
class="math inline">\(c^\dagger_{i\uparrow}\)</span> coupled to an
infinitely heavy, immobile species with density operator <span
class="math inline">\(n_{i\downarrow}\)</span>. These are often called c
and f electrons or electrons and ions. The model was first introduced by
Hubbard in 1963 as a model of interacting localised and de-localised
electron bands and gained its name from Falikov and Kimballs use of it
to study the MI transition in rare-earth materials<span class="citation"
data-cites="hubbardj.ElectronCorrelationsNarrow1963"><sup><a
href="#ref-hubbardj.ElectronCorrelationsNarrow1963"
role="doc-biblioref">16</a></sup></span>, falicov_simple_1969}.</p>
<p>Here we will use refer to the light spinless species as
<code>electrons' with creation operator $c^\dagger_{i}$ and the heavy species as</code>ions
with density operator <span class="math inline">\(n_i\)</span>. When the
the density operator of the electrons is needed Ill always use <span
class="math inline">\(c^\dagger_{i}c_{i}\)</span>. We also set <span
class="math inline">\(t = 1\)</span>.</p>
<p><span class="math display">\[
H_{\mathrm{FK}} = -\sum_{&lt;ij&gt;} c^\dagger_{i}c_{j} + U \sum_{i}
(c^\dagger_{i}c_{i} - 1/2)( n_i - 1/2) - \mu \sum_i
\left(c^\dagger_{i}c_{i} + n_{i}\right)
\]</span> % ### Particle-Hole Symmetry The Hubbard and FK models on a
bipartite lattice have particle-hole (PH) symmetry <span
class="math inline">\(P^\dagger H P = - H\)</span>, accordingly they
have symmetric energy spectra. The associated symmetry operator <span
class="math inline">\(P\)</span> exchanges creation and annihilation
operators along with a sign change between the two sublattices.</p>
<p><span class="math display">\[ d^\dagger_{i\sigma} = (-1)^i
c_{i\sigma}\]</span> % The entirely filled state <span
class="math inline">\(\ket{\Omega} = \sum_{j\rho} c^\dagger_{j\rho}
\ket{0}\)</span> becomes the new vacuum state: <span
class="math display">\[d_{i\sigma} \ket{\Omega} = (-1)^i
c^\dagger_{i\sigma} \sum_{j\rho} c^\dagger_{j\rho} \ket{0} = 0\]</span>
% The number operator <span class="math inline">\(n_{i\sigma} =
0,1\)</span> counts holes rather than particles: <span
class="math display">\[ d^\dagger_{i\sigma} d_{i \sigma} = c_{i\sigma}
c^\dagger_{i\sigma} = 1 - c^\dagger_{i\sigma} c_{i\sigma}\]</span> %
With the last equality following from the fermionic commutation
relations. In the case of nearest neighbour hopping on a bipartite
lattice this transformation also leaves the hopping term unchanged:
<span class="math display">\[ d^\dagger_{i\sigma} d_{j \sigma} =
(-1)^{i+j} c_{i\sigma} c^\dagger_{j\sigma} = c^\dagger_{i\sigma}
c_{j\sigma} \]</span> % Since when <span
class="math inline">\(i\)</span> and <span
class="math inline">\(j\)</span> label sites on separate sublattices,
<span class="math inline">\((-1)^{i-j} = -1\)</span> and this is
absorbed into rearranging the operators via their anti-commutator.</p>
<p>Defining the particle density <span
class="math inline">\(\rho\)</span> as the number of fermions per site:
<span class="math display">\[
\rho = \frac{1}{N} \sum_i \left( n_{i \uparrow} + n_{i \downarrow}
\right)
\]</span> % The PH symmetry maps the Hamiltonian to itself with the sign
of the chemical potential reversed and the density is inverted about
half filling: <span class="math display">\[ \text{PH} : H(t, U, \mu)
\rightarrow H(t, U, -\mu) \]</span> <span class="math display">\[ \rho
\rightarrow 2 - \rho \]</span> % The Hamiltonian is symmetric under PH
at <span class="math inline">\(\mu = 0\)</span> and so must all the
observables, hence half filling <span class="math inline">\(\rho =
1\)</span> occurs here. This symmetry and known observable acts as a
useful test for the numerical calculations.</p>
<h3 id="thermodynamics-of-the-fk-model">Thermodynamics of the FK
model</h3>
\begin{figure}
<p>} \end{figure}</p>
<p>At half filling and in dimensions greater than one, the FK model
exhibits a phase transition at some <span
class="math inline">\(U\)</span> dependent critical temperature <span
class="math inline">\(T_c(U)\)</span> to a low temperature charge
density wave state in which the ions occupy one of the two sublattices A
and B<span class="citation"
data-cites="maskaThermodynamicsTwodimensionalFalicovKimball2006"><sup><a
href="#ref-maskaThermodynamicsTwodimensionalFalicovKimball2006"
role="doc-biblioref">17</a></sup></span>}. The order parameter is the
square of the staggered magnetisation: <span class="math display">\[
M = \sum_{i \in A} n_i - \sum_{i \in B} n_i
\]</span> % In the disordered phase Ref.<span class="citation"
data-cites="andersonAbsenceDiffusionCertain1958"><sup><a
href="#ref-andersonAbsenceDiffusionCertain1958"
role="doc-biblioref">4</a></sup></span>} identifies an interplay between
Anderson localisation at weak interaction and a Mott insulator phase in
the strongly interacting regime.</p>
<p>In the one dimensional FK model, however, Peierls argument<span
class="citation"
data-cites="peierlsIsingModelFerromagnetism1936"><sup><a
href="#ref-peierlsIsingModelFerromagnetism1936"
role="doc-biblioref">18</a></sup></span>,
kennedyItinerantElectronModel1986} and the Bethe ansatz<span
class="citation" data-cites="liebAbsenceMottTransition1968"><sup><a
href="#ref-liebAbsenceMottTransition1968"
role="doc-biblioref">14</a></sup></span>} make it clear that there is no
ordered CDW phase. Peierls argument is that one should consider the
difference in free energy <span class="math inline">\(\Delta F = \Delta
E - T\Delta S\)</span> between an ordered state and a state with single
domain wall in the order parameter. In the Ising model this would be
having the spins pointing up in one part of the model and down in the
other, for a CDW phase it means having the ions occupy the A sublattice
in one part and the B sublattice in the other.</p>
<p>Short range interactions will produce a constant energy penalty for
such a domain wall that does not scale with system size while in 1D
there are <span class="math inline">\(L\)</span> such states so the
domain wall is associated with entropy <span class="math inline">\(S
\propto \ln L\)</span> which dominates in the thermodynamic limit. The
slow logarithmic scaling suggests we should be wary of finite size
scaling effects.</p>
<p>One dimensional systems are more amenable to numerical and
experimental study so we add long range staggered interactions to bring
back the ordered phase:</p>
<p><span class="math display">\[ H_{\textrm{int}} = 4J \sum_{ij}
\frac{(-1)^{|i-j|}}{ |i - j|^{\alpha} } (n_i - 1/2) (n_j - 1/2) = J
\sum_{ij} |i - j|^{-\alpha} \tau_i \tau_j\]</span> % at half-filling the
modified Hamiltonian is then: <span class="math display">\[
H_{\mathrm{FK}}^* &amp;= -\sum_{&lt;ij&gt;} c^\dagger_{i}c_{j} + U
\sum_{i} (c^\dagger_{i}c_{i} - 1/2)( n_i - 1/2) \\
&amp;+ 4J \sum_{ij} \frac{(-1)^{|i-j|}}{ |i - j|^{\alpha} } (n_i -
1/2) (n_j - 1/2) \\
&amp;= -\sum_{&lt;ij&gt;} c^\dagger_{i}c_{j} + 2U \sum_{i} (-1)^i
(c^\dagger_{i}c_{i} - 1/2)\tau_i + J \sum_{ij} |i - j|^{-\alpha} \tau_i
\tau_j \\
\]</span> % The form of this interaction comes from interpreting the
f-electrons as a classical Ising chain using a staggered mapping <span
class="math inline">\(\tau_i = (-1)^i (2n_i^ f - 1)\)</span> so that
ferromagnetic order in the <span class="math inline">\(\tau_i\)</span>
variables corresponds to a CDW state in the <span
class="math inline">\(n_i^f\)</span> variables. It also preserves the
particle hole symmetry because for the ions the PH transformation
corresponds to <span class="math inline">\(n_i \rightarrow 1 -
n_i\)</span>. When <span class="math inline">\(U = 0\)</span> the model
decouples into a long ranged Ising model and free fermions.</p>
<p>Our extension to the FK model could now be though of as spinless
fermions coupled to a long range Ising (LRI) model. The LRI model has
been extensively studied and its behaviour may be bear relation to the
behaviour of our modified FK model.</p>
<p><span class="math display">\[H_{\mathrm{LRI}} = \sum_{ij}
J(\abs{i-j}) \tau_i \tau_j = J \sum_{i\neq j} |i - j|^{-\alpha} \tau_i
\tau_j\]</span> % Rigorous renormalisation group arguments show that the
LRI model has an ordered phase in 1D for $1 &lt; &lt; 2 $<span
class="citation"
data-cites="dysonExistencePhasetransitionOnedimensional1969"><sup><a
href="#ref-dysonExistencePhasetransitionOnedimensional1969"
role="doc-biblioref">19</a></sup></span>}. Peierls argument can be
extended<span class="citation"
data-cites="thoulessLongRangeOrderOneDimensional1969"><sup><a
href="#ref-thoulessLongRangeOrderOneDimensional1969"
role="doc-biblioref">20</a></sup></span>} to provide intuition for why
this is the case. Again considering the energy difference between the
ordered state <span
class="math inline">\(\ket{\ldots\uparrow\uparrow\uparrow\uparrow\ldots}\)</span>
and a domain wall state <span
class="math inline">\(\ket{\ldots\uparrow\uparrow\downarrow\downarrow\ldots}\)</span>.
In the case of the LRI model, careful counting shows that this energy
penalty is: <span class="math display">\[\Delta E \propto
\sum_{n=1}^{\infty} n J(n)\]</span> % because each interaction between
spins separated across the domain by a bond length <span
class="math inline">\(n\)</span> can be drawn between <span
class="math inline">\(n\)</span> equivalent pairs of sites. Ruelle
proved rigorously for a very general class of 1D systems, that if <span
class="math inline">\(\Delta E\)</span> or its many-body generalisation
converges in the thermodynamic limit then the free energy is
analytic<span class="citation"
data-cites="ruelleStatisticalMechanicsOnedimensional1968"><sup><a
href="#ref-ruelleStatisticalMechanicsOnedimensional1968"
role="doc-biblioref">21</a></sup></span>}. This rules out a finite order
phase transition, though not one of the Kosterlitz-Thouless type. Dyson
also proves this though with a slightly different condition on <span
class="math inline">\(J(n)\)</span><span class="citation"
data-cites="dysonExistencePhasetransitionOnedimensional1969"><sup><a
href="#ref-dysonExistencePhasetransitionOnedimensional1969"
role="doc-biblioref">19</a></sup></span>}.</p>
<p>With a power law form for <span class="math inline">\(J(n)\)</span>,
there are three cases to consider:</p>
<ol type="1">
<li>$ = 0$ For infinite range interactions the Ising model is exactly
solveable and mean field theory is exact<span class="citation"
data-cites="lipkinValidityManybodyApproximation1965"><sup><a
href="#ref-lipkinValidityManybodyApproximation1965"
role="doc-biblioref">22</a></sup></span>}.</li>
<li>$ $ For slowly decaying interactions <span
class="math inline">\(\sum_n J(n)\)</span> does not converge so the
Hamiltonian is non-extensive, a case which wont be further considered
here.</li>
<li>$ 1 &lt; &lt; 2 $ A phase transition to an ordered state at a finite
temperature.</li>
<li>$ = 2 $ The energy of domain walls diverges logarithmically, and
this turns out to be a Kostelitz-Thouless transition<span
class="citation"
data-cites="thoulessLongRangeOrderOneDimensional1969"><sup><a
href="#ref-thoulessLongRangeOrderOneDimensional1969"
role="doc-biblioref">20</a></sup></span>}.</li>
<li>$ 2 &lt; $ For quickly decaying interactions, domain walls have a
finite energy penalty, hence Peirels argument holds and there is no
phase transition.</li>
</ol>
<h3 id="thermodynamics">Thermodynamics</h3>
<p>On bipartite lattices in dimensions 2 and above the FK model exhibits
a finite temperature phase transition to an ordered charge density wave
(CDW) phase<span class="citation"
data-cites="maskaThermodynamicsTwodimensionalFalicovKimball2006"><sup><a
href="#ref-maskaThermodynamicsTwodimensionalFalicovKimball2006"
role="doc-biblioref">17</a></sup></span>. In this phase, the ions are
confined to one of the two sublattices, breaking the <span
class="math inline">\(\mathbb{Z}_2\)</span> symmetry.</p>
<p>In 1D, however, Periels argument<span class="citation"
data-cites="peierlsIsingModelFerromagnetism1936 kennedyItinerantElectronModel1986"><sup><a
href="#ref-peierlsIsingModelFerromagnetism1936"
role="doc-biblioref">18</a>,<a
href="#ref-kennedyItinerantElectronModel1986"
role="doc-biblioref">23</a></sup></span> states that domain walls only
introduce a constant energy penalty into the free energy while bringing
a entropic contribution logarithmic in system size. Hence the 1D model
does not have a finite temperature phase transition. However 1D systems
are much easier to study numerically and admit simpler realisations
experimentally. We therefore introduce a long range coupling between the
ions in order to stabilise a CDW phase in 1D. This leads to a disordered
system that is gaped by the CDW background but with correlated
fluctuations leading to a disorder-free correlation induced mobility
edge in one dimension.</p>
<h3 id="markov-chain-monte-carlo">Markov Chain Monte Carlo</h3>
<p>To evaluate thermodynamic averages we perform a classical Markov
Chain Monte Carlo random walk over the space of ionic configurations, at
each step diagonalising the effective electronic Hamiltonian<span
class="citation"
data-cites="maskaThermodynamicsTwodimensionalFalicovKimball2006"><sup><a
href="#ref-maskaThermodynamicsTwodimensionalFalicovKimball2006"
role="doc-biblioref">17</a></sup></span>}. Using a binder-cumulant
method<span class="citation"
data-cites="binderFiniteSizeScaling1981 musialMonteCarloSimulations2002"><sup><a
href="#ref-binderFiniteSizeScaling1981" role="doc-biblioref">24</a>,<a
href="#ref-musialMonteCarloSimulations2002"
role="doc-biblioref">25</a></sup></span>, we demonstrate the model has a
finite temperature phase transition when the interaction is sufficiently
long ranged. We then estimate the density of states and the inverse
participation ratio as a function of energy to diagnose localisation
properties. We show preliminary results that the in-gap states induced
at finite temperature are localised while the states in the unperturbed
bands remain extended, evidence for a mobility edge.</p>
<div id="fig:binder" class="fignos">
<figure>
<img src="/assets/thesis/figure_code/fk_chapter/binder.png"
style="width:100.0%" alt="Figure 1: Hello I am the figure caption!" />
<figcaption aria-hidden="true"><span>Figure 1:</span> Hello I am the
figure caption!</figcaption>
</figure>
</div>
<p>Macro definitions in this cell <span class="math display">\[
\newcommand{\expval}[1]{\langle #1 \rangle}
\newcommand{\ket}[1]{|#1\rangle}
\newcommand{\bra}[1]{\langle#1|}
\newcommand{\op}[2]{|#1\rangle \langle#2|}
\]</span></p>
<p><span class="math display">\[
\expval{O}, \op{\alpha}{\beta}, \ket{\psi}
\]</span></p>
<h2 id="localisation-1">Localisation</h2>
<h3 id="thermalisation">Thermalisation</h3>
<p>Isolated classical systems generally thermalise if they are large
enough. Since classical dynamics is the limit of some underlying quantum
dynamics, it seems reasonable to suggest that isolated quantum systems
also thermalise in some related sense. However it is not immediately
obvious what thermalisation should mean in a quantum setting where the
presence of unitary time dynamics implies full information about a
systems initial state is always preserved.</p>
<p>A potential solution lies in the eigenstate thermalisation
hypothesis. It states that if a system thermalises, then we can isolate
small patches of a larger system, trace everyhing else out, and get a
thermal density matrix.</p>
<p>Following Ref.<span class="citation"
data-cites="abaninRecentProgressManybody2017"><sup><a
href="#ref-abaninRecentProgressManybody2017"
role="doc-biblioref">2</a></sup></span>, consider the time evolution of
a local operator <span class="math inline">\(\hat{O}\)</span> <span
class="math display">\[ \expval{\hat{O}}{\psi(t)} = \sum_{\alpha \beta}
C^*_\alpha C_\beta e^{i(E_\alpha - E_\beta)} O_{\alpha
\beta}\]</span></p>
<p>Where <span class="math inline">\(C_\alpha\)</span> are determined by
the initial state and <span class="math inline">\(O_{\alpha \beta} =
\expval{\alpha | \hat{O} | \beta}\)</span> are the matrix elements of
<span class="math inline">\(\hat{O}\)</span> with respect to the energy
eigenstates. Srednicki<span class="citation"
data-cites="srednickiChaosQuantumThermalization1994"><sup><a
href="#ref-srednickiChaosQuantumThermalization1994"
role="doc-biblioref">3</a></sup></span>} introduced the ansatz that for
local operators:</p>
<p><span class="math display">\[O_{\alpha \beta} =
O(E)\delta_{\alpha\beta} + e^{-S(E)/2} f(E,\omega)
R_{\alpha\beta}\]</span></p>
<p>with <span class="math inline">\(E = (E_\alpha + E_\beta)\)</span>,
<span class="math inline">\(\omega = (E_\alpha - E_\beta)\)</span> and
<span class="math inline">\(R_{\alpha\beta}\)</span> are sampled from
some distribution with zero mean and unit variance. The first term
asserts that the diagonal elements are given by the thermal expectation
value <span class="math inline">\(O(E) = Tr[e^{-\beta \hat{H}}
\hat{O}]/\mathcal{Z}\)</span> with <span
class="math inline">\(\beta\)</span> an effective temperature defined by
equating the energy to the expectation of the Hamiltonian at that
temperature <span class="math inline">\(E = Tr[H e^{-\beta
\hat{H}}/\mathcal{Z}]\)</span>.</p>
<p>The second term deals with thermodynamic fluctuations scaled by the
entropy <span class="math inline">\(S(E) = -Tr(\rho \log \rho)\)</span>
where <span class="math inline">\(\rho = e^{-\beta \hat{H}}\)</span> and
<span class="math inline">\(\mathcal{Z} = Tr[e^{-\beta
\hat{H}}]\)</span>.</p>
<p>With this ansatz the long time average of the observable becomes
equal to the thermal expectations with fluctuations suppressed by the
entropic term <span class="math inline">\(e^{-S(E)}\)</span> and the
rapidly varying phase factors <span class="math inline">\(e^{i(E_\alpha
- E_\beta)}\)</span>. This statement of the ETH has verified for the
quantum hard sphere model<span class="citation"
data-cites="srednickiChaosQuantumThermalization1994"><sup><a
href="#ref-srednickiChaosQuantumThermalization1994"
role="doc-biblioref">3</a></sup></span> and numerically for other
models<span class="citation"
data-cites="khatamiFluctuationDissipationTheoremIsolated2013 dalessioQuantumChaosEigenstate2016"><sup><a
href="#ref-khatamiFluctuationDissipationTheoremIsolated2013"
role="doc-biblioref">26</a>,<a
href="#ref-dalessioQuantumChaosEigenstate2016"
role="doc-biblioref">27</a></sup></span>.</p>
<p>An alternate view on ETH is the statement that in thermalising
systems individual eigenstates look thermal when viewed locally. Take a
eigenstate <span class="math inline">\(|\alpha\rangle\)</span> with
energy <span class="math inline">\(E_\alpha\)</span> and as before
define an effective temperature with <span
class="math inline">\(E_\alpha = Tr[H e^{-\beta
\hat{H}}/\mathcal{Z}]\)</span>. This statement of the ETH says that if
we partition the system into subsystems A and B with a limit taken as B
becomes very large, B will act as a heat bath for A. Specifically the
reduced density matrix <span class="math inline">\(\rho_A = Tr_B
\op{\alpha}{\alpha}\)</span> is equal to the thermal density matrix:</p>
<p><span class="math display">\[\rho_A = Tr_B |\alpha\rangle \langle
\alpha| = \mathcal{Z}^{-1} Tr_B [e^{-\beta \hat{H}}] \]</span></p>
<p>Intuitively, for thermalisation to happen, the degrees of freedom
must be sufficiently well coupled that energy transport occurs. This
condition is broken by systems with localised states so a lack of
thermalisation is often used as a diagnostic tool for localisation.</p>
<h3 id="anderson-localisation">Anderson Localisation</h3>
<p>Localisation was first studied by Anderson in 1958<span
class="citation"
data-cites="andersonAbsenceDiffusionCertain1958"><sup><a
href="#ref-andersonAbsenceDiffusionCertain1958"
role="doc-biblioref">4</a></sup></span> in the context of
non-interacting fermions subject to a static or quenched disorder
potential <span class="math inline">\(V_j\)</span> drawn uniformly from
the interval <span class="math inline">\([-W,W]\)</span>:</p>
<p><span class="math display">\[
H = -t\sum_{\expval{jk}} c^\dagger_j c_k + \sum_j V_j c_j^\dagger c_j
\]</span></p>
<p>At sufficiently strong disorder the Anderson model exhibits
exponentially localised eigenfunctions <span
class="math inline">\(\psi(x) = f(x) e^{-x/\lambda}\)</span> which
cannot contribute to diffusive transport processes. Except in 1D where
any disorder strength is sufficient. Intuitively this happens because
hopping processes between nearby sites become off-resonant, hindering
the hybridisation that would normally lead to extended Bloch states<span
class="citation"
data-cites="kramerLocalizationTheoryExperiment1993"><sup><a
href="#ref-kramerLocalizationTheoryExperiment1993"
role="doc-biblioref">28</a></sup></span>.</p>
<p>In one and two dimensions, all the states in the Anderson model are
localised. In three dimensions there are mobility edges. Mobility edges
are critical energies in the spectrum which separate delocalised states
in a band from localised states which form a band tail<span
class="citation" data-cites="abaninRecentProgressManybody2017"><sup><a
href="#ref-abaninRecentProgressManybody2017"
role="doc-biblioref">2</a></sup></span>}. An argument due to Lifshitz
shows that the density of state of the band tail should decay
exponentially and localised and extended stats cannot co-exist at the
same energy as they would hybridise into extended states<span
class="citation"
data-cites="kramerLocalizationTheoryExperiment1993"><sup><a
href="#ref-kramerLocalizationTheoryExperiment1993"
role="doc-biblioref">28</a></sup></span>}.</p>
<p>It was thought that mobility edges could not exist in 1D because all
the states localised in the presence of any amount of disorder. This is
true for uncorrelated potentials<span class="citation"
data-cites="goldshteinPurePointSpectrum1977"><sup><a
href="#ref-goldshteinPurePointSpectrum1977"
role="doc-biblioref">29</a></sup></span>}. However, it was shown that if
the disorder potential <span class="math inline">\(V_j\)</span> contains
spatial correlations mobility edges do exist in 1D<span class="citation"
data-cites="izrailevLocalizationMobilityEdge1999"><sup><a
href="#ref-izrailevLocalizationMobilityEdge1999"
role="doc-biblioref">5</a></sup></span>,
izrailevAnomalousLocalizationLowDimensional2012}. Ref.<span
class="citation" data-cites="croyAndersonLocalization1D2011"><sup><a
href="#ref-croyAndersonLocalization1D2011"
role="doc-biblioref">6</a></sup></span>} extends this work to look at
power law decay of the correlations: <span class="math display">\[ C(l)
= \expval{V_i V_{i+l}} \propto l^{-\alpha} \]</span> % Figure <span
class="math inline">\(\ref{fig:anderson_dos}\)</span> shows numerical
calculations of the Localisation length (see later) and density of
states for the power law correlated Anderson model. At the unperturbed
band edges <span class="math inline">\(\abs{E} = 2\)</span>, the states
transition from extended to localised. The behaviour close to the edge
takes a universal scaling form with exponents dependant on <span
class="math inline">\(\alpha\)</span>.</p>
<h3 id="many-body-localisation">Many Body Localisation</h3>
<p>A related phenomena known as many body localisation (MBL) was found
in interacting systems with quenched disorder. A simple example comes
from adding density-density interactions to the Anderson model:</p>
<p><span class="math display">\[
H = -t\sum_{\expval{jk}} c^\dagger_j c_k + \sum_j V_j c_j^\dagger c_j +
U\sum_{jk} n_j n_k
\]</span> % with <span class="math inline">\(n_j = c^\dagger_j
c_j\)</span> Here, in contrast to the Anderson model, localisation
phenomena can be proven robust to weak perturbations of the
Hamiltonian<span class="citation"
data-cites="imbrieManyBodyLocalizationQuantum2016"><sup><a
href="#ref-imbrieManyBodyLocalizationQuantum2016"
role="doc-biblioref">8</a></sup></span>}.</p>
<p>MBL is defined by the emergence of an extensive number of quasi-local
operators called local integrals of motions (LIOMs) or l-bits. Following
Ref.<span class="citation"
data-cites="abaninRecentProgressManybody2017"><sup><a
href="#ref-abaninRecentProgressManybody2017"
role="doc-biblioref">2</a></sup></span>}, using a spin system with
variables <span class="math inline">\(\sigma^z_i\)</span>, any operator
can be written in the general form:</p>
<p><span class="math display">\[ \tau^z_i = \sigma^z_i +
\sum_{\alpha\beta kl} f_{kl}^{\alpha\beta} \sigma^\alpha_{i+k}
\sigma_z\beta_{i+k} + ...\]</span> % what defines a MBL system is that
there exist extensively many <span
class="math inline">\(\tau^z_i\)</span> for which the coefficients decay
exponentially with distance <span
class="math inline">\(f_{kl}^{\alpha\beta} \propto
e^{-\max(\abs{l},\abs{k}) / \xi}\)</span>. These LIOMs commute with the
Hamiltonian and each other <span class="math inline">\([\hat{H},
\tau^z_i] = [\tau^z_i, \tau^z_j] = 0\)</span>. It is this extensive
number of conserved local charges that leads to the localisation
properties of MBL. It also has implications for the way entanglement
grows over time in MBL systems.</p>
<p>Since the Hamiltonian commutes with all the LIOMs and they are a
complete operator basis, the Hamiltonian can be written as:</p>
<p><span class="math display">\[\hat{H} = \sum_{i} h_i \tau^z_i +
\sum_{ij} J_{ij} \tau^z_i \tau^z_j + \sum_{ijk} J_{ij} \tau^z_i \tau^z_j
\tau^z_k+ ...\]</span> % Where again the couplings decay exponentially,
albeit with a different length scale <span
class="math inline">\(\Bar{\xi}\)</span>. From this form we see that
distant l-bits can only become entangled on a timescale of:</p>
<p><span class="math display">\[ t_{\mathrm{ent}}(r) \propto
\frac{\hbar}{J_0} e^{r/\Bar{\xi}} \]</span> % and hence quantum
correlations and entanglement propagates logarithmically in MBL
systems<span class="citation"
data-cites="imbrieDiagonalizationManyBodyLocalization2016"><sup><a
href="#ref-imbrieDiagonalizationManyBodyLocalization2016"
role="doc-biblioref">30</a></sup></span>}.</p>
<h3 id="disorder-free-localisation">Disorder Free localisation</h3>
<p>Both Anderson localisation and MBL depend on the presence of quenched
disorder. Recently the idea of disorder-free localisation has gained
traction, asking whether the disorder necessary to generate localisation
can be generated entirely from the dynamics of a model itself.</p>
<p>The idea was first proposed in the context of Helium mixtures<span
class="citation" data-cites="kagan1984localization"><sup><a
href="#ref-kagan1984localization"
role="doc-biblioref">9</a></sup></span>} and then extended to
heavy-light mixtures in which multiple species with large mass ratios
interact, the idea being that the heavier particles act as an effective
disorder potential for the lighter ones, inducing localisation. Two such
models<span class="citation"
data-cites="yaoQuasiManyBodyLocalizationTranslationInvariant2016"><sup><a
href="#ref-yaoQuasiManyBodyLocalizationTranslationInvariant2016"
role="doc-biblioref">10</a></sup></span>,schiulazDynamicsManybodyLocalized2015}
instead find that the models thermalise exponentially slowly in system
size, which Ref.<span class="citation"
data-cites="yaoQuasiManyBodyLocalizationTranslationInvariant2016"><sup><a
href="#ref-yaoQuasiManyBodyLocalizationTranslationInvariant2016"
role="doc-biblioref">10</a></sup></span>} dubs Quasi-MBL. A. Smith, J.
Knolle et al instead looked at models containing an extensive number of
conserved quantities and demonstrated true disorder free
localisation<span class="citation"
data-cites="smithDisorderFreeLocalization2017"><sup><a
href="#ref-smithDisorderFreeLocalization2017"
role="doc-biblioref">12</a></sup></span>}.</p>
<h3 id="diagnostics-of-localisation">Diagnostics of Localisation</h3>
<h4 id="inverse-participation-ratio">Inverse Participation Ratio</h4>
<p>The inverse participation ratio is defined for a normalised wave
function <span class="math inline">\(\psi_i = \psi(x_i), \sum_i
\abs{\psi_i}^2 = 1\)</span> as its fourth moment<span class="citation"
data-cites="kramerLocalizationTheoryExperiment1993"><sup><a
href="#ref-kramerLocalizationTheoryExperiment1993"
role="doc-biblioref">28</a></sup></span>}: <span class="math display">\[
P^{-1} = \sum_i \abs{\psi_i}^4
\]</span> % It acts as a measure of the portion of space occupied by the
wave function. For localised states it will be independent of system
size while for plane wave states in d dimensions $P = L^d $. States may
also be intermediate between localised and extended, described by their
fractal dimensionality <span class="math inline">\(d &gt; d* &gt;
0\)</span>: <span class="math display">\[
P(L) \goeslike L^{d*}
\]</span> % For extended states <span class="math inline">\(d* =
0\)</span> while for localised ones <span class="math inline">\(d* =
0\)</span>. In this work we take use an energy resolved IPR<span
class="citation"
data-cites="andersonAbsenceDiffusionCertain1958"><sup><a
href="#ref-andersonAbsenceDiffusionCertain1958"
role="doc-biblioref">4</a></sup></span>: <span class="math display">\[
DOS(\omega) = \sum_n \delta(\omega - \epsilon_n)
IPR(\omega) = DOS(\omega)^{-1} \sum_{n,i} \delta(\omega - \epsilon_n)
\abs{\psi_{n,i}}^4
\]</span> Where <span class="math inline">\(\psi_{n,i}\)</span> is the
wavefunction corresponding to the energy <span
class="math inline">\(\epsilon_n\)</span> at the ith site. In practice
we bin the energies and IPRs into a fine energy grid and use Lorentzian
smoothing if necessary.</p>
<h4 id="transfer-matrix-approach">Transfer Matrix Approach</h4>
<p>The transfer matrix method (TMM) can be used to calculate the
localisation length of the eigenstates of a system. Following Refs.<span
class="citation"
data-cites="kramerLocalizationTheoryExperiment1993"><sup><a
href="#ref-kramerLocalizationTheoryExperiment1993"
role="doc-biblioref">28</a></sup></span>,
smithDynamicalLocalizationMathbbZ2018}, for bi-linear, 1D Hamiltonians
the method represents the action of <span
class="math inline">\(H\)</span> on a state <span
class="math inline">\(\ket{\psi} = \sum_i \psi_i \ket{i}\)</span> with
energy E by a matrix equation: <span class="math display">\[
H &amp;= - \sum_i (c^\dagger_i c_{i+1} + c^\dagger_{i+1} c_{i}) - \sum_i
h_i c^\dagger_i c_i \\
E\ket{\psi} &amp;= H \ket{\psi} \\
\label{eq:tmm_difference} E \psi_i &amp;= -(\psi_{i+1} + \psi_{i-1}) -
h_i \psi_i
\]</span> % Where Eq. <span
class="math inline">\(\ref{eq:tmm_difference}\)</span> can be
represented by a matrix equation: <span class="math display">\[
\begin{pmatrix}
\psi_{i+1}\\
\psi_{i}
\end{pmatrix}
=
\begin{pmatrix}
-(E + h_i) &amp; -1\\
1 &amp; 0
\end{pmatrix}
\begin{pmatrix}
\psi_{i}\\
\psi_{i-1}
\end{pmatrix}
= T_i
\begin{pmatrix}
\psi_{i}\\
\psi_{i-1}
\end{pmatrix}
\]</span> % Defining a product along the chain: <span
class="math display">\[Q_L = \prod_{i=0}^L T_i\]</span> % Oseledecs
theorem proves that there exists a limiting matrix <span
class="math inline">\(\Gamma\)</span>: <span class="math display">\[
\Gamma = \lim_{L \to \infty} (Q_L Q_L^\dagger)^{\frac{1}{2L}}
\]</span> % with eigenvalues <span
class="math inline">\(\exp(\gamma_i)\)</span> where <span
class="math inline">\(\gamma_i\)</span> are the Lyapunov exponents of
<span class="math inline">\(Q_L\)</span>. The smallest Lyapunov exponent
is the inverse of the localisation length of the state. In practice one
takes <span class="math inline">\(Q_L\)</span> with L equal to the
system size, finds the smallest eigenvalue q and estimates the
localisation length by: <span class="math display">\[
\lambda = \frac{L}{\ln{q}}
\]</span> % As noted by<span class="citation"
data-cites="smithDynamicalLocalizationMathbbZ2018"><sup><a
href="#ref-smithDynamicalLocalizationMathbbZ2018"
role="doc-biblioref">31</a></sup></span> this method can be numerically
unstable because the matrix elements diverge or vanish exponentially. To
get around this, the authors break the matrix multiplication into chunks
and the logarithms of the eigenvalues of each are stored separately.</p>
<h2 id="numerical-methods">Numerical Methods</h2>
<p>In this section we will define the Markov Chain Monte Carlo (MCMC)
method in general then detail its application to the FK model. We will
then cover methods applicable to the measurements obtained from MCMC.
These include calculation of the density of states and energy resolved
inverse participation ratio as well as phase transition diagnostics such
as the Binder cumulant.</p>
<h3 id="markov-chain-monte-carlo-1">Markov Chain Monte Carlo}</h3>
<p>Markov Chain Monte Carlo (MCMC) is a technique for evaluating thermal
expectation values <span class="math inline">\(\expval{O}\)</span> with
respect to some physical system defined by a set of states <span
class="math inline">\(\{x: x \in S\}\)</span> and a free energy <span
class="math inline">\(F(x)\)</span><span class="citation"
data-cites="krauthIntroductionMonteCarlo1998"><sup><a
href="#ref-krauthIntroductionMonteCarlo1998"
role="doc-biblioref">32</a></sup></span>}. The thermal expectation value
is defined via a Boltzmann weighted sum over the entire states: <span
class="math display">\[
\tex{O} &amp;= \frac{1}{\Z} \sum_{x \in S} O(x) P(x) \\
P(x) &amp;= \frac{1}{\Z} e^{-\beta F(x)} \\
\Z &amp;= \sum_{x \in S} e^{-\beta F(x)}
\]</span></p>
<p>When the state space is too large to evaluate this sum directly, MCMC
defines a stochastic algorithm which generates a random walk <span
class="math inline">\(\{x_0\ldots x_i\ldots x_N\}\)</span> whose
distribution <span class="math inline">\(p(x_i)\)</span> approaches a
target distribution <span class="math inline">\(P(x)\)</span> in the
large N limit.</p>
<p><span class="math display">\[\lim_{i\to\infty} p(x_i) =
P(x)\]</span></p>
<p>In this case the target distribution will be the thermal one <span
class="math inline">\(P(x) \rightarrow \Z^{-1} e^{-\beta F(x)}\)</span>.
The major benefit of the method being that as long as one can express
the desired <span class="math inline">\(P(x)\)</span> up to a
multiplicative constant, MCMC can be applied. Since <span
class="math inline">\(e^{-\beta F(x)}\)</span> is relatively easy to
evaluate, MCMC provides a useful method for finite temperature
physics.</p>
<p>Once the random walk has been carried out for many steps, the
expectation values of <span class="math inline">\(O\)</span> can be
estimated from the MCMC samples: <span class="math display">\[
\tex{O} = \sum_{i = 0}^{N} O(x_i) + \mathcal{O}(\frac{1}{\sqrt{N}})
\]</span> The the samples in the random walk are correlated so the
samples effectively contain less information than <span
class="math inline">\(N\)</span> independent samples would. As a
consequence the variance is larger than the <span
class="math inline">\(\tex{O^2} - \tex{O}^2\)</span> form it would have
if the estimates were uncorrelated. Methods of estimating the true
variance of <span class="math inline">\(\tex{O}\)</span> and decided how
many steps are needed will be considered later.</p>
<p>Markov chains are defined by a transition function $(x_{i+1} x_i) $
giving the probability that a chain in state <span
class="math inline">\(x_i\)</span> at time <span
class="math inline">\(i\)</span> will transition to a state <span
class="math inline">\(x_{i+1}\)</span>. Since we must transition
somewhere at each step, this comes with the normalisation condition that
<span class="math inline">\(\sum\limits_x \T(x&#39; \rightarrow x) =
1\)</span>.</p>
<p>If we define an ensemble of Markov chains and consider the
distributions we get a sequence of distributions <span
class="math inline">\(\{p_0(x), p_1(x), p_2(x)\ldots\}\)</span> with
<span class="math display">\[p_{i+1}(x) &amp;= \sum_{x&#39; \in S}
p_i(x&#39;) \T(x&#39; \rightarrow x)\]</span> <span
class="math inline">\(p_o(x)\)</span> might be a delta function on one
particular starting state which would then be smoothed out by the
transition function repeatedly.</p>
<p>As wed like to draw samples from the target distribution <span
class="math inline">\(P(x)\)</span> the trick is to choose $(x_{i+1}
x_i) $ such that :</p>
<p><span class="math display">\[
P(x) &amp;= \sum_{x&#39;} P(x&#39;) \T(x&#39; \rightarrow x)
\]</span> In other words the MCMC dynamics defined by <span
class="math inline">\(\T\)</span> must be constructed to have the target
distribution as their only fixed point. This condition is called the
global balance condition. Along with some more technical considerations
such as ergodcity which wont be considered here, global balance
suffices to ensure that a MCMC method is correct.</p>
<p>A sufficient but not necessary condition for global balance to hold
is detailed balance:</p>
<p><span class="math display">\[
P(x) \T(x \rightarrow x&#39;) = P(x&#39;) \T(x&#39; \rightarrow x)
\]</span> % In practice most algorithms are constructed to satisfy
detailed balance though there are arguments that relaxing the condition
can lead to faster algorithms<span class="citation"
data-cites="kapferSamplingPolytopeHarddisk2013"><sup><a
href="#ref-kapferSamplingPolytopeHarddisk2013"
role="doc-biblioref">33</a></sup></span>}.</p>
<p>The goal of MCMC is then to choose <span
class="math inline">\(\T\)</span> so that it has the desired thermal
distribution <span class="math inline">\(P(x)\)</span> as its fixed
point and that it converges quickly onto it. This boils down to
requiring that the matrix representation of <span
class="math inline">\(T_{ij} = \T(x_i \to x_j)\)</span> has an
eigenvector equal to <span class="math inline">\(P_i = P(x_i)\)</span>
with eigenvalue 1 and all other eigenvalues with magnitude less than
one. The convergence time depends on the magnitude of the second largest
eigenvalue.</p>
<p>In order to actually choose new states according to <span
class="math inline">\(\T\)</span> one chooses states from a proposal
distribution <span class="math inline">\(q(x_i \to x&#39;)\)</span> that
can be directly sampled from. For instance, this might mean flipping a
single random spin in a spin chain, in which case <span
class="math inline">\(q(x&#39;\to x_i)\)</span> is the uniform
distribution on states reachable by one spin flip from <span
class="math inline">\(x_i\)</span>. The proposal <span
class="math inline">\(x&#39;\)</span> is then accepted or rejected with
an acceptance probability <span class="math inline">\(\A(x&#39;\to
x_{i+1})\)</span>, if the proposal is rejected then <span
class="math inline">\(x_{i+1} = x_{i}\)</span>. Now <span
class="math inline">\(\T(x\to x&#39;) = q(x\to x&#39;)\A(x \to
x&#39;)\)</span>.</p>
<p>The Metropolis-Hasting algorithm is a slight extension of the
original Metropolis algorithm that allows for non-symmetric proposal
distributions $q(xx) q(xx) $. It can be derived starting from detailed
balance<span class="citation"
data-cites="krauthIntroductionMonteCarlo1998"><sup><a
href="#ref-krauthIntroductionMonteCarlo1998"
role="doc-biblioref">32</a></sup></span>}: <span class="math display">\[
P(x)\T(x \to x&#39;) &amp;= P(x&#39;)\T(x&#39; \to x) \\
P(x)q(x \to x&#39;)\A(x \to x&#39;) &amp;= P(x&#39;)q(x&#39; \to
x)\A(x&#39; \to x) \\
\label{eq:db2} \frac{\A(x \to x&#39;)}{\A(x&#39; \to x)} &amp;=
\frac{P(x&#39;)q(x&#39; \to x)}{P(x)q(x \to x&#39;)} = f(x, x&#39;)\\
\]</span> % The Metropolis-Hastings algorithm is the choice: <span
class="math display">\[\label{eq:mh} \A(x \to x&#39;) = \min\left(1,
f(x,x&#39;)\right)\]</span> % Noting that <span
class="math inline">\(f(x,x&#39;) = 1/f(x&#39;,x)\)</span>, Eq. <span
class="math inline">\(\ref{eq:mh}\)</span> can be seen to satisfy Eq.
<span class="math inline">\(\ref{eq:db2}\)</span> by considering the two
cases <span class="math inline">\(f(x,x&#39;) &gt; 1\)</span> and <span
class="math inline">\(f(x,x&#39;) &lt; 1\)</span>.</p>
<p>By choosing the proposal distribution such that <span
class="math inline">\(f(x,x&#39;)\)</span> is as close as possible to
one, the rate of rejections can be reduced and the algorithm sped
up.</p>
%
<p>%Thinning, burn in, multiple runs %Simulated annealing and Parallel
Tempering</p>
<h3 id="applying-mcmc-to-the-fk-model">Applying MCMC to the FK
model}</h3>
<p>MCMC can be applied to sample over the classical degrees of freedom
of the model. We take the full Hamiltonian and split it into a classical
and a quantum part: <span class="math display">\[
H_{\mathrm{FK}} &amp;= -\sum_{&lt;ij&gt;} c^\dagger_{i}c_{j} + U
\sum_{i} (c^\dagger_{i}c_{i} - 1/2)( n_i - 1/2) \\
&amp;+ \sum_{ij} J_{ij} (n_i - 1/2) (n_j - 1/2) - \mu \sum_i
(c^\dagger_{i}c_{i} + n_i)\\
H_q &amp;= -\sum_{&lt;ij&gt;} c^\dagger_{i}c_{j} + \sum_{i}
\left(U(n_i - 1/2) - \mu\right) c^\dagger_{i}c_{i}\\
H_c &amp;= \sum_i \mu n_i - \frac{U}{2}(n_i - 1/2) +
\sum_{ij}J_{ij}(n_i - 1/2)(n_j - 1/2)
\]</span> % There are <span class="math inline">\(2^N\)</span> possible
ion configurations <span class="math inline">\(\{ n_i \}\)</span>, we
define <span class="math inline">\(n^k_i\)</span> to be the occupation
of the ith site of the kth configuration. The quantum part of the free
energy can then be defined through the quantum partition function <span
class="math inline">\(\Z^k\)</span> associated with each ionic state
<span class="math inline">\(n^k_i\)</span>: <span
class="math display">\[
F^k &amp;= -1/\beta \ln{\Z^k} \\
\]</span> % Such that the overall partition function is: <span
class="math display">\[
\Z &amp;= \sum_k e^{- \beta H^k} Z^k \\
&amp;= \sum_k e^{-\beta (H^k + F^k)} \\
\]</span> % Because fermions are limited to occupation numbers of 0 or 1
<span class="math inline">\(Z^k\)</span> simplifies nicely. If <span
class="math inline">\(m^j_i = \{0,1\}\)</span> is defined as the
occupation of the level with energy <span
class="math inline">\(\epsilon^k_i\)</span> then the partition function
is a sum over all the occupation states labelled by j: <span
class="math display">\[
Z^k &amp;= \Tr e^{-\beta F^k} = \sum_j e^{-\beta \sum_i m^j_i
\epsilon^k_i}\\
&amp;= \sum_j \prod_i e^{- \beta m^j_i \epsilon^k_i}= \prod_i
\sum_j e^{- \beta m^j_i \epsilon^k_i}\\
&amp;= \prod_i (1 + e^{- \beta \epsilon^k_i})\\
F^k &amp;= -1/\beta \sum_k \ln{(1 + e^{- \beta \epsilon^k_i})}
\]</span> % Observables can then be calculated from the partition
function, for examples the occupation numbers:</p>
<p><span class="math display">\[
\tex{N} &amp;= \frac{1}{\beta} \frac{1}{Z} \frac{\partial Z}{\partial
\mu} = - \frac{\partial F}{\partial \mu}\\
&amp;= \frac{1}{\beta} \frac{1}{Z} \frac{\partial}{\partial \mu}
\sum_k e^{-\beta (H^k + F^k)}\\
&amp;= 1/Z \sum_k (N^k_{\mathrm{ion}} + N^k_{\mathrm{electron}})
e^{-\beta (H^k + F^k)}\\
\]</span> % with the definitions:</p>
<p><span class="math display">\[
N^k_{\mathrm{ion}} &amp;= - \frac{\partial H^k}{\partial \mu} = \sum_i
n^k_i\\
N^k_{\mathrm{electron}} &amp;= - \frac{\partial F^k}{\partial \mu} =
\sum_i \left(1 + e^{\beta \epsilon^k_i}\right)^{-1}\\
\]</span> % The MCMC algorithm consists of performing a random walk over
the states <span class="math inline">\(\{ n^k_i \}\)</span>. In the
simplest case the proposal distribution corresponds to flipping a random
site from occupied to unoccupied or vice versa, since this proposal is
symmetric the acceptance function becomes: <span class="math display">\[
P(k) &amp;= \Z^{-1} e^{-\beta(H^k + F^k)} \\
\A(k \to k&#39;) &amp;= \min\left(1, \frac{P(k&#39;)}{P(k)}\right) =
\min\left(1, e^{\beta(H^{k&#39;} + F^{k&#39;})-\beta(H^k + F^k)}\right)
\]</span> % At each step <span class="math inline">\(F^k\)</span> is
calculated by diagonalising the tri-diagonal matrix representation of
<span class="math inline">\(H_q\)</span> with open boundary conditions.
Observables are simply averages over the their value at each step of the
random walk. The full spectrum and eigenbasis is too large to save to
disk so usually running averages of key observables are taken as the
walk progresses.</p>
<p>In a MCMC method a key property is the proportion of the time that
proposals are accepted, the acceptance rate. If this rate is too low the
random walk is trying to take overly large steps in energy space which
problematic because it means very few new samples will be generated. If
it is too high it implies the steps are too small, a problem because
then the walk will take longer to explore the state space and the
samples will be highly correlated. Ideal values for the acceptance rate
can be calculated under certain assumptions<span class="citation"
data-cites="robertsWeakConvergenceOptimal1997"><sup><a
href="#ref-robertsWeakConvergenceOptimal1997"
role="doc-biblioref">34</a></sup></span>}. Here we monitor the
acceptance rate and if it is too high we re-run the MCMC with a modified
proposal distribution that has a chance to propose moves that flip
multiple sites at a time.</p>
<p>In addition we exploit the particle-hole symmetry of the problem by
occasionally proposing a flip of the entire state. This works because
near half-filling, flipping the occupations of all the sites will
produce a state at or near the energy of the current one.</p>
<p>The matrix diagonalisation is the most computationally expensive step
of the process, a speed up can be obtained by modifying the proposal
distribution to depend on the classical part of the energy, a trick
gleaned from Ref.<span class="citation"
data-cites="krauthIntroductionMonteCarlo1998"><sup><a
href="#ref-krauthIntroductionMonteCarlo1998"
role="doc-biblioref">32</a></sup></span>}: <span class="math display">\[
q(k \to k&#39;) &amp;= \min\left(1, e^{\beta (H^{k&#39;} - H^k)}\right)
\\
\A(k \to k&#39;) &amp;= \min\left(1, e^{\beta(F^{k&#39;}- F^k)}\right)
\]</span> % This allows the method to reject some states without
performing the diagonalisation at no cost to the accuracy of the MCMC
method.</p>
<p>An extension of this idea is to try to define a classical model with
a similar free energy dependence on the classical state as the full
quantum, Ref.<span class="citation"
data-cites="huangAcceleratedMonteCarlo2017"><sup><a
href="#ref-huangAcceleratedMonteCarlo2017"
role="doc-biblioref">35</a></sup></span>} does this with restricted
Boltzmann machines whose form is very similar to a classical spin
model.</p>
<p>In order to reduce the effects of the boundary conditions and the
finite size of the system we redefine and normalise the coupling matrix
to have 0 derivative at its furthest extent rather than cutting off
abruptly.</p>
<p><span class="math display">\[
J&#39;(x) &amp;= \abs{\frac{L}{\pi}\sin \frac{\pi x}{L}}^{-\alpha} \\
J(x) &amp;= \frac{J_0 J&#39;(x)}{\sum_y J&#39;(y)}
\]</span> % The scaling ensures that, in the ordered phase, the overall
potential felt by each site due to the rest of the system is independent
of system size.</p>
<p>The Binder cumulant is defined as: <span class="math display">\[U_B =
1 - \frac{\tex{\mu_4}}{3\tex{\mu_2}^2}\]</span> % where <span
class="math display">\[\mu_n = \tex{(m - \tex{m})^n}\]</span> % are the
central moments of the order parameter m: <span class="math display">\[m
= \sum_i (-1)^i (2n_i - 1) / N\]</span> % The Binder cumulant evaluated
against temperature can be used as a diagnostic for the existence of a
phase transition. If multiple such curves are plotted for different
system sizes, a crossing indicates the location of a critical point<span
class="citation" data-cites="binderFiniteSizeScaling1981"><sup><a
href="#ref-binderFiniteSizeScaling1981"
role="doc-biblioref">24</a></sup></span>,
musialMonteCarloSimulations2002}.</p>
<h2 id="markov-chain-monte-carlo-in-practice">Markov Chain Monte-Carlo
in Practice}</h2>
<h3 id="quick-intro-to-mcmc">Quick Intro to MCMC}</h3>
<p>The main paper relies on extensively to evaluate thermal expectation
values within the model by walking over states of the classical spin
system <span class="math inline">\(S_i\)</span>. For a classical system,
the thermal expectation value of some operator <span
class="math inline">\(O\)</span> is defined by a Boltzmann weighted sum
over the classical state space: <span class="math display">\[
\tex{O} &amp;= \frac{1}{\Z} \sum_{\s \in S} O(x) P(x) \\
P(x) &amp;= \frac{1}{\Z} e^{-\beta F(x)} \\
\Z &amp;= \sum_{\s \in S} e^{-\beta F(x)}
\]</span> While for a quantum system these sums are replaced by
equivalent traces. The obvious approach to evaluate these sums
numerically would be to directly loop over all the classical states in
the system and perform the sum. But we all know know why this isnt
feasible: the state space is too large! Indeed even if we could do it,
it would still be computationally wasteful since at low temperatures the
sums are dominated by low energy excitations about the ground states of
the system. Even worse, in our case we must fully solve the fermionic
system via exact diagonalisation for each classical state in the sum, a
very expensive operation!~.}</p>
<p> sidesteps these issues by defining a random walk that focuses on the
states with the greatest Boltzmann weight. At low temperatures this
means we need only visit a few low energy states to make good estimates
while at high temperatures the weights become uniform so a small number
of samples distributed across the state space suffice. However we will
see that the method is not without difficulties of its own.</p>
<p>%MCMC from an ensemble point of view In implementation can be boiled
down to choosing a transition function $(_{t} _t+1) $ where <span
class="math inline">\(\s\)</span> are vectors representing classical
spin configurations. We start in some initial state <span
class="math inline">\(\s_0\)</span> and then repeatedly jump to new
states according to the probabilities given by <span
class="math inline">\(\T\)</span>. This defines a set of random walks
<span class="math inline">\(\{\s_0\ldots \s_i\ldots \s_N\}\)</span>.
Fig.~<span class="math inline">\(\ref{fig:single}\)</span> shows this in
practice: we have a (rather small) ensemble of <span
class="math inline">\(M = 2\)</span> walkers starting at the same point
in state space and then spreading outwards by flipping spins along the
way.</p>
<p>In pseudo-code one could write the MCMC simulation for a single
walker as:</p>
<p>Where the function here produces a state with probability determined
by the and the transition function <span
class="math inline">\(\T\)</span>.</p>
<p>If we ran many such walkers in parallel we could then approximate the
distribution <span class="math inline">\(p_t(\s; \s_0)\)</span> which
tells us where the walkers are likely to be after theyve evolved for
<span class="math inline">\(t\)</span> steps from an initial state <span
class="math inline">\(\s_0\)</span>. We need to carefully choose <span
class="math inline">\(\T\)</span> such that after a large number of
steps <span class="math inline">\(k\)</span> (the convergence time) the
probability <span class="math inline">\(p_t(\s;\s_0)\)</span> approaches
the thermal distribution <span class="math inline">\(P(\s; \beta) =
\Z^{-1} e^{-\beta F(\s)}\)</span>. This turns out to be quite easy to
achieve using the Metropolis-Hasting algorithm.</p>
<h3 id="convergence-time">Convergence Time}</h3>
<p>Considering <span class="math inline">\(p(\s)\)</span> as a vector
<span class="math inline">\(\vec{p}\)</span> whose jth entry is the
probability of the jth state <span class="math inline">\(p_j =
p(\s_j)\)</span>, and writing <span class="math inline">\(\T\)</span> as
the matrix with entries <span class="math inline">\(T_{ij} = \T(\s_j
\rightarrow \s_i)\)</span> we can write the update rule for the ensemble
probability as: <span class="math display">\[\vec{p}_{t+1} = \T
\vec{p}_t \implies \vec{p}_{t} = \T^t \vec{p}_0\]</span> where <span
class="math inline">\(\vec{p}_0\)</span> is vector which is one on the
starting state and zero everywhere else. Since all states must
transition to somewhere with probability one: <span
class="math inline">\(\sum_i T_{ij} = 1\)</span>.</p>
<p>Matrices that satisfy this are called stochastic matrices exactly
because they model these kinds of Markov processes. It can be shown that
they have real eigenvalues, and ordering them by magnitude, that <span
class="math inline">\(\lambda_0 = 1\)</span> and <span
class="math inline">\(0 &lt; \lambda_{i\neq0} &lt; 1\)</span>.
%https://en.wikipedia.org/wiki/Stochastic_matrix Assuming <span
class="math inline">\(\T\)</span> has been chosen correctly, its single
eigenvector with eigenvalue 1 will be the thermal distribution so
repeated application of the transition function eventually leads there,
while memory of the initial conditions decays exponentially with a
convergence time <span class="math inline">\(k\)</span> determined by
<span class="math inline">\(\lambda_1\)</span>. In practice this means
that one throws away the data from the beginning of the random walk in
order reduce the dependence on the initial conditions and be close
enough to the target distribution.</p>
<h3 id="auto-correlation-time">Auto-correlation Time}</h3>
<p>At this stage one might think were done. We can indeed draw
independent samples from <span class="math inline">\(P(\s;
\beta)\)</span> by starting from some arbitrary initial state and doing
<span class="math inline">\(k\)</span> steps to arrive at a sample.
However a key insight is that after the convergence time, every state
generated is a sample from <span class="math inline">\(P(\s;
\beta)\)</span>! They are not, however, independent samples. In
Fig.~<span class="math inline">\(\ref{fig:raw}\)</span> it is already
clear that the samples of the order parameter m have some
auto-correlation because only a few spins are flipped each step but even
when the number of spins flipped per step is increased, Fig.~<span
class="math inline">\(\ref{fig:m_autocorr}\)</span> shows that it can be
an important effect near the phase transition. Lets define the
auto-correlation time <span class="math inline">\(\tau(O)\)</span>
informally as the number of MCMC samples of some observable O that are
statistically equal to one independent sample.~ for a more rigorous
definition involving a sum over the auto-correlation function.} The
auto-correlation time is generally shorter than the convergence time so
it therefore makes sense from an efficiency standpoint to run a single
walker for many MCMC steps rather than to run a huge ensemble for <span
class="math inline">\(k\)</span> steps each.</p>
<p>Once the random walk has been carried out for many steps, the
expectation values of <span class="math inline">\(O\)</span> can be
estimated from the MCMC samples <span
class="math inline">\(\s_i\)</span>: <span class="math display">\[
\tex{O} = \sum_{i = 0}^{N} O(\s_i) + \mathcal{O}(\frac{1}{\sqrt{N}})
\]</span> The the samples are correlated so the N of them effectively
contains less information than <span class="math inline">\(N\)</span>
independent samples would, in fact roughly <span
class="math inline">\(N/\tau\)</span> effective samples. As a
consequence the variance is larger than the <span
class="math inline">\(\qex{O^2} - \qex{O}^2\)</span> form it would have
if the estimates were uncorrelated. There are many methods in the
literature for estimating the true variance of <span
class="math inline">\(\qex{O}\)</span> and deciding how many steps are
needed but my approach has been to run a small number of parallel
chains, which are independent, in order to estimate the statistical
error produced. This is a slightly less computationally efficient
because it requires throwing away those <span
class="math inline">\(k\)</span> steps generated before convergence
multiple times but it is a conceptually simple workaround.</p>
<p>In summary, to do efficient simulations we want to reduce both the
convergence time and the auto-correlation time as much as possible. In
order to explain how, we need to introduce the Metropolis-Hasting (MH)
algorithm and how it gives an explicit form for the transition
function.</p>
<h3 id="the-metropolis-hastings-algorithm">The Metropolis-Hastings
Algorithm}</h3>
<p>MH breaks up the transition function into a proposal distribution
<span class="math inline">\(q(\s \to \s&#39;)\)</span> and an acceptance
function <span class="math inline">\(\A(\s \to \s&#39;)\)</span>. <span
class="math inline">\(q\)</span> needs to be something that we can
directly sample from, and in our case generally takes the form of
flipping some number of spins in <span
class="math inline">\(\s\)</span>, i.e if were flipping a single random
spin in the spin chain, <span class="math inline">\(q(\s \to
\s&#39;)\)</span> is the uniform distribution on states reachable by one
spin flip from <span class="math inline">\(\s\)</span>. This also gives
the nice symmetry property that <span class="math inline">\(q(\s \to
\s&#39;) = q(\s&#39; \to \s)\)</span>.</p>
<p>The proposal <span class="math inline">\(\s&#39;\)</span> is then
accepted or rejected with an acceptance probability <span
class="math inline">\(\A(\s \to \s&#39;)\)</span>, if the proposal is
rejected then <span class="math inline">\(\s_{i+1} = \s_{i}\)</span>.
Hence:</p>
<p><span class="math display">\[\T(x\to x&#39;) = q(x\to x&#39;)\A(x \to
x&#39;)\]</span></p>
<p>When the proposal distribution is symmetric as ours is, it cancels
out in the expression for the acceptance function and the
Metropolis-Hastings algorithm is simply the choice: <span
class="math display">\[ \A(x \to x&#39;) = \min\left(1,
e^{-\beta\;\Delta F}\right)\]</span> Where <span
class="math inline">\(F\)</span> is the overall free energy of the
system, including both the quantum and classical sector.</p>
<p>To implement the acceptance function in practice we pick a random
number in the unit interval and accept if it is less than <span
class="math inline">\(e^{-\beta\;\Delta F}\)</span>:</p>
<p>This has the effect of always accepting proposed states that are
lower in energy and sometimes accepting those that are higher in energy
than the current state.</p>
<h3 id="choosing-the-proposal-distribution">Choosing the proposal
distribution}</h3>
<p>Now we can discuss how to minimise the auto-correlations. The general
principle is that one must balance the proposal distribution between two
extremes. Choose overlay small steps, like flipping only a single spin
and the acceptance rate will be high because <span
class="math inline">\(\Delta F\)</span> will usually be small, but each
state will be very similar to the previous and the auto-correlations
will be high too, making sampling inefficient. On the other hand,
overlay large steps, like randomising a large portion of the spins each
step, will result in very frequent rejections, especially at low
temperatures.</p>
<p>I evaluated a few different proposal distributions for use with the
FK model.</p>
<p>Fro Figure~<span class="math inline">\(\ref{fig:comparison}\)</span>
we see that even at moderately high temperatures <span
class="math inline">\(T &gt; T_c\)</span> flipping one or two sites is
the best choice. However for some simulations at very high temperature
flipping more spins is warranted. Tuning the proposal distribution
automatically seems like something that would not yield enough benefit
for the additional complexity it would require.</p>
<h3 id="two-step-trick">Two Step Trick</h3>
<p>Our method already relies heavily on the split between the classical
and quantum sector to derive a sign problem free MCMC algorithm but it
turns out that there is a further trick we can play with it. The free
energy term is the sum of an easy to compute classical energy and a more
expensive quantum free energy, we can split the acceptance function into
two in such as way as to avoid having to compute the full exact
diagonalisation some of the time:</p>
<div class="sourceCode" id="cb1"><pre
class="sourceCode python"><code class="sourceCode python"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a>current_state <span class="op">=</span> initial_state</span>
<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span> i <span class="kw">in</span> <span class="bu">range</span>(N_steps):</span>
<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a> new_state <span class="op">=</span> proposal(current_state)</span>
<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a> df_classical <span class="op">=</span> classical_free_energy_change(current_state, new_state, parameters)</span>
<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a> <span class="cf">if</span> exp(<span class="op">-</span>beta <span class="op">*</span> df_classical) <span class="op">&lt;</span> uniform(<span class="dv">0</span>,<span class="dv">1</span>):</span>
<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a> f_quantum <span class="op">=</span> quantum_free_energy(current_state, new_state, parameters)</span>
<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a> </span>
<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a> <span class="cf">if</span> exp(<span class="op">-</span> beta <span class="op">*</span> df_quantum) <span class="op">&lt;</span> uniform(<span class="dv">0</span>,<span class="dv">1</span>):</span>
<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a> current_state <span class="op">=</span> new_state</span>
<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a> </span>
<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a> states[i] <span class="op">=</span> current_state</span>
<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a> </span></code></pre></div>
<p>lets cite Figure<a href="#fig:binder">1</a></p>
<p>lets cite to person<span class="citation"
data-cites="trebstKitaevMaterials2022"><sup><a
href="#ref-trebstKitaevMaterials2022"
role="doc-biblioref">36</a></sup></span>. and then multple<span
class="citation"
data-cites="banerjeeProximateKitaevQuantum2016 trebstKitaevMaterials2022"><sup><a
href="#ref-trebstKitaevMaterials2022" role="doc-biblioref">36</a>,<a
href="#ref-banerjeeProximateKitaevQuantum2016"
role="doc-biblioref">37</a></sup></span>. what is we surround it by
spaces?<span class="citation"
data-cites="trebstKitaevMaterials2022"><sup><a
href="#ref-trebstKitaevMaterials2022"
role="doc-biblioref">36</a></sup></span></p>
<div id="fig:phase_diagram" class="fignos">
<figure>
<img src="pdf_figs/phase_diagram.svg"
alt="Figure 2: Phase diagrams of the long-range 1D FK model. (a) The TJ plane at U = 5: the CDW ordered phase is separated from a disordered Mott insulating (MI) phase by a critical temperature T_c, linear in J. (b) The TU plane at J = 5: the disordered phase is split into two: at large/small U theres a MI/Anderson phase characterised by the presence/absence of a gap at E=0 in the single particle energy spectrum. U_c is independent of temperature. At U = 0 the fermions are decoupled from the spins forming a simple Fermi gas. (c) The order parameters, \tex{m^2}(solid) and 1 - f (dashed) describing the onset of the CDW phase of the long-range 1D FK model at low temperature with staggered magnetisation m = N^{-1} \sum_i (-1)^i S_i and fermionic order parameter f = 2 N^{-1}\abs{\sum_i (-1)^i \; \expval{c^\dag_{i}c_{i}}} . (d) The crossing of the Binder cumulant, B = \tex{m^4} / \tex{m^2}^2, with system size provides a diagnostic that the phase transition is not a finite size effect, its used to estimate the critical lines shown in (a) and (b). All plots use system sizes N = [10,20,30,50,70,110,160,250] and lines are coloured from N = 10 in dark blue to N = 250 in yellow. The parameter values U = 5,\;J = 5,\;\alpha = 1.25 except where explicitly varied." />
<figcaption aria-hidden="true"><span>Figure 2:</span> Phase diagrams of
the long-range 1D <span data-acronym-label="FK"
data-acronym-form="singular+short">FK</span> model. (a) The TJ plane at
<span class="math inline">\(U = 5\)</span>: the <span
data-acronym-label="CDW" data-acronym-form="singular+short">CDW</span>
ordered phase is separated from a disordered Mott insulating (MI) phase
by a critical temperature <span class="math inline">\(T_c\)</span>,
linear in J. (b) The TU plane at <span class="math inline">\(J =
5\)</span>: the disordered phase is split into two: at large/small U
theres a MI/Anderson phase characterised by the presence/absence of a
gap at <span class="math inline">\(E=0\)</span> in the single particle
energy spectrum. <span class="math inline">\(U_c\)</span> is independent
of temperature. At <span class="math inline">\(U = 0\)</span> the
fermions are decoupled from the spins forming a simple Fermi gas. (c)
The order parameters, <span
class="math inline">\(\tex{m^2}\)</span>(solid) and <span
class="math inline">\(1 - f\)</span> (dashed) describing the onset of
the <span data-acronym-label="CDW"
data-acronym-form="singular+short">CDW</span> phase of the long-range 1D
<span data-acronym-label="FK"
data-acronym-form="singular+short">FK</span> model at low temperature
with staggered magnetisation <span class="math inline">\(m = N^{-1}
\sum_i (-1)^i S_i\)</span> and fermionic order parameter <span
class="math inline">\(f = 2 N^{-1}\abs{\sum_i (-1)^i \;
\expval{c^\dag_{i}c_{i}}}\)</span> . (d) The crossing of the Binder
cumulant, <span class="math inline">\(B = \tex{m^4} /
\tex{m^2}^2\)</span>, with system size provides a diagnostic that the
phase transition is not a finite size effect, its used to estimate the
critical lines shown in (a) and (b). All plots use system sizes <span
class="math inline">\(N = [10,20,30,50,70,110,160,250]\)</span> and
lines are coloured from <span class="math inline">\(N = 10\)</span> in
dark blue to <span class="math inline">\(N = 250\)</span> in yellow. The
parameter values <span class="math inline">\(U = 5,\;J = 5,\;\alpha =
1.25\)</span> except where explicitly varied.</figcaption>
</figure>
</div>
<h1 id="introduction-1">Introduction</h1>
<p>The <span data-acronym-label="FK"
data-acronym-form="singular+long">FK</span> model is one of the simplest
models of the correlated electron problem. It captures the essence of
the interaction between itinerant and localized electrons, equivalent to
a model of hopping fermions coupled to a classical Ising field. It was
originally introduced to explain the metal-insulator transition in
f-electron systems but in its long history it has been interpreted
variously as a model of electrons and ions, binary alloys or of crystal
formation <span class="citation"
data-cites="hubbardj.ElectronCorrelationsNarrow1963 falicovSimpleModelSemiconductorMetal1969 gruberFalicovKimballModelReview1996 gruberFalicovKimballModel2006"><sup><a
href="#ref-hubbardj.ElectronCorrelationsNarrow1963"
role="doc-biblioref">16</a>,<a
href="#ref-falicovSimpleModelSemiconductorMetal1969"
role="doc-biblioref">38</a><a href="#ref-gruberFalicovKimballModel2006"
role="doc-biblioref">40</a></sup></span>. Despite its simplicity, the
<span data-acronym-label="FK"
data-acronym-form="singular+short">FK</span> model has a rich phase
diagram in <span class="math inline">\(D \geq 2\)</span> dimensions. For
example, it shows an interaction-induced gap opening even at high
temperatures, similar to the corresponding Hubbard Model <span
class="citation"
data-cites="brandtThermodynamicsCorrelationFunctions1989"><sup><a
href="#ref-brandtThermodynamicsCorrelationFunctions1989"
role="doc-biblioref">41</a></sup></span>. In 1D, the ground state
phenomenology as a function of filling can be rich <span
class="citation" data-cites="gruberGroundStatesSpinless1990"><sup><a
href="#ref-gruberGroundStatesSpinless1990"
role="doc-biblioref">42</a></sup></span> but the system is disordered
for all <span class="math inline">\(T &gt; 0\)</span> <span
class="citation" data-cites="kennedyItinerantElectronModel1986"><sup><a
href="#ref-kennedyItinerantElectronModel1986"
role="doc-biblioref">23</a></sup></span>. Moreover, the model has been a
test-bed for many-body methods, interest took off when an exact DMFT
solution in the infinite dimensional case was found <span
class="citation"
data-cites="antipovCriticalExponentsStrongly2014 ribicNonlocalCorrelationsSpectral2016 freericksExactDynamicalMeanfield2003 herrmannNonequilibriumDynamicalCluster2016"><sup><a
href="#ref-antipovCriticalExponentsStrongly2014"
role="doc-biblioref">43</a><a
href="#ref-herrmannNonequilibriumDynamicalCluster2016"
role="doc-biblioref">46</a></sup></span>.</p>
<p>The presence of the classical field makes the model amenable to an
exact numerical treatment at finite temperature via a sign problem free
<span data-acronym-label="MCMC"
data-acronym-form="singular+short">MCMC</span> algorithm <span
class="citation"
data-cites="devriesGapsDensitiesStates1993 devriesSimplifiedHubbardModel1993 antipovInteractionTunedAndersonMott2016 debskiPossibilityDetectionFinite2016 herrmannSpreadingCorrelationsFalicovKimball2018 maskaThermodynamicsTwodimensionalFalicovKimball2006"><sup><a
href="#ref-maskaThermodynamicsTwodimensionalFalicovKimball2006"
role="doc-biblioref">17</a>,<a
href="#ref-devriesGapsDensitiesStates1993"
role="doc-biblioref">47</a><a
href="#ref-herrmannSpreadingCorrelationsFalicovKimball2018"
role="doc-biblioref">51</a></sup></span>. The <span
data-acronym-label="MCMC" data-acronym-form="singular+short">MCMC</span>
treatment motivates a view of the classical background field as a
disorder potential, which suggests an intimate link to localisation
physics. Indeed, thermal fluctuations of the classical sector act as
disorder potentials drawn from a thermal distribution and the emergence
of disorder in a translationally invariant Hamiltonian links the <span
data-acronym-label="FK" data-acronym-form="singular+short">FK</span>
model to recent interest in disorder-free localisation <span
class="citation"
data-cites="smithDisorderFreeLocalization2017 smithDynamicalLocalizationMathbbZ2018 brenesManyBodyLocalizationDynamics2018"><sup><a
href="#ref-smithDisorderFreeLocalization2017"
role="doc-biblioref">12</a>,<a
href="#ref-smithDynamicalLocalizationMathbbZ2018"
role="doc-biblioref">31</a>,<a
href="#ref-brenesManyBodyLocalizationDynamics2018"
role="doc-biblioref">52</a></sup></span>.</p>
<p>Dimensionality is crucial for the physics of both localisation and
<span data-acronym-label="FTPT"
data-acronym-form="plural+short">FTPTs</span>. In 1D, disorder generally
dominates, even the weakest disorder exponentially localises
<em>all</em> single particle eigenstates. Only longer-range correlations
of the disorder potential can potentially induce delocalization <span
class="citation"
data-cites="aubryAnalyticityBreakingAnderson1980 dassarmaLocalizationMobilityEdges1990 dunlapAbsenceLocalizationRandomdimer1990"><sup><a
href="#ref-aubryAnalyticityBreakingAnderson1980"
role="doc-biblioref">53</a><a
href="#ref-dunlapAbsenceLocalizationRandomdimer1990"
role="doc-biblioref">55</a></sup></span>. Thermodynamically, short-range
interactions cannot overcome thermal defects in 1D which prevents
ordered phases at nonzero temperature <span class="citation"
data-cites="andersonAbsenceDiffusionCertain1958 goldshteinPurePointSpectrum1977 abrahamsScalingTheoryLocalization1979 kramerLocalizationTheoryExperiment1993"><sup><a
href="#ref-andersonAbsenceDiffusionCertain1958"
role="doc-biblioref">4</a>,<a
href="#ref-kramerLocalizationTheoryExperiment1993"
role="doc-biblioref">28</a>,<a
href="#ref-goldshteinPurePointSpectrum1977"
role="doc-biblioref">29</a>,<a
href="#ref-abrahamsScalingTheoryLocalization1979"
role="doc-biblioref">56</a></sup></span>. However, the absence of an
<span data-acronym-label="FTPT"
data-acronym-form="singular+short">FTPT</span> in the short ranged <span
data-acronym-label="FK" data-acronym-form="singular+short">FK</span>
chain is far from obvious because the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction mediated by the fermions <span class="citation"
data-cites="kasuyaTheoryMetallicFerro1956 rudermanIndirectExchangeCoupling1954 vanvleckNoteInteractionsSpins1962 yosidaMagneticPropertiesCuMn1957"><sup><a
href="#ref-kasuyaTheoryMetallicFerro1956" role="doc-biblioref">57</a><a
href="#ref-yosidaMagneticPropertiesCuMn1957"
role="doc-biblioref">60</a></sup></span> decays as <span
class="math inline">\(r^{-1}\)</span> in 1D <span class="citation"
data-cites="rusinCalculationRKKYRange2017a"><sup><a
href="#ref-rusinCalculationRKKYRange2017a"
role="doc-biblioref">61</a></sup></span>. This could in principle induce
the necessary long-range interactions for the classical Ising
background <span class="citation"
data-cites="thoulessLongRangeOrderOneDimensional1969 peierlsIsingModelFerromagnetism1936"><sup><a
href="#ref-peierlsIsingModelFerromagnetism1936"
role="doc-biblioref">18</a>,<a
href="#ref-thoulessLongRangeOrderOneDimensional1969"
role="doc-biblioref">20</a></sup></span>. However, Kennedy and Lieb
established rigorously that at half-filling a <span
data-acronym-label="CDW" data-acronym-form="singular+short">CDW</span>
phase only exists at <span class="math inline">\(T = 0\)</span> for the
1D <span data-acronym-label="FK"
data-acronym-form="singular+short">FK</span> model <span
class="citation" data-cites="kennedyItinerantElectronModel1986"><sup><a
href="#ref-kennedyItinerantElectronModel1986"
role="doc-biblioref">23</a></sup></span>.</p>
<p>Here, we construct a generalised one-dimensional <span
data-acronym-label="FK" data-acronym-form="singular+short">FK</span>
model with long-range interactions which induces the otherwise forbidden
<span data-acronym-label="CDW"
data-acronym-form="singular+short">CDW</span> phase at non-zero
temperature. We find a rich phase diagram with a CDW FTPT and
interaction-tuned Anderson versus Mott localized phases similar to the
2D <span data-acronym-label="FK"
data-acronym-form="singular+short">FK</span> model <span
class="citation"
data-cites="antipovInteractionTunedAndersonMott2016"><sup><a
href="#ref-antipovInteractionTunedAndersonMott2016"
role="doc-biblioref">49</a></sup></span>. We explore the localization
properties of the fermionic sector and find that the localisation
lengths vary dramatically across the phases and for different energies.
Although moderate system sizes indicate the coexistence of localized and
delocalized states within the CDW phase, we find quantitatively similar
behaviour in a model of uncorrelated binary disorder on a <span
data-acronym-label="CDW" data-acronym-form="singular+short">CDW</span>
background. For large system sizes, i.e. for our 1D disorder model we
can treat linear sizes of several thousand sites, we find that all
states are eventually localized with a localization length which
diverges towards zero temperature.</p>
<p>The paper is organised as follows. First, we introduce the model and
present its phase diagram. Second, we present the methods used to solve
it numerically. Last, we investigate the models localisation properties
and conclude.</p>
<h1 id="the-long-ranged-falikov-kimball-model">The Long-Ranged
Falikov-Kimball Model</h1>
<p>We interpret the <span data-acronym-label="FK"
data-acronym-form="singular+short">FK</span> model as a model of
spinless fermions, <span class="math inline">\(c^\dag_{i}\)</span>,
hopping on a 1D lattice against a classical Ising spin background, <span
class="math inline">\(S_i \in {\pm \frac{1}{2}}\)</span>. The fermions
couple to the spins via an onsite interaction with strength <span
class="math inline">\(U\)</span> which we supplement by a long-range
interaction, <span class="math inline">\(J_{ij} = 4\kappa J
(-1)^{\abs{i-j}} \abs{i-j}^{-\alpha}\)</span>, between the spins. The
normalisation, <span class="math inline">\(\kappa^{-1} = \sum_{i=1}^{N}
i^{-\alpha}\)</span>, renders the 0th order mean field critical
temperature independent of system size. The hopping strength of the
electrons, <span class="math inline">\(t = 1\)</span>, sets the overall
energy scale and we concentrate throughout on the particle-hole
symmetric point at zero chemical potential and half filling <span
class="citation"
data-cites="gruberFalicovKimballModelReview1996"><sup><a
href="#ref-gruberFalicovKimballModelReview1996"
role="doc-biblioref">39</a></sup></span>.   <span
class="math display">\[\begin{aligned}
H_{\mathrm{FK}} = &amp; \;U \sum_{i} S_i\;(c^\dag_{i}c_{i} -
\tfrac{1}{2}) -\;t \sum_{i} (c^\dag_{i}c_{i+1} + \textit{h.c.)}\\
&amp; + \sum_{i, j}^{N} J_{ij} S_i S_j \nonumber
\label{eq:HFK}\end{aligned}\]</span></p>
<p>In two or more dimensions, the <span
class="math inline">\(J\!=0\!\)</span> <span data-acronym-label="FK"
data-acronym-form="singular+short">FK</span> model has a <span
data-acronym-label="FTPT" data-acronym-form="singular+short">FTPT</span>
to the <span data-acronym-label="CDW"
data-acronym-form="singular+short">CDW</span> phase with non-zero
staggered magnetisation <span class="math inline">\(m = N^{-1} \sum_i
(-1)^i \; S_i\)</span> and fermionic order parameter <span
class="math inline">\(f = 2 N^{-1}\abs{\sum_i (-1)^i \;
\expval{c^\dag_{i}c_{i}}}\)</span> <span class="citation"
data-cites="antipovInteractionTunedAndersonMott2016 maskaThermodynamicsTwodimensionalFalicovKimball2006"><sup><a
href="#ref-maskaThermodynamicsTwodimensionalFalicovKimball2006"
role="doc-biblioref">17</a>,<a
href="#ref-antipovInteractionTunedAndersonMott2016"
role="doc-biblioref">49</a></sup></span>. This only exists at zero
temperature in the short ranged 1D model <span class="citation"
data-cites="kennedyItinerantElectronModel1986"><sup><a
href="#ref-kennedyItinerantElectronModel1986"
role="doc-biblioref">23</a></sup></span>. To study the <span
data-acronym-label="CDW" data-acronym-form="singular+short">CDW</span>
phase at finite temperature in 1D, we add an additional coupling that is
both long-ranged and staggered by a factor <span
class="math inline">\((-1)^{|i-j|}\)</span>. The additional coupling
stabilises the Antiferromagnetic (AFM) order of the Ising spins which
promotes the finite temperature <span data-acronym-label="CDW"
data-acronym-form="singular+short">CDW</span> phase of the fermionic
sector.</p>
<p>Taking the limit <span class="math inline">\(U = 0\)</span> decouples
the spins from the fermions, which gives a spin sector governed by a
classical <span data-acronym-label="LRI"
data-acronym-form="singular+short">LRI</span> model. Note, the
transformation of the spins <span class="math inline">\(S_i \to (-1)^{i}
S_i\)</span> maps the AFM model to the FM one. We recall that Peierls
classic argument can be extended to show that, for the 1D <span
data-acronym-label="LRI" data-acronym-form="singular+short">LRI</span>
model, a power law decay of <span class="math inline">\(\alpha &lt;
2\)</span> is required for a <span data-acronym-label="FTPT"
data-acronym-form="singular+short">FTPT</span> as the energy of defect
domain then scales with the system size and can overcome the entropic
contribution. A renormalisation group analysis supports this finding and
shows that the critical exponents are only universal for <span
class="math inline">\(\alpha \leq 3/2\)</span> <span class="citation"
data-cites="ruelleStatisticalMechanicsOnedimensional1968 thoulessLongRangeOrderOneDimensional1969 angeliniRelationsShortrangeLongrange2014"><sup><a
href="#ref-thoulessLongRangeOrderOneDimensional1969"
role="doc-biblioref">20</a>,<a
href="#ref-ruelleStatisticalMechanicsOnedimensional1968"
role="doc-biblioref">21</a>,<a
href="#ref-angeliniRelationsShortrangeLongrange2014"
role="doc-biblioref">62</a></sup></span>. In the following, we choose
<span class="math inline">\(\alpha = 5/4\)</span> to avoid this
additional complexity.</p>
<p>To improve the scaling of finite size effects, we make the
replacement <span class="math inline">\(\abs{i - j}^{-\alpha}
\rightarrow \abs{f(i - j)}^{-\alpha}\)</span>, in both <span
class="math inline">\(J_{ij}\)</span> and <span
class="math inline">\(\kappa\)</span>, where <span
class="math inline">\(f(x) = \frac{N}{\pi}\sin \frac{\pi x}{N}\)</span>,
which is smooth across the circular boundary <span class="citation"
data-cites="fukuiOrderNClusterMonte2009"><sup><a
href="#ref-fukuiOrderNClusterMonte2009"
role="doc-biblioref">63</a></sup></span>. We only consider even system
sizes given that odd system sizes are not commensurate with a <span
data-acronym-label="CDW" data-acronym-form="singular+short">CDW</span>
state.</p>
<h1 id="the-phase-diagram">The Phase Diagram</h1>
<p>Figs. [<a href="#fig:phase_diagram" data-reference-type="ref"
data-reference="fig:phase_diagram">1</a>a] and [<a
href="#fig:phase_diagram" data-reference-type="ref"
data-reference="fig:phase_diagram">1</a>b] show the phase diagram for
constant <span class="math inline">\(U=5\)</span> and constant <span
class="math inline">\(J=5\)</span>, respectively. We determined the
transition temperatures from the crossings of the Binder cumulants <span
class="math inline">\(B_4 = \tex{m^4}/\tex{m^2}^2\)</span> <span
class="citation" data-cites="binderFiniteSizeScaling1981"><sup><a
href="#ref-binderFiniteSizeScaling1981"
role="doc-biblioref">24</a></sup></span>. For a representative set of
parameters, Fig. [<a href="#fig:phase_diagram" data-reference-type="ref"
data-reference="fig:phase_diagram">1</a>c] shows the order parameter
<span class="math inline">\(\tex{m}^2\)</span>. Fig. [<a
href="#fig:phase_diagram" data-reference-type="ref"
data-reference="fig:phase_diagram">1</a>d] shows the Binder cumulants,
both as functions of system size and temperature. The crossings confirm
that the system has a <span data-acronym-label="FTPT"
data-acronym-form="singular+short">FTPT</span> and that the ordered
phase is not a finite size effect.</p>
<p>The CDW transition temperature is largely independent from the
strength of the interaction <span class="math inline">\(U\)</span>. This
demonstrates that the phase transition is driven by the long-range term
<span class="math inline">\(J\)</span> with little effect from the
coupling to the fermions <span class="math inline">\(U\)</span>. The
physics of the spin sector in our long-range <span
data-acronym-label="FK" data-acronym-form="singular+short">FK</span>
model mimics that of the <span data-acronym-label="LRI"
data-acronym-form="singular+short">LRI</span> model and is not
significantly altered by the presence of the fermions, which shows that
the long range tail expected from a basic fermion mediated RKKY
interaction between the Ising spins is absent.</p>
<p>Our main interest concerns the additional structure of the fermionic
sector in the high temperature phase. Following Ref. <span
class="citation"
data-cites="antipovInteractionTunedAndersonMott2016"><sup><a
href="#ref-antipovInteractionTunedAndersonMott2016"
role="doc-biblioref">49</a></sup></span>, we can distinguish between the
Mott and Anderson insulating phases. The former is characterised by a
gapped <span data-acronym-label="DOS"
data-acronym-form="singular+short">DOS</span> in the absence of a <span
data-acronym-label="CDW" data-acronym-form="singular+short">CDW</span>.
Thus, the opening of a gap for large <span
class="math inline">\(U\)</span> is distinct from the gap-opening
induced by the translational symmetry breaking in the CDW state below
<span class="math inline">\(T_c\)</span>, see also Fig. [<a
href="#fig:band_opening" data-reference-type="ref"
data-reference="fig:band_opening">3</a>a]. The Anderson phase is gapless
but, as we explain below, shows localised fermionic eigenstates.</p>
<h1 id="markov-chain-monte-carlo-and-emergent-disorder">Markov Chain
Monte Carlo and Emergent Disorder</h1>
<p>The results for the phase diagram were obtained with a classical
<span data-acronym-label="MCMC"
data-acronym-form="singular+short">MCMC</span> method which we discuss
in the following. It allows us to solve our long-range <span
data-acronym-label="FK" data-acronym-form="singular+short">FK</span>
model efficiently, yielding unbiased estimates of thermal expectation
values and linking it to disorder physics in a translationally invariant
setting.</p>
<p>Since the spin configurations are classical, the Hamiltonian can be
split into a classical spin part <span
class="math inline">\(H_s\)</span> and an operator valued part <span
class="math inline">\(H_c\)</span>. <span
class="math display">\[\begin{aligned}
H_s&amp; = - \frac{U}{2}S_i + \sum_{i, j}^{N} J_{ij} S_i S_j \\
H_c&amp; = \sum_i U S_i c^\dag_{i}c_{i} -t(c^\dag_{i}c_{i+1} +
c^\dag_{i+1}c_{i}) \end{aligned}\]</span> The partition function can
then be written as a sum over spin configurations, <span
class="math inline">\(\vec{S} = (S_0, S_1...S_{N-1})\)</span>: <span
class="math display">\[\begin{aligned}
\Z = \Tr e^{-\beta H}= \sum_{\vec{S}} e^{-\beta H_s} \Tr_c e^{-\beta
H_c} .\end{aligned}\]</span> The contribution of <span
class="math inline">\(H_c\)</span> to the grand canonical partition
function can be obtained by performing the sum over eigenstate
occupation numbers giving <span class="math inline">\(-\beta
F_c[\vec{S}] = \sum_k \ln{(1 + e^{- \beta \epsilon_k})}\)</span> where
<span class="math inline">\({\epsilon_k[\vec{S}]}\)</span> are the
eigenvalues of the matrix representation of <span
class="math inline">\(H_c\)</span> determined through exact
diagonalisation. This gives a partition function containing a classical
energy which corresponds to the long-range interaction of the spins, and
a free energy which corresponds to the quantum subsystem. <span
class="math display">\[\begin{aligned}
\Z = \sum_{\vec{S}} e^{-\beta H_S[\vec{S}] - \beta F_c[\vec{S}]} =
\sum_{\vec{S}} e^{-\beta E[\vec{S}]}\end{aligned}\]</span></p>
<p><span data-acronym-label="MCMC"
data-acronym-form="singular+short">MCMC</span> defines a weighted random
walk over the spin states <span class="math inline">\((\vec{S}_0,
\vec{S}_1, \vec{S}_2, ...)\)</span>, such that the likelihood of
visiting a particular state converges to its Boltzmann probability <span
class="math inline">\(p(\vec{S}) = \Z^{-1} e^{-\beta E}\)</span> <span
class="citation"
data-cites="binderGuidePracticalWork1988 kerteszAdvancesComputerSimulation1998 wolffMonteCarloErrors2004"><sup><a
href="#ref-binderGuidePracticalWork1988" role="doc-biblioref">64</a><a
href="#ref-wolffMonteCarloErrors2004"
role="doc-biblioref">66</a></sup></span>. Hence, any observable can be
estimated as a mean over the states visited by the walk. <span
class="math display">\[\begin{aligned}
\label{eq:thermal_expectation}
\tex{O}&amp; = \sum_{\vec{S}} p(\vec{S}) \tex{O}_{\vec{S}} = \sum_{i =
0}^{M} \tex{O}_{\vec{S}_i} + \mathcal{O}(\tfrac{1}{\sqrt{M}})\\
\tex{O}_{\vec{S}}&amp; = \sum_{\nu} n_F(\epsilon_{\nu})
\expval{O}{\nu}\end{aligned}\]</span> Where <span
class="math inline">\(\nu\)</span> runs over the eigenstates of <span
class="math inline">\(H_c\)</span> for a particular spin configuration
and <span class="math inline">\(n_F(\epsilon) = \left(e^{-\beta\epsilon}
+ 1\right)^{-1}\)</span> is the Fermi function.</p>
<p>The choice of the transition function for <span
data-acronym-label="MCMC" data-acronym-form="singular+short">MCMC</span>
is under-determined as one only needs to satisfy a set of balance
conditions for which there are many solutions <span class="citation"
data-cites="kellyReversibilityStochasticNetworks1981"><sup><a
href="#ref-kellyReversibilityStochasticNetworks1981"
role="doc-biblioref">67</a></sup></span>. Here, we incorporate a
modification to the standard Metropolis-Hastings algorithm <span
class="citation" data-cites="hastingsMonteCarloSampling1970"><sup><a
href="#ref-hastingsMonteCarloSampling1970"
role="doc-biblioref">68</a></sup></span> gleaned from Krauth <span
class="citation" data-cites="krauthIntroductionMonteCarlo1998"><sup><a
href="#ref-krauthIntroductionMonteCarlo1998"
role="doc-biblioref">32</a></sup></span>. Let us first recall the
standard algorithm which decomposes the transition probability into
<span class="math inline">\(\T(a \to b) = \p(a \to b)\A(a \to
b)\)</span>. Here, <span class="math inline">\(\p\)</span> is the
proposal distribution that we can directly sample from while <span
class="math inline">\(\A\)</span> is the acceptance probability. The
standard Metropolis-Hastings choice is <span class="math display">\[\A(a
\to b) = \min\left(1, \frac{\p(b\to a)}{\p(a\to b)} e^{-\beta \Delta
E}\right)\;,\]</span> with <span class="math inline">\(\Delta E = E_b -
E_a\)</span>. The walk then proceeds by sampling a state <span
class="math inline">\(b\)</span> from <span
class="math inline">\(\p\)</span> and moving to <span
class="math inline">\(b\)</span> with probability <span
class="math inline">\(\A(a \to b)\)</span>. The latter operation is
typically implemented by performing a transition if a uniform random
sample from the unit interval is less than <span
class="math inline">\(\A(a \to b)\)</span> and otherwise repeating the
current state as the next step in the random walk. The proposal
distribution is often symmetric so does not appear in <span
class="math inline">\(\A\)</span>. Here, we flip a small number of sites
in <span class="math inline">\(b\)</span> at random to generate
proposals, which is indeed symmetric.</p>
<p>In our computations <span class="citation"
data-cites="hodsonMCMCFKModel2021"><sup><a
href="#ref-hodsonMCMCFKModel2021"
role="doc-biblioref">69</a></sup></span> we employ a modification of the
algorithm which is based on the observation that the free energy of the
<span data-acronym-label="FK"
data-acronym-form="singular+short">FK</span> system is composed of a
classical part which is much quicker to compute than the quantum part.
Hence, we can obtain a computational speedup by first considering the
value of the classical energy difference <span
class="math inline">\(\Delta H_s\)</span> and rejecting the transition
if the former is too high. We only compute the quantum energy difference
<span class="math inline">\(\Delta F_c\)</span> if the transition is
accepted. We then perform a second rejection sampling step based upon
it. This corresponds to two nested comparisons with the majority of the
work only occurring if the first test passes and has the acceptance
function <span class="math display">\[\A(a \to b) = \min\left(1,
e^{-\beta \Delta H_s}\right)\min\left(1, e^{-\beta \Delta
F_c}\right)\;.\]</span></p>
<p>See Appendix <a href="#app:balance" data-reference-type="ref"
data-reference="app:balance">[app:balance]</a> for a proof that this
satisfies the detailed balance condition.</p>
<p>For the model parameters used in Fig. <a href="#fig:indiv_IPR"
data-reference-type="ref" data-reference="fig:indiv_IPR">2</a>, we find
that with our new scheme the matrix diagonalisation is skipped around
30% of the time at <span class="math inline">\(T = 2.5\)</span> and up
to 80% at <span class="math inline">\(T = 1.5\)</span>. We observe that
for <span class="math inline">\(N = 50\)</span>, the matrix
diagonalisation, if it occurs, occupies around 60% of the total
computation time for a single step. This rises to 90% at N = 300 and
further increases for larger N. We therefore get the greatest speedup
for large system sizes at low temperature where many prospective
transitions are rejected at the classical stage and the matrix
computation takes up the greatest fraction of the total computation
time. The upshot is that we find a speedup of up to a factor of 10 at
the cost of very little extra algorithmic complexity.</p>
<p>Our two-step method should be distinguished from the more common
method for speeding up <span data-acronym-label="MCMC"
data-acronym-form="singular+short">MCMC</span> which is to add asymmetry
to the proposal distribution to make it as similar as possible to <span
class="math inline">\(\min\left(1, e^{-\beta \Delta E}\right)\)</span>.
This reduces the number of rejected states, which brings the algorithm
closer in efficiency to a direct sampling method. However it comes at
the expense of requiring a way to directly sample from this complex
distribution, a problem which <span data-acronym-label="MCMC"
data-acronym-form="singular+short">MCMC</span> was employed to solve in
the first place. For example, recent work trains restricted Boltzmann
machines (RBMs) to generate samples for the proposal distribution of the
<span data-acronym-label="FK"
data-acronym-form="singular+short">FK</span> model <span
class="citation" data-cites="huangAcceleratedMonteCarlo2017"><sup><a
href="#ref-huangAcceleratedMonteCarlo2017"
role="doc-biblioref">35</a></sup></span>. The RBMs are chosen as a
parametrisation of the proposal distribution that can be efficiently
sampled from while offering sufficient flexibility that they can be
adjusted to match the target distribution. Our proposed method is
considerably simpler and does not require training while still reaping
some of the benefits of reduced computation.</p>
<h1 id="localisation-properties">Localisation Properties</h1>
<p>The <span data-acronym-label="MCMC"
data-acronym-form="singular+short">MCMC</span> formulation suggests
viewing the spin configurations as a form of annealed binary disorder
whose probability distribution is given by the Boltzmann weight <span
class="math inline">\(e^{-\beta H_S[\vec{S}] - \beta
F_c[\vec{S}]}\)</span>. This makes apparent the link to the study of
disordered systems and Anderson localisation. While these systems are
typically studied by defining the probability distribution for the
quenched disorder potential externally, here we have a translation
invariant system with disorder as a natural consequence of the Ising
background field conserved under the dynamics.</p>
<p>In the limits of zero and infinite temperature, our model becomes a
simple tight-binding model for the fermions. At zero temperature, the
spin background is in one of the two translation invariant AFM ground
states with two gapped fermionic CDW bands at energies <span
class="math display">\[E_{\pm} = \pm\sqrt{\frac{1}{4}U^2 + 2t^2(1 + \cos
ka)^2}\;.\]</span></p>
<p>At infinite temperature, all the spin configurations become equally
likely and the fermionic model reduces to one of binary uncorrelated
disorder in which all eigenstates are Anderson localised <span
class="citation"
data-cites="abrahamsScalingTheoryLocalization1979"><sup><a
href="#ref-abrahamsScalingTheoryLocalization1979"
role="doc-biblioref">56</a></sup></span>. An Anderson localised state
centered around <span class="math inline">\(r_0\)</span> has magnitude
that drops exponentially over some localisation length <span
class="math inline">\(\xi\)</span> i.e <span
class="math inline">\(|\psi(r)|^2 \sim \exp{-\abs{r -
r_0}/\xi}\)</span>. Calculating <span class="math inline">\(\xi\)</span>
directly is numerically demanding. Therefore, we determine if a given
state is localised via the energy-resolved <span
data-acronym-label="IPR" data-acronym-form="singular+short">IPR</span>
and the <span data-acronym-label="DOS"
data-acronym-form="singular+short">DOS</span> defined as <span
class="math display">\[\begin{aligned}
\mathrm{DOS}(\vec{S}, \omega)&amp; = N^{-1} \sum_{i} \delta(\epsilon_i -
\omega)\\
\mathrm{IPR}(\vec{S}, \omega)&amp; = \; N^{-1} \mathrm{DOS}(\vec{S},
\omega)^{-1} \sum_{i,j} \delta(\epsilon_i -
\omega)\;\psi^{4}_{i,j}\end{aligned}\]</span> where <span
class="math inline">\(\epsilon_i\)</span> and <span
class="math inline">\(\psi_{i,j}\)</span> are the <span
class="math inline">\(i\)</span>th energy level and <span
class="math inline">\(j\)</span>th element of the corresponding
eigenfunction, both dependent on the background spin configuration <span
class="math inline">\(\vec{S}\)</span>.</p>
<p>The scaling of the IPR with system size <span
class="math display">\[\mathrm{IPR} \propto N^{-\tau}\]</span> depends
on the localisation properties of states at that energy. For delocalised
states, e.g. Bloch waves, <span class="math inline">\(\tau\)</span> is
the physical dimension. For fully localised states <span
class="math inline">\(\tau\)</span> goes to zero in the thermodynamic
limit. However, for special types of disorder such as binary disorder,
the localisation lengths can be large comparable to the system size at
hand, which can make it difficult to extract the correct scaling. An
additional complication arises from the fact that the scaling exponent
may display intermediate behaviours for correlated disorder and in the
vicinity of a localisation-delocalisation transition <span
class="citation"
data-cites="kramerLocalizationTheoryExperiment1993 eversAndersonTransitions2008a"><sup><a
href="#ref-kramerLocalizationTheoryExperiment1993"
role="doc-biblioref">28</a>,<a href="#ref-eversAndersonTransitions2008a"
role="doc-biblioref">70</a></sup></span>. The thermal defects of the CDW
phase lead to a binary disorder potential with a finite correlation
length, which in principle could result in delocalized eigenstates.</p>
<p>The key question for our system is then: How is the <span
class="math inline">\(T=0\)</span> CDW phase with fully delocalized
fermionic states connected to the fully localized phase at high
temperatures?</p>
<div id="fig:indiv_IPR" class="fignos">
<figure>
<img src="pdf_figs/indiv_IPR.svg"
alt="Figure 3: Energy resolved DOS(\omega) and \tau (the scaling exponent of IPR(\omega) against system size N). The left column shows the Anderson phase U = 2 at high T = 2.5 and the CDW phase at low T = 1.5 temperature. IPRs are evaluated for one of the in-gap states \omega_0/U = 0.057 and the center of the band \omega_1 U = 0.81. The right column shows instead the Mott and CDW phases at U = 5 with \omega_0/U = 0.24 and \omega_1/U = 0.571. For all the plots J = 5,\;\alpha = 1.25 and the fits for \tau use system sizes greater than 60. The measured \tau_0,\tau_1 for each figure are: (a) (0.06\pm0.01, 0.02\pm0.01 (b) 0.04\pm0.02, 0.00\pm0.01 (c) 0.05\pm0.03, 0.30\pm0.03 (d) 0.06\pm0.04, 0.15\pm0.05 We show later that the apparent scaling of the IPR with system size can be explained by the changing defect density with system size rather than due to delocalisation of the states." />
<figcaption aria-hidden="true"><span>Figure 3:</span> Energy resolved
DOS(<span class="math inline">\(\omega\)</span>) and <span
class="math inline">\(\tau\)</span> (the scaling exponent of IPR(<span
class="math inline">\(\omega\)</span>) against system size <span
class="math inline">\(N\)</span>). The left column shows the Anderson
phase <span class="math inline">\(U = 2\)</span> at high <span
class="math inline">\(T = 2.5\)</span> and the CDW phase at low <span
class="math inline">\(T = 1.5\)</span> temperature. IPRs are evaluated
for one of the in-gap states <span class="math inline">\(\omega_0/U =
0.057\)</span> and the center of the band <span
class="math inline">\(\omega_1\)</span> <span class="math inline">\(U =
0.81\)</span>. The right column shows instead the Mott and CDW phases at
<span class="math inline">\(U = 5\)</span> with <span
class="math inline">\(\omega_0/U = 0.24\)</span> and <span
class="math inline">\(\omega_1/U = 0.571\)</span>. For all the plots
<span class="math inline">\(J = 5,\;\alpha = 1.25\)</span> and the fits
for <span class="math inline">\(\tau\)</span> use system sizes greater
than 60. The measured <span class="math inline">\(\tau_0,\tau_1\)</span>
for each figure are: (a) <span class="math inline">\((0.06\pm0.01,
0.02\pm0.01\)</span> (b) <span class="math inline">\(0.04\pm0.02,
0.00\pm0.01\)</span> (c) <span class="math inline">\(0.05\pm0.03,
0.30\pm0.03\)</span> (d) <span class="math inline">\(0.06\pm0.04,
0.15\pm0.05\)</span> We show later that the apparent scaling of the IPR
with system size can be explained by the changing defect density with
system size rather than due to delocalisation of the
states.</figcaption>
</figure>
</div>
<div id="fig:band_opening" class="fignos">
<figure>
<img src="pdf_figs/gap_openingboth.svg"
alt="Figure 4: The DOS (a and c) and scaling exponent \tau (b and d) as a function of energy and temperature. (a) and (b) show the system transitioning from the CDW phase to the gapless Anderson insulating one at U=2 while (c) and (d) show the CDW to gapped Mott phase transition at U=5. Regions where the DOS is close to zero are shown a white. The scaling exponent \tau is obtained from fits to IPR(N) = A N^{-\lambda} for a range of system sizes. U = 5,\;J = 5,\;\alpha = 1.25" />
<figcaption aria-hidden="true"><span>Figure 4:</span> The <span
data-acronym-label="DOS" data-acronym-form="singular+long">DOS</span> (a
and c) and scaling exponent <span class="math inline">\(\tau\)</span> (b
and d) as a function of energy and temperature. (a) and (b) show the
system transitioning from the CDW phase to the gapless Anderson
insulating one at <span class="math inline">\(U=2\)</span> while (c) and
(d) show the CDW to gapped Mott phase transition at <span
class="math inline">\(U=5\)</span>. Regions where the DOS is close to
zero are shown a white. The scaling exponent <span
class="math inline">\(\tau\)</span> is obtained from fits to <span
class="math inline">\(IPR(N) = A N^{-\lambda}\)</span> for a range of
system sizes. <span class="math inline">\(U = 5,\;J = 5,\;\alpha =
1.25\)</span></figcaption>
</figure>
</div>
<div id="fig:indiv_IPR_disorder" class="fignos">
<figure>
<img src="pdf_figs/indiv_IPR_disorder.svg"
alt="Figure 5: A comparison of the full FK model to a simple binary disorder model (DM) with a CDW wave background perturbed by uncorrelated defects at density 0 &lt; \rho &lt; 1 matched to the largest corresponding FK model. As in Fig 2, the Energy resolved DOS(\omega) and \tau are shown. The DOSs match well and this data makes clear that the apparent scaling of IPR with system size is a finite size effect due to weak localisation 49, hence all the states are indeed localised as one would expect in 1D. The disorder model \tau_0,\tau_1 for each figure are: (a) 0.01\pm0.05, -0.02\pm0.06 (b) 0.01\pm0.04, -0.01\pm0.04 (c) 0.05\pm0.06, 0.04\pm0.06 (d) -0.03\pm0.06, 0.01\pm0.06. The lines are fit on system sizes N &gt; 400" />
<figcaption aria-hidden="true"><span>Figure 5:</span> A comparison of
the full <span data-acronym-label="FK"
data-acronym-form="singular+short">FK</span> model to a simple binary
disorder model (DM) with a CDW wave background perturbed by uncorrelated
defects at density <span class="math inline">\(0 &lt; \rho &lt;
1\)</span> matched to the largest corresponding FK model. As in Fig <a
href="#fig:indiv_IPR" data-reference-type="ref"
data-reference="fig:indiv_IPR">2</a>, the Energy resolved DOS(<span
class="math inline">\(\omega\)</span>) and <span
class="math inline">\(\tau\)</span> are shown. The DOSs match well and
this data makes clear that the apparent scaling of IPR with system size
is a finite size effect due to weak localisation <span class="citation"
data-cites="antipovInteractionTunedAndersonMott2016"><sup><a
href="#ref-antipovInteractionTunedAndersonMott2016"
role="doc-biblioref">49</a></sup></span>, hence all the states are
indeed localised as one would expect in 1D. The disorder model <span
class="math inline">\(\tau_0,\tau_1\)</span> for each figure are: (a)
<span class="math inline">\(0.01\pm0.05, -0.02\pm0.06\)</span> (b) <span
class="math inline">\(0.01\pm0.04, -0.01\pm0.04\)</span> (c) <span
class="math inline">\(0.05\pm0.06, 0.04\pm0.06\)</span> (d) <span
class="math inline">\(-0.03\pm0.06, 0.01\pm0.06\)</span>. The lines are
fit on system sizes <span class="math inline">\(N &gt;
400\)</span></figcaption>
</figure>
</div>
<p>Fig. <a href="#fig:indiv_IPR" data-reference-type="ref"
data-reference="fig:indiv_IPR">2</a> shows the <span
data-acronym-label="DOS" data-acronym-form="singular+short">DOS</span>
and <span class="math inline">\(\tau\)</span>, the scaling exponent of
the IPR with system size, for a representative set of parameters
covering all three phases. The DOS is symmetric about <span
class="math inline">\(0\)</span> because of the particle hole symmetry
of the model. At high temperatures, all of the eigenstates are localised
in both the Mott and Anderson phases (with <span
class="math inline">\(\tau \leq 0.07\)</span> for our system sizes). We
also checked that the states are localised by direct inspection. Note
that there are in-gap states for instance at <span
class="math inline">\(\omega_0\)</span>, below the upper band which are
localized and smoothly connected across the phase transition.</p>
<p>In the CDW phases at <span class="math inline">\(U=2\)</span> and
<span class="math inline">\(U=5\)</span>, we find for the states within
the gapped CDW bands, e.g. at <span
class="math inline">\(\omega_1\)</span>, scaling exponents <span
class="math inline">\(\tau = 0.30\pm0.03\)</span> and <span
class="math inline">\(\tau = 0.15\pm0.05\)</span>, respectively. This
surprising finding suggests that the CDW bands are partially delocalised
with multi-fractal behaviour of the wavefunctions <span class="citation"
data-cites="eversAndersonTransitions2008a"><sup><a
href="#ref-eversAndersonTransitions2008a"
role="doc-biblioref">70</a></sup></span>. This phenomenon would be
unexpected in a 1D model as they generally do not support delocalisation
in the presence of disorder except as the result of correlations in the
emergent disorder potential <span class="citation"
data-cites="croyAndersonLocalization1D2011 goldshteinPurePointSpectrum1977"><sup><a
href="#ref-croyAndersonLocalization1D2011" role="doc-biblioref">6</a>,<a
href="#ref-goldshteinPurePointSpectrum1977"
role="doc-biblioref">29</a></sup></span>. However, we later show by
comparison to an uncorrelated Anderson model that these nonzero
exponents are a finite size effect and the states are localised with a
finite <span class="math inline">\(\xi\)</span> similar to the system
size. As a result, the IPR does not scale correctly until the system
size has grown much larger than <span
class="math inline">\(\xi\)</span>. Fig. [<a
href="#fig:indiv_IPR_disorder" data-reference-type="ref"
data-reference="fig:indiv_IPR_disorder">4</a>] shows that the scaling of
the IPR in the CDW phase does flatten out eventually.</p>
<p>Next, we use the <span data-acronym-label="DOS"
data-acronym-form="singular+short">DOS</span> and the scaling exponent
<span class="math inline">\(\tau\)</span> to explore the localisation
properties over the energy-temperature plane in Fig. <a
href="#fig:band_opening" data-reference-type="ref"
data-reference="fig:band_opening">3</a>. Gapped areas are shown in
white, which highlights the distinction between the gapped Mott phase
and the ungapped Anderson phase. In-gap states appear just below the
critical point, smoothly filling the bandgap in the Anderson phase and
forming islands in the Mott phase. As in the finite <span
class="citation" data-cites="zondaGaplessRegimeCharge2019"><sup><a
href="#ref-zondaGaplessRegimeCharge2019"
role="doc-biblioref">71</a></sup></span> and infinite dimensional <span
class="citation"
data-cites="hassanSpectralPropertiesChargedensitywave2007"><sup><a
href="#ref-hassanSpectralPropertiesChargedensitywave2007"
role="doc-biblioref">72</a></sup></span> cases, the in-gap states merge
and are pushed to lower energy for decreasing U as the <span
class="math inline">\(T=0\)</span> CDW gap closes. Intuitively, the
presence of in-gap states can be understood as a result of domain wall
fluctuations away from the AFM ordered background. These domain walls
act as local potentials for impurity-like bound states <span
class="citation" data-cites="zondaGaplessRegimeCharge2019"><sup><a
href="#ref-zondaGaplessRegimeCharge2019"
role="doc-biblioref">71</a></sup></span>.</p>
<p>In order to understand the localization properties we can compare the
behaviour of our model with that of a simpler Anderson disorder model
(DM) in which the spins are replaced by a <span data-acronym-label="CDW"
data-acronym-form="singular+short">CDW</span> background with
uncorrelated binary defect potentials, see Appendix <a
href="#app:disorder_model" data-reference-type="ref"
data-reference="app:disorder_model">[app:disorder_model]</a>. Fig. [<a
href="#fig:indiv_IPR_disorder" data-reference-type="ref"
data-reference="fig:indiv_IPR_disorder">4</a>] compares the FK model to
the disorder model at different system sizes, matching the defect
densities of the disorder model to the FK model at <span
class="math inline">\(N = 270\)</span> above and below the CDW
transition. We find very good, even quantitative, agreement between the
FK and disorder models, which suggests that correlations in the spin
sector do not play a significant role. As we can sample directly from
the disorder model, rather than through MCMC, the samples are
uncorrelated. Hence we can evaluate much larger system sizes with the
disorder model which enables us to pin down the correct localisation
effects. In particular, what appear to be delocalized states for small
system sizes eventually turn out to be states with large localization
length. The localization length diverges towards the ordered zero
temperature CDW state. Overall, we see that the interplay of
interactions, here manifest as a peculiar binary potential, and
localization can be very intricate and the added advantage of our 1D
model is that we can explore very large system sizes for a complete
understanding.</p>
<h1 id="discussion-conclusion">Discussion &amp; Conclusion</h1>
<p>The <span data-acronym-label="FK"
data-acronym-form="singular+short">FK</span> model is one of the
simplest non-trivial models of interacting fermions. We studied its
thermodynamic and localisation properties brought down in dimensionality
to 1D by adding a novel long-ranged coupling designed to stabilise the
<span data-acronym-label="CDW"
data-acronym-form="singular+short">CDW</span> phase present in dimension
two and above. Our hybrid <span data-acronym-label="MCMC"
data-acronym-form="singular+short">MCMC</span> approach elucidates a
disorder-free localization mechanism within our translationally
invariant system. Further, we demonstrate a significant speedup over the
naive method. We show that our long-range <span data-acronym-label="FK"
data-acronym-form="singular+short">FK</span> in 1D retains much of the
rich phase diagram of its higher dimensional cousins. Careful scaling
analysis indicates that all the single particle eigenstates eventually
localise at nonzero temperature albeit only for very large system sizes
of several thousand.</p>
<p>Our work raises a number of interesting questions for future
research. A straightforward but numerically challenging problem is to
pin down the models behaviour closer to the critical point where
correlations in the spin sector would become significant. Would this
modify the localisation behaviour? Similar to other soluble models of
disorder-free localisation, we expect intriguing out-of equilibrium
physics, for example slow entanglement dynamics akin to more generic
interacting systems <span class="citation"
data-cites="hartLogarithmicEntanglementGrowth2020"><sup><a
href="#ref-hartLogarithmicEntanglementGrowth2020"
role="doc-biblioref">73</a></sup></span>. One could also investigate
whether the rich ground state phenomenology of the FK model as a
function of filling <span class="citation"
data-cites="gruberGroundStatesSpinless1990"><sup><a
href="#ref-gruberGroundStatesSpinless1990"
role="doc-biblioref">42</a></sup></span> such as the devils
staircase <span class="citation"
data-cites="michelettiCompleteDevilTextquotesingles1997"><sup><a
href="#ref-michelettiCompleteDevilTextquotesingles1997"
role="doc-biblioref">74</a></sup></span> could be stabilised at finite
temperature. In a broader context, we envisage that long-range
interactions can also be used to gain a deeper understanding of the
temperature evolution of topological phases. One example would be a
long-ranged <span data-acronym-label="FK"
data-acronym-form="singular+short">FK</span> version of the celebrated
Su-Schrieffer-Heeger model where one could explore the interplay of
topological bound states and thermal domain wall defects. Finally, the
rich physics of our model should be realizable in systems with
long-range interactions, such as trapped ion quantum simulators, where
one can also explore the fully interacting regime with a dynamical
background field.</p>
<h1 id="acknowledgments">Acknowledgments</h1>
<p>We wish to acknowledge the support of Alexander Belcik who was
involved with the initial stages of the project. We thank Angus
MacKinnon for helpful discussions, Sophie Nadel for input when preparing
the figures and acknowledge support from the Imperial-TUM flagship
partnership. This work was supported in part by the Engineering and
Physical Sciences Research Council (EPSRC) <a
href="https://gtr.ukri.org/project/145404DD-ABAD-4CFB-A2D8-152A6AFCCEB7#/tabOverview">Project
No. 2120140</a>.</p>
<h1 id="detailed-balance"><span id="app:balance"
label="app:balance"></span> DETAILED BALANCE</h1>
<p>Given a <span data-acronym-label="MCMC"
data-acronym-form="singular+short">MCMC</span> algorithm with target
distribution <span class="math inline">\(\pi(a)\)</span> and transition
function <span class="math inline">\(\T\)</span> the detailed balance
condition is sufficient (along with some technical constraints<span
class="citation" data-cites="wolffMonteCarloErrors2004"><sup><a
href="#ref-wolffMonteCarloErrors2004"
role="doc-biblioref">66</a></sup></span>) to guarantee that in the long
time limit the algorithm produces samples from <span
class="math inline">\(\pi\)</span>. <span
class="math display">\[\pi(a)\T(a \to b) = \pi(b)\T(b \to
a)\]</span></p>
<p>In pseudo-code, our two step method corresponds to two nested
comparisons with the majority of the work only occurring if the first
test passes:</p>
<div class="sourceCode" id="cb2" data-language="Python"><pre
class="sourceCode python"><code class="sourceCode python"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a>current_state <span class="op">=</span> initial_state</span>
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span> i <span class="kw">in</span> <span class="bu">range</span>(N_steps):</span>
<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a> new_state <span class="op">=</span> proposal(current_state)</span>
<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a> c_dE <span class="op">=</span> classical_energy_change(</span>
<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a> current_state,</span>
<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a> new_state)</span>
<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a> <span class="cf">if</span> uniform(<span class="dv">0</span>,<span class="dv">1</span>) <span class="op">&lt;</span> exp(<span class="op">-</span>beta <span class="op">*</span> c_dE):</span>
<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a> q_dF <span class="op">=</span> quantum_free_energy_change(</span>
<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a> current_state,</span>
<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a> new_state)</span>
<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a> <span class="cf">if</span> uniform(<span class="dv">0</span>,<span class="dv">1</span>) <span class="op">&lt;</span> exp(<span class="op">-</span> beta <span class="op">*</span> q_dF):</span>
<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a> current_state <span class="op">=</span> new_state</span>
<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a> states[i] <span class="op">=</span> current_state</span></code></pre></div>
<p>Defining <span class="math inline">\(r_c = e^{-\beta H_c}\)</span>
and <span class="math inline">\(r_q = e^{-\beta F_q}\)</span> our target
distribution is <span class="math inline">\(\pi(a) = r_c r_q\)</span>.
This method has <span class="math inline">\(\T(a\to b) = q(a\to b)\A(a
\to b)\)</span> with symmetric <span class="math inline">\(p(a \to b) =
\p(b \to a)\)</span> and <span class="math inline">\(\A = \min\left(1,
r_c\right) \min\left(1, r_q\right)\)</span></p>
<p>Substituting this into the detailed balance equation gives: <span
class="math display">\[\T(a \to b)/\T(b \to a) = \pi(b)/\pi(a) = r_c
r_q\]</span></p>
<p>Taking the LHS and substituting in our transition function: <span
class="math display">\[\begin{aligned}
\T(a \to b)/\T(b \to a) = \frac{\min\left(1, r_c\right) \min\left(1,
r_q\right)}{ \min\left(1, 1/r_c\right) \min\left(1,
1/r_q\right)}\end{aligned}\]</span></p>
<p>which simplifies to <span class="math inline">\(r_c r_q\)</span> as
<span class="math inline">\(\min(1,r)/\min(1,1/r) = r\)</span> for <span
class="math inline">\(r &gt; 0\)</span>.</p>
<h1 id="uncorrelated-disorder-model"><span id="app:disorder_model"
label="app:disorder_model"></span> UNCORRELATED DISORDER MODEL</h1>
<p>The disorder model referred to in the main text is defined by
replacing the spin degree of freedom in the FK model <span
class="math inline">\(S_i = \pm \tfrac{1}{2}\)</span> with a disorder
potential <span class="math inline">\(d_i = \pm \tfrac{1}{2}\)</span>
controlled by a defect density <span class="math inline">\(\rho\)</span>
such that <span class="math inline">\(d_i = -\tfrac{1}{2}\)</span> with
probability <span class="math inline">\(\rho/2\)</span> and <span
class="math inline">\(d_i = \tfrac{1}{2}\)</span> otherwise. <span
class="math inline">\(\rho/2\)</span> is used rather than <span
class="math inline">\(\rho\)</span> so that the disorder potential takes
on the zero temperature CDW ground state at <span
class="math inline">\(\rho = 0\)</span> and becomes a random choice over
spin states at <span class="math inline">\(\rho = 1\)</span> i.e the
infinite temperature limit.   <span
class="math display">\[\begin{aligned}
H_{\mathrm{DM}} = &amp; \;U \sum_{i} (-1)^i \; d_i \;(c^\dag_{i}c_{i} -
\tfrac{1}{2}) \\
&amp; -\;t \sum_{i} c^\dag_{i}c_{i+1} + c^\dag_{i+1}c_{i}
\nonumber\end{aligned}\]</span></p>
<div class="sourceCode" id="cb3"><pre
class="sourceCode python"><code class="sourceCode python"></code></pre></div>
<p></ij></ij></ij></ij></ij></ij></ij></p>
<div id="refs" class="references csl-bib-body" data-line-spacing="2"
role="doc-bibliography">
<div id="ref-hodsonOnedimensionalLongRangeFalikovKimball2021"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">1. </div><div
class="csl-right-inline">Hodson, T., Wilsher, J. &amp; Knolle, J. The
one-dimensional <span>Long-Range Falikov-Kimball Model</span>:
<span>Thermal Phase Transition</span> and <span>Disorder-Free
Localisation</span>. <em>arXiv:2103.11735 [cond-mat]</em> (2021).</div>
</div>
<div id="ref-abaninRecentProgressManybody2017" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">2. </div><div
class="csl-right-inline">Abanin, D. A. &amp; Papić, Z. <a
href="https://doi.org/10.1002/andp.201700169">Recent progress in
many-body localization</a>. <em>ANNALEN DER PHYSIK</em>
<strong>529</strong>, 1700169 (2017).</div>
</div>
<div id="ref-srednickiChaosQuantumThermalization1994" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">3. </div><div
class="csl-right-inline">Srednicki, M. <a
href="https://doi.org/10.1103/PhysRevE.50.888">Chaos and <span>Quantum
Thermalization</span></a>. <em>Phys. Rev. E</em> <strong>50</strong>,
888901 (1994).</div>
</div>
<div id="ref-andersonAbsenceDiffusionCertain1958" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">4. </div><div
class="csl-right-inline">Anderson, P. W. <a
href="https://doi.org/10.1103/PhysRev.109.1492">Absence of
<span>Diffusion</span> in <span>Certain Random Lattices</span></a>.
<em>Phys. Rev.</em> <strong>109</strong>, 14921505 (1958).</div>
</div>
<div id="ref-izrailevLocalizationMobilityEdge1999" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">5. </div><div
class="csl-right-inline">Izrailev, F. M. &amp; Krokhin, A. A. <a
href="https://doi.org/10.1103/PhysRevLett.82.4062">Localization and the
<span>Mobility Edge</span> in <span>One-Dimensional Potentials</span>
with <span>Correlated Disorder</span></a>. <em>Phys. Rev. Lett.</em>
<strong>82</strong>, 40624065 (1999).</div>
</div>
<div id="ref-croyAndersonLocalization1D2011" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">6. </div><div
class="csl-right-inline">Croy, A., Cain, P. &amp; Schreiber, M. <a
href="https://doi.org/10.1140/epjb/e2011-20212-1">Anderson localization
in <span>1D</span> systems with correlated disorder</a>. <em>Eur. Phys.
J. B</em> <strong>82</strong>, 107 (2011).</div>
</div>
<div id="ref-izrailevAnomalousLocalizationLowDimensional2012"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">7. </div><div
class="csl-right-inline">Izrailev, F. M., Krokhin, A. A. &amp; Makarov,
N. M. <a href="https://doi.org/10.1016/j.physrep.2011.11.002">Anomalous
<span>Localization</span> in <span>Low-Dimensional Systems</span> with
<span>Correlated Disorder</span></a>. <em>Physics Reports</em>
<strong>512</strong>, 125254 (2012).</div>
</div>
<div id="ref-imbrieManyBodyLocalizationQuantum2016" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">8. </div><div
class="csl-right-inline">Imbrie, J. Z. <a
href="https://doi.org/10.1007/s10955-016-1508-x">On <span>Many-Body
Localization</span> for <span>Quantum Spin Chains</span></a>. <em>J Stat
Phys</em> <strong>163</strong>, 9981048 (2016).</div>
</div>
<div id="ref-kagan1984localization" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">9. </div><div
class="csl-right-inline">Kagan, Y. &amp; Maksimov, L. Localization in a
system of interacting particles diffusing in a regular crystal.
<em>Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki</em>
<strong>87</strong>, 348365 (1984).</div>
</div>
<div id="ref-yaoQuasiManyBodyLocalizationTranslationInvariant2016"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">10. </div><div
class="csl-right-inline">Yao, N. Y., Laumann, C. R., Cirac, J. I.,
Lukin, M. D. &amp; Moore, J. E. <a
href="https://doi.org/10.1103/PhysRevLett.117.240601">Quasi-<span>Many-Body
Localization</span> in <span>Translation-Invariant Systems</span></a>.
<em>Phys. Rev. Lett.</em> <strong>117</strong>, 240601 (2016).</div>
</div>
<div id="ref-schiulazDynamicsManybodyLocalized2015" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">11. </div><div
class="csl-right-inline">Schiulaz, M., Silva, A. &amp; Müller, M. <a
href="https://doi.org/10.1103/PhysRevB.91.184202">Dynamics in many-body
localized quantum systems without disorder</a>. <em>Phys. Rev. B</em>
<strong>91</strong>, 184202 (2015).</div>
</div>
<div id="ref-smithDisorderFreeLocalization2017" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">12. </div><div
class="csl-right-inline">Smith, A., Knolle, J., Kovrizhin, D. L. &amp;
Moessner, R. <a
href="https://doi.org/10.1103/PhysRevLett.118.266601">Disorder-<span>Free
Localization</span></a>. <em>Phys. Rev. Lett.</em> <strong>118</strong>,
266601 (2017).</div>
</div>
<div id="ref-HubbardModelHalf2013" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">13. </div><div class="csl-right-inline"><a
href="https://doi.org/10.1038/nphys2759">The <span>Hubbard</span> model
at half a century</a>. <em>Nature Physics</em> <strong>9</strong>,
523523 (2013).</div>
</div>
<div id="ref-liebAbsenceMottTransition1968" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">14. </div><div
class="csl-right-inline">Lieb, E. H. &amp; Wu, F. Y. <a
href="https://doi.org/10.1103/PhysRevLett.20.1445">Absence of <span>Mott
Transition</span> in an <span>Exact Solution</span> of the
<span>Short-Range</span>, <span>One-Band Model</span> in <span>One
Dimension</span></a>. <em>Phys. Rev. Lett.</em> <strong>20</strong>,
14451448 (1968).</div>
</div>
<div id="ref-nagaokaFerromagnetismNarrowAlmost1966" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">15. </div><div
class="csl-right-inline">Nagaoka, Y. <a
href="https://doi.org/10.1103/PhysRev.147.392">Ferromagnetism in a
<span>Narrow</span>, <span>Almost Half-Filled</span> $s$
<span>Band</span></a>. <em>Phys. Rev.</em> <strong>147</strong>, 392405
(1966).</div>
</div>
<div id="ref-hubbardj.ElectronCorrelationsNarrow1963" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">16. </div><div
class="csl-right-inline">Hubbard, J. <a
href="https://doi.org/10.1098/rspa.1963.0204">Electron correlations in
narrow energy bands</a>. <em>Proceedings of the Royal Society of London.
Series A. Mathematical and Physical Sciences</em> <strong>276</strong>,
238257 (1963).</div>
</div>
<div id="ref-maskaThermodynamicsTwodimensionalFalicovKimball2006"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">17. </div><div
class="csl-right-inline">Maśka, M. M. &amp; Czajka, K. <a
href="https://doi.org/10.1103/PhysRevB.74.035109">Thermodynamics of the
two-dimensional <span>Falicov-Kimball</span> model: <span>A</span>
classical <span>Monte Carlo</span> study</a>. <em>Phys. Rev. B</em>
<strong>74</strong>, 035109 (2006).</div>
</div>
<div id="ref-peierlsIsingModelFerromagnetism1936" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">18. </div><div
class="csl-right-inline">Peierls, R. <a
href="https://doi.org/10.1017/S0305004100019174">On <span>Ising</span>s
model of ferromagnetism</a>. <em>Mathematical Proceedings of the
Cambridge Philosophical Society</em> <strong>32</strong>, 477481
(1936).</div>
</div>
<div id="ref-dysonExistencePhasetransitionOnedimensional1969"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">19. </div><div
class="csl-right-inline">Dyson, F. J. <a
href="https://doi.org/10.1007/BF01645907">Existence of a
phase-transition in a one-dimensional <span>Ising</span>
ferromagnet</a>. <em>Commun.Math. Phys.</em> <strong>12</strong>, 91107
(1969).</div>
</div>
<div id="ref-thoulessLongRangeOrderOneDimensional1969" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">20. </div><div
class="csl-right-inline">Thouless, D. J. <a
href="https://doi.org/10.1103/PhysRev.187.732">Long-<span>Range
Order</span> in <span>One-Dimensional Ising Systems</span></a>.
<em>Phys. Rev.</em> <strong>187</strong>, 732733 (1969).</div>
</div>
<div id="ref-ruelleStatisticalMechanicsOnedimensional1968"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">21. </div><div
class="csl-right-inline">Ruelle, D. Statistical mechanics of a
one-dimensional lattice gas. <em>Comm. Math. Phys.</em>
<strong>9</strong>, 267278 (1968).</div>
</div>
<div id="ref-lipkinValidityManybodyApproximation1965" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">22. </div><div
class="csl-right-inline">Lipkin, H. J., Meshkov, N. &amp; Glick, A. J.
<a href="https://doi.org/10.1016/0029-5582(65)90862-X">Validity of
many-body approximation methods for a solvable model. (<span>I</span>).
<span>Exact</span> solutions and perturbation theory</a>. <em>Nuclear
Physics</em> <strong>62</strong>, 188198 (1965).</div>
</div>
<div id="ref-kennedyItinerantElectronModel1986" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">23. </div><div
class="csl-right-inline">Kennedy, T. &amp; Lieb, E. H. <a
href="https://doi.org/10.1016/0378-4371(86)90188-3">An itinerant
electron model with crystalline or magnetic long range order</a>.
<em>Physica A: Statistical Mechanics and its Applications</em>
<strong>138</strong>, 320358 (1986).</div>
</div>
<div id="ref-binderFiniteSizeScaling1981" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">24. </div><div
class="csl-right-inline">Binder, K. <a
href="https://doi.org/10.1007/BF01293604">Finite size scaling analysis
of ising model block distribution functions</a>. <em>Z. Physik B -
Condensed Matter</em> <strong>43</strong>, 119140 (1981).</div>
</div>
<div id="ref-musialMonteCarloSimulations2002" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">25. </div><div
class="csl-right-inline">Musiał, G., Dȩbski, L. &amp; Kamieniarz, G. <a
href="https://doi.org/10.1103/PhysRevB.66.012407">Monte
<span>Carlo</span> simulations of <span class="nocase">Ising-like</span>
phase transitions in the three-dimensional <span>Ashkin-Teller</span>
model</a>. <em>Phys. Rev. B</em> <strong>66</strong>, 012407
(2002).</div>
</div>
<div id="ref-khatamiFluctuationDissipationTheoremIsolated2013"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">26. </div><div
class="csl-right-inline">Khatami, E., Pupillo, G., Srednicki, M. &amp;
Rigol, M. <a
href="https://doi.org/10.1103/PhysRevLett.111.050403">Fluctuation-<span>Dissipation
Theorem</span> in an <span>Isolated System</span> of <span>Quantum
Dipolar Bosons</span> after a <span>Quench</span></a>. <em>Physical
review letters</em> <strong>111</strong>, 050403 (2013).</div>
</div>
<div id="ref-dalessioQuantumChaosEigenstate2016" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">27. </div><div
class="csl-right-inline">DAlessio, L., Kafri, Y., Polkovnikov, A. &amp;
Rigol, M. <a href="https://doi.org/10.1080/00018732.2016.1198134">From
<span>Quantum Chaos</span> and <span>Eigenstate Thermalization</span> to
<span>Statistical Mechanics</span> and <span>Thermodynamics</span></a>.
<em>Advances in Physics</em> <strong>65</strong>, 239362 (2016).</div>
</div>
<div id="ref-kramerLocalizationTheoryExperiment1993" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">28. </div><div
class="csl-right-inline">Kramer, B. &amp; MacKinnon, A. <a
href="https://doi.org/10.1088/0034-4885/56/12/001">Localization: Theory
and experiment</a>. <em>Rep. Prog. Phys.</em> <strong>56</strong>,
14691564 (1993).</div>
</div>
<div id="ref-goldshteinPurePointSpectrum1977" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">29. </div><div
class="csl-right-inline">Goldshtein, I. Ya., Molchanov, S. A. &amp;
Pastur, L. A. <a href="https://doi.org/10.1007/BF01135526">A pure point
spectrum of the stochastic one-dimensional schrödinger operator</a>.
<em>Funct Anal Its Appl</em> <strong>11</strong>, 18 (1977).</div>
</div>
<div id="ref-imbrieDiagonalizationManyBodyLocalization2016"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">30. </div><div
class="csl-right-inline">Imbrie, J. Z. <a
href="https://doi.org/10.1103/PhysRevLett.117.027201">Diagonalization
and <span>Many-Body Localization</span> for a <span>Disordered Quantum
Spin Chain</span></a>. <em>Phys. Rev. Lett.</em> <strong>117</strong>,
027201 (2016).</div>
</div>
<div id="ref-smithDynamicalLocalizationMathbbZ2018" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">31. </div><div
class="csl-right-inline">Smith, A., Knolle, J., Moessner, R. &amp;
Kovrizhin, D. L. <a
href="https://doi.org/10.1103/PhysRevB.97.245137">Dynamical
<span>Localization</span> in $\mathbb{}<span>Z</span>{}_2$ <span>Lattice
Gauge Theories</span></a>. <em>Phys. Rev. B</em> <strong>97</strong>,
245137 (2018).</div>
</div>
<div id="ref-krauthIntroductionMonteCarlo1998" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">32. </div><div
class="csl-right-inline">Krauth, W. Introduction <span>To Monte Carlo
Algorithms</span>. in <em>Advances in <span>Computer Simulation</span>:
<span>Lectures Held</span> at the <span>Eötvös Summer School</span> in
<span>Budapest</span>, <span>Hungary</span>, 16 <span>July</span>
1996</em> (<span>Springer-Verlag</span>, 1998). doi:<a
href="https://doi.org/10.1007/BFb0105456">10.1007/BFb0105456</a>.</div>
</div>
<div id="ref-kapferSamplingPolytopeHarddisk2013" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">33. </div><div
class="csl-right-inline">Kapfer, S. C. &amp; Krauth, W. <a
href="https://doi.org/10.1088/1742-6596/454/1/012031">Sampling from a
polytope and hard-disk <span>Monte Carlo</span></a>. <em>J. Phys.: Conf.
Ser.</em> <strong>454</strong>, 012031 (2013).</div>
</div>
<div id="ref-robertsWeakConvergenceOptimal1997" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">34. </div><div
class="csl-right-inline">Roberts, G. O., Gelman, A. &amp; Gilks, W. R.
<a href="https://doi.org/10.1214/aoap/1034625254">Weak convergence and
optimal scaling of random walk <span>Metropolis</span> algorithms</a>.
<em>Ann. Appl. Probab.</em> <strong>7</strong>, 110120 (1997).</div>
</div>
<div id="ref-huangAcceleratedMonteCarlo2017" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">35. </div><div
class="csl-right-inline">Huang, L. &amp; Wang, L. <a
href="https://doi.org/10.1103/PhysRevB.95.035105">Accelerated
<span>Monte Carlo</span> simulations with restricted
<span>Boltzmann</span> machines</a>. <em>Phys. Rev. B</em>
<strong>95</strong>, 035105 (2017).</div>
</div>
<div id="ref-trebstKitaevMaterials2022" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">36. </div><div
class="csl-right-inline">Trebst, S. &amp; Hickey, C. <a
href="https://doi.org/10.1016/j.physrep.2021.11.003">Kitaev
materials</a>. <em>Physics Reports</em> <strong>950</strong>, 137
(2022).</div>
</div>
<div id="ref-banerjeeProximateKitaevQuantum2016" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">37. </div><div
class="csl-right-inline">Banerjee, A. <em>et al.</em> <a
href="https://doi.org/10.1038/nmat4604">Proximate <span>Kitaev Quantum
Spin Liquid Behaviour</span> in {\alpha}-<span>RuCl</span>$_3$</a>.
<em>Nature Mater</em> <strong>15</strong>, 733740 (2016).</div>
</div>
<div id="ref-falicovSimpleModelSemiconductorMetal1969" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">38. </div><div
class="csl-right-inline">Falicov, L. M. &amp; Kimball, J. C. <a
href="https://doi.org/10.1103/PhysRevLett.22.997">Simple
<span>Model</span> for <span>Semiconductor-Metal Transitions</span>:
<span>Sm</span>${\mathrm{{}{}_{6}$ and <span>Transition-Metal
Oxides</span></a>. <em>Phys. Rev. Lett.</em> <strong>22</strong>,
997999 (1969).</div>
</div>
<div id="ref-gruberFalicovKimballModelReview1996" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">39. </div><div
class="csl-right-inline">Gruber, C. &amp; Macris, N. The
<span>Falicov-Kimball</span> model: <span>A</span> review of exact
results and extensions. <em>Helvetica Physica Acta</em>
<strong>69</strong>, (1996).</div>
</div>
<div id="ref-gruberFalicovKimballModel2006" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">40. </div><div
class="csl-right-inline">Gruber, C. &amp; Ueltschi, D. The
<span>Falicov-Kimball</span> model. in <em>Encyclopedia of mathematical
physics. 1, 1,</em> (<span>Elsevier</span>, 2006).</div>
</div>
<div id="ref-brandtThermodynamicsCorrelationFunctions1989"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">41. </div><div
class="csl-right-inline">Brandt, U. &amp; Mielsch, C. <a
href="https://doi.org/10.1007/BF01321824">Thermodynamics and correlation
functions of the <span>Falicov-Kimball</span> model in large
dimensions</a>. <em>Z. Physik B - Condensed Matter</em>
<strong>75</strong>, 365370 (1989).</div>
</div>
<div id="ref-gruberGroundStatesSpinless1990" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">42. </div><div
class="csl-right-inline">Gruber, C., Iwanski, J., Jedrzejewski, J. &amp;
Lemberger, P. <a href="https://doi.org/10.1103/PhysRevB.41.2198">Ground
states of the spinless <span>Falicov-Kimball</span> model</a>. <em>Phys.
Rev. B</em> <strong>41</strong>, 21982209 (1990).</div>
</div>
<div id="ref-antipovCriticalExponentsStrongly2014" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">43. </div><div
class="csl-right-inline">Antipov, A. E., Gull, E. &amp; Kirchner, S. <a
href="https://doi.org/10.1103/PhysRevLett.112.226401">Critical
<span>Exponents</span> of <span>Strongly Correlated Fermion
Systems</span> from <span>Diagrammatic Multiscale Methods</span></a>.
<em>Phys. Rev. Lett.</em> <strong>112</strong>, 226401 (2014).</div>
</div>
<div id="ref-ribicNonlocalCorrelationsSpectral2016" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">44. </div><div
class="csl-right-inline">Ribic, T., Rohringer, G. &amp; Held, K. <a
href="https://doi.org/10.1103/PhysRevB.93.195105">Nonlocal correlations
and spectral properties of the <span>Falicov-Kimball</span> model</a>.
<em>Phys. Rev. B</em> <strong>93</strong>, 195105 (2016).</div>
</div>
<div id="ref-freericksExactDynamicalMeanfield2003" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">45. </div><div
class="csl-right-inline">Freericks, J. K. &amp; Zlatić, V. <a
href="https://doi.org/10.1103/RevModPhys.75.1333">Exact dynamical
mean-field theory of the <span>Falicov-Kimball</span> model</a>.
<em>Rev. Mod. Phys.</em> <strong>75</strong>, 13331382 (2003).</div>
</div>
<div id="ref-herrmannNonequilibriumDynamicalCluster2016"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">46. </div><div
class="csl-right-inline">Herrmann, A. J., Tsuji, N., Eckstein, M. &amp;
Werner, P. <a
href="https://doi.org/10.1103/PhysRevB.94.245114">Nonequilibrium
<span>Dynamical Cluster Approximation</span> study of the
<span>Falicov-Kimball Model</span></a>. <em>Phys. Rev. B</em>
<strong>94</strong>, 245114 (2016).</div>
</div>
<div id="ref-devriesGapsDensitiesStates1993" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">47. </div><div class="csl-right-inline">de
Vries, P., Michielsen, K. &amp; De Raedt, H. <a
href="https://doi.org/10.1103/PhysRevLett.70.2463">Gaps in densities of
states of two <span class="nocase">Hubbard-like</span> models</a>.
<em>Phys. Rev. Lett.</em> <strong>70</strong>, 24632466 (1993).</div>
</div>
<div id="ref-devriesSimplifiedHubbardModel1993" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">48. </div><div class="csl-right-inline">de
Vries, P., Michielsen, K. &amp; De Raedt, H. <a
href="https://doi.org/10.1007/BF01308754">The simplified
<span>Hubbard</span> model in one and two dimensions</a>. <em>Z. Physik
B - Condensed Matter</em> <strong>92</strong>, 353362 (1993).</div>
</div>
<div id="ref-antipovInteractionTunedAndersonMott2016" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">49. </div><div
class="csl-right-inline">Antipov, A. E., Javanmard, Y., Ribeiro, P.
&amp; Kirchner, S. <a
href="https://doi.org/10.1103/PhysRevLett.117.146601">Interaction-<span>Tuned
Anderson</span> versus <span>Mott Localization</span></a>. <em>Phys.
Rev. Lett.</em> <strong>117</strong>, 146601 (2016).</div>
</div>
<div id="ref-debskiPossibilityDetectionFinite2016" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">50. </div><div
class="csl-right-inline">Dȩbski, L. <a
href="https://doi.org/10.1080/01411594.2015.1080257">The possibility of
detection of finite temperature stripe ordering in <span>2D</span>
spinless <span>Falicov</span> model</a>. <em>Phase Transitions</em>
<strong>89</strong>, 249260 (2016).</div>
</div>
<div id="ref-herrmannSpreadingCorrelationsFalicovKimball2018"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">51. </div><div
class="csl-right-inline">Herrmann, A. J., Antipov, A. E. &amp; Werner,
P. <a href="https://doi.org/10.1103/PhysRevB.97.165107">Spreading of
correlations in the <span>Falicov-Kimball</span> model</a>. <em>Phys.
Rev. B</em> <strong>97</strong>, 165107 (2018).</div>
</div>
<div id="ref-brenesManyBodyLocalizationDynamics2018" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">52. </div><div
class="csl-right-inline">Brenes, M., Dalmonte, M., Heyl, M. &amp;
Scardicchio, A. <a
href="https://doi.org/10.1103/PhysRevLett.120.030601">Many-<span>Body
Localization Dynamics</span> from <span>Gauge Invariance</span></a>.
<em>Phys. Rev. Lett.</em> <strong>120</strong>, 030601 (2018).</div>
</div>
<div id="ref-aubryAnalyticityBreakingAnderson1980" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">53. </div><div
class="csl-right-inline">Aubry, S. &amp; André, G. Analyticity breaking
and <span>Anderson</span> localization in incommensurate lattices.
<em>Proceedings, VIII International Colloquium on Group-Theoretical
Methods in Physics</em> <strong>3</strong>, 18 (1980).</div>
</div>
<div id="ref-dassarmaLocalizationMobilityEdges1990" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">54. </div><div class="csl-right-inline">Das
Sarma, S., He, S. &amp; Xie, X. C. <a
href="https://doi.org/10.1103/PhysRevB.41.5544">Localization, mobility
edges, and metal-insulator transition in a class of one-dimensional
slowly varying deterministic potentials</a>. <em>Phys. Rev. B</em>
<strong>41</strong>, 55445565 (1990).</div>
</div>
<div id="ref-dunlapAbsenceLocalizationRandomdimer1990" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">55. </div><div
class="csl-right-inline">Dunlap, D. H., Wu, H.-L. &amp; Phillips, P. W.
<a href="https://doi.org/10.1103/PhysRevLett.65.88">Absence of
localization in a random-dimer model</a>. <em>Phys. Rev. Lett.</em>
<strong>65</strong>, 8891 (1990).</div>
</div>
<div id="ref-abrahamsScalingTheoryLocalization1979" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">56. </div><div
class="csl-right-inline">Abrahams, E., Anderson, P. W., Licciardello, D.
C. &amp; Ramakrishnan, T. V. <a
href="https://doi.org/10.1103/PhysRevLett.42.673">Scaling
<span>Theory</span> of <span>Localization</span>: <span>Absence</span>
of <span>Quantum Diffusion</span> in <span>Two Dimensions</span></a>.
<em>Phys. Rev. Lett.</em> <strong>42</strong>, 673676 (1979).</div>
</div>
<div id="ref-kasuyaTheoryMetallicFerro1956" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">57. </div><div
class="csl-right-inline">Kasuya, T. <a
href="https://doi.org/10.1143/PTP.16.45">A <span>Theory</span> of
<span>Metallic Ferro-</span> and <span>Antiferromagnetism</span> on
<span>Zener</span>s <span>Model</span></a>. <em>Prog Theor Phys</em>
<strong>16</strong>, 4557 (1956).</div>
</div>
<div id="ref-rudermanIndirectExchangeCoupling1954" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">58. </div><div
class="csl-right-inline">Ruderman, M. A. &amp; Kittel, C. <a
href="https://doi.org/10.1103/PhysRev.96.99">Indirect <span>Exchange
Coupling</span> of <span>Nuclear Magnetic Moments</span> by
<span>Conduction Electrons</span></a>. <em>Phys. Rev.</em>
<strong>96</strong>, 99102 (1954).</div>
</div>
<div id="ref-vanvleckNoteInteractionsSpins1962" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">59. </div><div class="csl-right-inline">Van
Vleck, J. H. <a href="https://doi.org/10.1103/RevModPhys.34.681">Note on
the <span>Interactions</span> between the <span>Spins</span> of
<span>Magnetic Ions</span> or <span>Nuclei</span> in
<span>Metals</span></a>. <em>Rev. Mod. Phys.</em> <strong>34</strong>,
681686 (1962).</div>
</div>
<div id="ref-yosidaMagneticPropertiesCuMn1957" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">60. </div><div
class="csl-right-inline">Yosida, K. <a
href="https://doi.org/10.1103/PhysRev.106.893">Magnetic
<span>Properties</span> of <span>Cu-Mn Alloys</span></a>. <em>Phys.
Rev.</em> <strong>106</strong>, 893898 (1957).</div>
</div>
<div id="ref-rusinCalculationRKKYRange2017a" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">61. </div><div
class="csl-right-inline">Rusin, T. M. &amp; Zawadzki, W. <a
href="https://doi.org/10.1016/j.jmmm.2017.06.007">On calculation of
<span>RKKY</span> range function in one dimension</a>. <em>Journal of
Magnetism and Magnetic Materials</em> <strong>441</strong>, 387391
(2017).</div>
</div>
<div id="ref-angeliniRelationsShortrangeLongrange2014" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">62. </div><div
class="csl-right-inline">Angelini, M. C., Parisi, G. &amp;
Ricci-Tersenghi, F. <a
href="https://doi.org/10.1103/PhysRevE.89.062120">Relations between
short-range and long-range <span>Ising</span> models</a>. <em>Phys. Rev.
E</em> <strong>89</strong>, 062120 (2014).</div>
</div>
<div id="ref-fukuiOrderNClusterMonte2009" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">63. </div><div
class="csl-right-inline">Fukui, K. &amp; Todo, S. <a
href="https://doi.org/10.1016/j.jcp.2008.12.022">Order-<span>N</span>
cluster <span>Monte Carlo</span> method for spin systems with long-range
interactions</a>. <em>Journal of Computational Physics</em>
<strong>228</strong>, 26292642 (2009).</div>
</div>
<div id="ref-binderGuidePracticalWork1988" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">64. </div><div
class="csl-right-inline">Binder, K. &amp; Heermann, D. W. Guide to
<span>Practical Work</span> with the <span>Monte Carlo Method</span>. in
<em>Monte <span>Carlo Simulation</span> in <span>Statistical
Physics</span>: <span>An Introduction</span></em> (eds. Binder, K. &amp;
Heermann, D. W.) 68112 (<span>Springer Berlin Heidelberg</span>, 1988).
doi:<a
href="https://doi.org/10.1007/978-3-662-08854-8_3">10.1007/978-3-662-08854-8_3</a>.</div>
</div>
<div id="ref-kerteszAdvancesComputerSimulation1998" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">65. </div><div
class="csl-right-inline"><em>Advances in <span>Computer
Simulation</span>: <span>Lectures Held</span> at the <span>Eötvös Summer
School</span> in <span>Budapest</span>, <span>Hungary</span>, 16
<span>July</span> 1996</em>. (<span>Springer-Verlag</span>, 1998).
doi:<a
href="https://doi.org/10.1007/BFb0105456">10.1007/BFb0105456</a>.</div>
</div>
<div id="ref-wolffMonteCarloErrors2004" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">66. </div><div
class="csl-right-inline">Wolff, U. <a
href="https://doi.org/10.1016/S0010-4655(03)00467-3">Monte
<span>Carlo</span> errors with less errors</a>. <em>Computer Physics
Communications</em> <strong>156</strong>, 143153 (2004).</div>
</div>
<div id="ref-kellyReversibilityStochasticNetworks1981" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">67. </div><div
class="csl-right-inline">Kelly, F. P. <a
href="https://doi.org/10.2307/2287860">Reversibility and stochastic
networks / <span>F</span>.<span>P</span>. <span>Kelly</span></a>.
<em>SERBIULA (sistema Librum 2.0)</em> <strong>76</strong>,
(1981).</div>
</div>
<div id="ref-hastingsMonteCarloSampling1970" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">68. </div><div
class="csl-right-inline">Hastings, W. K. <a
href="https://doi.org/10.1093/biomet/57.1.97">Monte <span>Carlo</span>
sampling methods using <span>Markov</span> chains and their
applications</a>. <em>Biometrika</em> <strong>57</strong>, 97109
(1970).</div>
</div>
<div id="ref-hodsonMCMCFKModel2021" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">69. </div><div
class="csl-right-inline">Hodson, T. <span>MCMC</span> for the <span>FK
Model</span>, <span>Github TomHodson</span>/<span>FKMC</span>. (2021)
doi:<a
href="https://doi.org/10.5281/zenodo.4593904">10.5281/zenodo.4593904</a>.</div>
</div>
<div id="ref-eversAndersonTransitions2008a" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">70. </div><div
class="csl-right-inline">Evers, F. &amp; Mirlin, A. D. <a
href="https://doi.org/10.1103/RevModPhys.80.1355">Anderson
transitions</a>. <em>Rev. Mod. Phys.</em> <strong>80</strong>, 13551417
(2008).</div>
</div>
<div id="ref-zondaGaplessRegimeCharge2019" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">71. </div><div
class="csl-right-inline">Žonda, M., Okamoto, J. &amp; Thoss, M. <a
href="https://doi.org/10.1103/PhysRevB.100.075124">Gapless regime in the
charge density wave phase of the finite dimensional
<span>Falicov-Kimball</span> model</a>. <em>Phys. Rev. B</em>
<strong>100</strong>, 075124 (2019).</div>
</div>
<div id="ref-hassanSpectralPropertiesChargedensitywave2007"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">72. </div><div
class="csl-right-inline">Hassan, S. R. &amp; Krishnamurthy, H. R. <a
href="https://doi.org/10.1103/PhysRevB.76.205109">Spectral properties in
the charge-density-wave phase of the half-filled
<span>Falicov-Kimball</span> model</a>. <em>Phys. Rev. B</em>
<strong>76</strong>, 205109 (2007).</div>
</div>
<div id="ref-hartLogarithmicEntanglementGrowth2020" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">73. </div><div
class="csl-right-inline">Hart, O., Gopalakrishnan, S. &amp; Castelnovo,
C. Logarithmic entanglement growth from disorder-free localisation in
the two-leg compass ladder. <em>arXiv:2009.00618 [cond-mat]</em>
(2020).</div>
</div>
<div id="ref-michelettiCompleteDevilTextquotesingles1997"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">74. </div><div
class="csl-right-inline">Micheletti, C., Harris, A. B. &amp; Yeomans, J.
M. <a href="https://doi.org/10.1088/0305-4470/30/21/002">A complete
devil\textquotesingles staircase in the <span>Falicov</span> -
<span>Kimball</span> model</a>. <em>J. Phys. A: Math. Gen.</em>
<strong>30</strong>, L711L717 (1997).</div>
</div>
</div>
</main>
</body>
</html>