mirror of
https://github.com/TomHodson/tomhodson.github.com.git
synced 2025-06-26 10:01:18 +02:00
1651 lines
90 KiB
HTML
1651 lines
90 KiB
HTML
---
|
||
title: The Falikov-Kimball Model - Introduction
|
||
excerpt: The Falikov-Kimball is about the simplest possible testbed we could have for the many electron problem.
|
||
layout: none
|
||
image:
|
||
|
||
---
|
||
<!DOCTYPE html>
|
||
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
|
||
<head>
|
||
<meta charset="utf-8" />
|
||
<meta name="generator" content="pandoc" />
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
|
||
<meta name="description" content="The Falikov-Kimball is about the simplest possible testbed we could have for the many electron problem." />
|
||
<title>The Falikov-Kimball Model - Introduction</title>
|
||
<!-- <style>
|
||
html {
|
||
line-height: 1.5;
|
||
font-family: Georgia, serif;
|
||
font-size: 20px;
|
||
color: #1a1a1a;
|
||
background-color: #fdfdfd;
|
||
}
|
||
body {
|
||
margin: 0 auto;
|
||
max-width: 36em;
|
||
padding-left: 50px;
|
||
padding-right: 50px;
|
||
padding-top: 50px;
|
||
padding-bottom: 50px;
|
||
hyphens: auto;
|
||
overflow-wrap: break-word;
|
||
text-rendering: optimizeLegibility;
|
||
font-kerning: normal;
|
||
}
|
||
@media (max-width: 600px) {
|
||
body {
|
||
font-size: 0.9em;
|
||
padding: 1em;
|
||
}
|
||
h1 {
|
||
font-size: 1.8em;
|
||
}
|
||
}
|
||
@media print {
|
||
body {
|
||
background-color: transparent;
|
||
color: black;
|
||
font-size: 12pt;
|
||
}
|
||
p, h2, h3 {
|
||
orphans: 3;
|
||
widows: 3;
|
||
}
|
||
h2, h3, h4 {
|
||
page-break-after: avoid;
|
||
}
|
||
}
|
||
p {
|
||
margin: 1em 0;
|
||
}
|
||
a {
|
||
color: #1a1a1a;
|
||
}
|
||
a:visited {
|
||
color: #1a1a1a;
|
||
}
|
||
img {
|
||
max-width: 100%;
|
||
}
|
||
h1, h2, h3, h4, h5, h6 {
|
||
margin-top: 1.4em;
|
||
}
|
||
h5, h6 {
|
||
font-size: 1em;
|
||
font-style: italic;
|
||
}
|
||
h6 {
|
||
font-weight: normal;
|
||
}
|
||
ol, ul {
|
||
padding-left: 1.7em;
|
||
margin-top: 1em;
|
||
}
|
||
li > ol, li > ul {
|
||
margin-top: 0;
|
||
}
|
||
blockquote {
|
||
margin: 1em 0 1em 1.7em;
|
||
padding-left: 1em;
|
||
border-left: 2px solid #e6e6e6;
|
||
color: #606060;
|
||
}
|
||
code {
|
||
font-family: Menlo, Monaco, 'Lucida Console', Consolas, monospace;
|
||
font-size: 85%;
|
||
margin: 0;
|
||
}
|
||
pre {
|
||
margin: 1em 0;
|
||
overflow: auto;
|
||
}
|
||
pre code {
|
||
padding: 0;
|
||
overflow: visible;
|
||
overflow-wrap: normal;
|
||
}
|
||
.sourceCode {
|
||
background-color: transparent;
|
||
overflow: visible;
|
||
}
|
||
hr {
|
||
background-color: #1a1a1a;
|
||
border: none;
|
||
height: 1px;
|
||
margin: 1em 0;
|
||
}
|
||
table {
|
||
margin: 1em 0;
|
||
border-collapse: collapse;
|
||
width: 100%;
|
||
overflow-x: auto;
|
||
display: block;
|
||
font-variant-numeric: lining-nums tabular-nums;
|
||
}
|
||
table caption {
|
||
margin-bottom: 0.75em;
|
||
}
|
||
tbody {
|
||
margin-top: 0.5em;
|
||
border-top: 1px solid #1a1a1a;
|
||
border-bottom: 1px solid #1a1a1a;
|
||
}
|
||
th {
|
||
border-top: 1px solid #1a1a1a;
|
||
padding: 0.25em 0.5em 0.25em 0.5em;
|
||
}
|
||
td {
|
||
padding: 0.125em 0.5em 0.25em 0.5em;
|
||
}
|
||
header {
|
||
margin-bottom: 4em;
|
||
text-align: center;
|
||
}
|
||
#TOC li {
|
||
list-style: none;
|
||
}
|
||
#TOC ul {
|
||
padding-left: 1.3em;
|
||
}
|
||
#TOC > ul {
|
||
padding-left: 0;
|
||
}
|
||
#TOC a:not(:hover) {
|
||
text-decoration: none;
|
||
}
|
||
code{white-space: pre-wrap;}
|
||
span.smallcaps{font-variant: small-caps;}
|
||
span.underline{text-decoration: underline;}
|
||
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
||
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
||
ul.task-list{list-style: none;}
|
||
pre > code.sourceCode { white-space: pre; position: relative; }
|
||
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
|
||
pre > code.sourceCode > span:empty { height: 1.2em; }
|
||
.sourceCode { overflow: visible; }
|
||
code.sourceCode > span { color: inherit; text-decoration: inherit; }
|
||
div.sourceCode { margin: 1em 0; }
|
||
pre.sourceCode { margin: 0; }
|
||
@media screen {
|
||
div.sourceCode { overflow: auto; }
|
||
}
|
||
@media print {
|
||
pre > code.sourceCode { white-space: pre-wrap; }
|
||
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
|
||
}
|
||
pre.numberSource code
|
||
{ counter-reset: source-line 0; }
|
||
pre.numberSource code > span
|
||
{ position: relative; left: -4em; counter-increment: source-line; }
|
||
pre.numberSource code > span > a:first-child::before
|
||
{ content: counter(source-line);
|
||
position: relative; left: -1em; text-align: right; vertical-align: baseline;
|
||
border: none; display: inline-block;
|
||
-webkit-touch-callout: none; -webkit-user-select: none;
|
||
-khtml-user-select: none; -moz-user-select: none;
|
||
-ms-user-select: none; user-select: none;
|
||
padding: 0 4px; width: 4em;
|
||
color: #aaaaaa;
|
||
}
|
||
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
|
||
div.sourceCode
|
||
{ }
|
||
@media screen {
|
||
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
|
||
}
|
||
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
|
||
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
|
||
code span.at { color: #7d9029; } /* Attribute */
|
||
code span.bn { color: #40a070; } /* BaseN */
|
||
code span.bu { } /* BuiltIn */
|
||
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
|
||
code span.ch { color: #4070a0; } /* Char */
|
||
code span.cn { color: #880000; } /* Constant */
|
||
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
|
||
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
|
||
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
|
||
code span.dt { color: #902000; } /* DataType */
|
||
code span.dv { color: #40a070; } /* DecVal */
|
||
code span.er { color: #ff0000; font-weight: bold; } /* Error */
|
||
code span.ex { } /* Extension */
|
||
code span.fl { color: #40a070; } /* Float */
|
||
code span.fu { color: #06287e; } /* Function */
|
||
code span.im { } /* Import */
|
||
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
|
||
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
|
||
code span.op { color: #666666; } /* Operator */
|
||
code span.ot { color: #007020; } /* Other */
|
||
code span.pp { color: #bc7a00; } /* Preprocessor */
|
||
code span.sc { color: #4070a0; } /* SpecialChar */
|
||
code span.ss { color: #bb6688; } /* SpecialString */
|
||
code span.st { color: #4070a0; } /* String */
|
||
code span.va { color: #19177c; } /* Variable */
|
||
code span.vs { color: #4070a0; } /* VerbatimString */
|
||
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
|
||
div.csl-bib-body { }
|
||
div.csl-entry {
|
||
clear: both;
|
||
}
|
||
.hanging div.csl-entry {
|
||
margin-left:2em;
|
||
text-indent:-2em;
|
||
}
|
||
div.csl-left-margin {
|
||
min-width:2em;
|
||
float:left;
|
||
}
|
||
div.csl-right-inline {
|
||
margin-left:2em;
|
||
padding-left:1em;
|
||
}
|
||
div.csl-indent {
|
||
margin-left: 2em;
|
||
}
|
||
</style> -->
|
||
|
||
<!-- <script
|
||
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js"
|
||
type="text/javascript"></script>
|
||
-->
|
||
|
||
<!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
|
||
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3.0.1/es5/tex-mml-chtml.js"></script>
|
||
-->
|
||
|
||
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
|
||
|
||
|
||
<!--[if lt IE 9]>
|
||
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
|
||
<![endif]-->
|
||
<link rel="stylesheet" href="/assets/css/styles.css">
|
||
<script src="/assets/js/index.js"></script>
|
||
</head>
|
||
<body>
|
||
{% include header.html %}
|
||
|
||
<main>
|
||
<nav id="TOC" role="doc-toc">
|
||
<ul>
|
||
<li><a href="#contributions"
|
||
id="toc-contributions">Contributions</a></li>
|
||
<li><a href="#introduction" id="toc-introduction">Introduction</a>
|
||
<ul>
|
||
<li><a href="#localisation" id="toc-localisation">Localisation</a>
|
||
<ul>
|
||
<li><a href="#the-falikov-kimball-model"
|
||
id="toc-the-falikov-kimball-model">The Falikov Kimball Model</a></li>
|
||
</ul></li>
|
||
<li><a href="#falikov-kimball-and-hubbard-models"
|
||
id="toc-falikov-kimball-and-hubbard-models">Falikov Kimball and Hubbard
|
||
models</a>
|
||
<ul>
|
||
<li><a href="#hubbard-model" id="toc-hubbard-model">Hubbard
|
||
model</a></li>
|
||
<li><a href="#falikov-kimball-model"
|
||
id="toc-falikov-kimball-model">Falikov-Kimball model</a></li>
|
||
<li><a href="#thermodynamics-of-the-fk-model"
|
||
id="toc-thermodynamics-of-the-fk-model">Thermodynamics of the FK
|
||
model</a></li>
|
||
<li><a href="#thermodynamics"
|
||
id="toc-thermodynamics">Thermodynamics</a></li>
|
||
<li><a href="#markov-chain-monte-carlo"
|
||
id="toc-markov-chain-monte-carlo">Markov Chain Monte Carlo</a></li>
|
||
</ul></li>
|
||
<li><a href="#localisation-1" id="toc-localisation-1">Localisation</a>
|
||
<ul>
|
||
<li><a href="#thermalisation"
|
||
id="toc-thermalisation">Thermalisation</a></li>
|
||
<li><a href="#anderson-localisation"
|
||
id="toc-anderson-localisation">Anderson Localisation</a></li>
|
||
<li><a href="#many-body-localisation"
|
||
id="toc-many-body-localisation">Many Body Localisation</a></li>
|
||
<li><a href="#disorder-free-localisation"
|
||
id="toc-disorder-free-localisation">Disorder Free localisation</a></li>
|
||
<li><a href="#diagnostics-of-localisation"
|
||
id="toc-diagnostics-of-localisation">Diagnostics of
|
||
Localisation</a></li>
|
||
</ul></li>
|
||
<li><a href="#numerical-methods" id="toc-numerical-methods">Numerical
|
||
Methods</a>
|
||
<ul>
|
||
<li><a href="#markov-chain-monte-carlo-1"
|
||
id="toc-markov-chain-monte-carlo-1">Markov Chain Monte Carlo}</a></li>
|
||
<li><a href="#applying-mcmc-to-the-fk-model"
|
||
id="toc-applying-mcmc-to-the-fk-model">Applying MCMC to the FK
|
||
model}</a></li>
|
||
</ul></li>
|
||
<li><a href="#markov-chain-monte-carlo-in-practice"
|
||
id="toc-markov-chain-monte-carlo-in-practice">Markov Chain Monte-Carlo
|
||
in Practice}</a>
|
||
<ul>
|
||
<li><a href="#quick-intro-to-mcmc" id="toc-quick-intro-to-mcmc">Quick
|
||
Intro to MCMC}</a></li>
|
||
<li><a href="#convergence-time" id="toc-convergence-time">Convergence
|
||
Time}</a></li>
|
||
<li><a href="#auto-correlation-time"
|
||
id="toc-auto-correlation-time">Auto-correlation Time}</a></li>
|
||
<li><a href="#the-metropolis-hastings-algorithm"
|
||
id="toc-the-metropolis-hastings-algorithm">The Metropolis-Hastings
|
||
Algorithm}</a></li>
|
||
<li><a href="#choosing-the-proposal-distribution"
|
||
id="toc-choosing-the-proposal-distribution">Choosing the proposal
|
||
distribution}</a></li>
|
||
<li><a href="#two-step-trick" id="toc-two-step-trick">Two Step
|
||
Trick</a></li>
|
||
</ul></li>
|
||
</ul></li>
|
||
</ul>
|
||
</nav>
|
||
<h1 id="contributions">Contributions</h1>
|
||
<p>This material is this chapter expands on work presented in</p>
|
||
<p><span class="citation" data-cites="citekey"><sup><a
|
||
href="#ref-citekey"
|
||
role="doc-biblioref"><strong>citekey?</strong></a></sup></span> <a
|
||
href="https://link.aps.org/doi/10.1103/PhysRevB.104.045116">One-dimensional
|
||
long-range Falikov-Kimball model: Thermal phase transition and
|
||
disorder-free localization</a>, Hodson, T. and Willsher, J. and Knolle,
|
||
J., Phys. Rev. B, <strong>104</strong>, 4, 2021,</p>
|
||
<p>Johannes had the initial idea to use a long range Ising term to
|
||
stablise order in a one dimension Falikov-Kimball model. Josef developed
|
||
a proof of concept during a summer project at Imperial. The three of us
|
||
brought the project to fruition.</p>
|
||
<div class="sourceCode" id="cb1"><pre
|
||
class="sourceCode python"><code class="sourceCode python"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation abanin_recent_2017 <span class="kw">not</span> found abaninRecentProgressManybody2017</span>
|
||
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation anderson_absence_1958<span class="op">-</span><span class="dv">1</span> <span class="kw">not</span> found andersonAbsenceDiffusionCertain1958</span>
|
||
<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation antipov_interaction<span class="op">-</span>tuned_2016<span class="op">-</span><span class="dv">1</span> <span class="kw">not</span> found andersonAbsenceDiffusionCertain1958</span>
|
||
<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation binder_finite_1981 <span class="kw">not</span> found binderFiniteSizeScaling1981</span>
|
||
<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation croy_anderson_2011 <span class="kw">not</span> found croyAndersonLocalization1D2011</span>
|
||
<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation dalessio_quantum_2016 <span class="kw">not</span> found dalessioQuantumChaosEigenstate2016</span>
|
||
<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation dyson_existence_1969 <span class="kw">not</span> found dysonExistencePhasetransitionOnedimensional1969</span>
|
||
<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation fig:binder <span class="kw">not</span> found</span>
|
||
<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation goldshtein_pure_1977 <span class="kw">not</span> found goldshteinPurePointSpectrum1977</span>
|
||
<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation huang_accelerated_2017 <span class="kw">not</span> found huangAcceleratedMonteCarlo2017</span>
|
||
<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation hubbard_j._electron_1963 <span class="kw">not</span> found</span>
|
||
<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation imbrie_diagonalization_2016 <span class="kw">not</span> found</span>
|
||
<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation imbrie_many<span class="op">-</span>body_2016 <span class="kw">not</span> found</span>
|
||
<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation izrailev_anomalous_2012 <span class="kw">not</span> found</span>
|
||
<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation izrailev_localization_1999 <span class="kw">not</span> found</span>
|
||
<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation kapfer_sampling_2013 <span class="kw">not</span> found</span>
|
||
<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation kennedy_itinerant_1986 <span class="kw">not</span> found</span>
|
||
<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation khatami_fluctuation<span class="op">-</span>dissipation_2013 <span class="kw">not</span> found</span>
|
||
<span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation kramer_localization_1993 <span class="kw">not</span> found</span>
|
||
<span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation krauth_introduction_1996 <span class="kw">not</span> found</span>
|
||
<span id="cb1-21"><a href="#cb1-21" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation lieb_absence_1968 <span class="kw">not</span> found</span>
|
||
<span id="cb1-22"><a href="#cb1-22" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation lipkin_validity_1965 <span class="kw">not</span> found</span>
|
||
<span id="cb1-23"><a href="#cb1-23" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation maska_thermodynamics_2006<span class="op">-</span><span class="dv">1</span> <span class="kw">not</span> found</span>
|
||
<span id="cb1-24"><a href="#cb1-24" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation musial_monte_2002 <span class="kw">not</span> found</span>
|
||
<span id="cb1-25"><a href="#cb1-25" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation nagaoka_ferromagnetism_1966 <span class="kw">not</span> found</span>
|
||
<span id="cb1-26"><a href="#cb1-26" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation noauthor_hubbard_2013 <span class="kw">not</span> found</span>
|
||
<span id="cb1-27"><a href="#cb1-27" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation peierls_isings_1936 <span class="kw">not</span> found</span>
|
||
<span id="cb1-28"><a href="#cb1-28" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation roberts_weak_1997 <span class="kw">not</span> found</span>
|
||
<span id="cb1-29"><a href="#cb1-29" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation ruelle_statistical_1968 <span class="kw">not</span> found</span>
|
||
<span id="cb1-30"><a href="#cb1-30" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation schiulaz_dynamics_2015 <span class="kw">not</span> found</span>
|
||
<span id="cb1-31"><a href="#cb1-31" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation smith_disorder<span class="op">-</span>free_2017 <span class="kw">not</span> found</span>
|
||
<span id="cb1-32"><a href="#cb1-32" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation smith_dynamical_2018 <span class="kw">not</span> found</span>
|
||
<span id="cb1-33"><a href="#cb1-33" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation srednicki_chaos_1994 <span class="kw">not</span> found</span>
|
||
<span id="cb1-34"><a href="#cb1-34" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation thouless_long<span class="op">-</span>range_1969 <span class="kw">not</span> found</span>
|
||
<span id="cb1-35"><a href="#cb1-35" aria-hidden="true" tabindex="-1"></a>[WARNING] Citeproc: citation yao_quasi<span class="op">-</span>many<span class="op">-</span>body_2016 <span class="kw">not</span> found</span></code></pre></div>
|
||
<h1 id="introduction">Introduction</h1>
|
||
<h2 id="localisation">Localisation</h2>
|
||
<p>The discovery of localisation in quantum systems surprising at the
|
||
time given the seeming ubiquity of extended Bloch states. Later, when
|
||
thermalisation in quantum systems gained interest, localisation
|
||
phenomena again stood out as counterexamples to the eigenstate
|
||
thermalisation hypothesis<span class="citation"
|
||
data-cites="abanin_recent_2017 srednicki_chaos_1994"><sup><a
|
||
href="#ref-abanin_recent_2017"
|
||
role="doc-biblioref"><strong>abanin_recent_2017?</strong></a>,<a
|
||
href="#ref-srednicki_chaos_1994"
|
||
role="doc-biblioref"><strong>srednicki_chaos_1994?</strong></a></sup></span>,
|
||
allowing quantum systems to avoid to retain memory of their initial
|
||
conditions in the face of thermal noise.</p>
|
||
<p>The simplest and first discovered kind is Anderson localisation,
|
||
first studied in 1958<span class="citation"
|
||
data-cites="anderson_absence_1958-1"><sup><a
|
||
href="#ref-anderson_absence_1958-1"
|
||
role="doc-biblioref"><strong>anderson_absence_1958-1?</strong></a></sup></span>
|
||
in the context of non-interacting fermions subject to a static or
|
||
quenched disorder potential <span class="math inline">\(V_j\)</span>
|
||
drawn uniformly from the interval <span
|
||
class="math inline">\([-W,W]\)</span></p>
|
||
<p><span class="math display">\[
|
||
H = -t\sum_{\langle jk \rangle} c^\daggerger_j c_k + \sum_j V_j
|
||
c_j^\daggerger c_j
|
||
\]</span></p>
|
||
<p>this model exhibits exponentially localised eigenfunctions <span
|
||
class="math inline">\(\psi(x) = f(x) e^{-x/\lambda}\)</span> which
|
||
cannot contribute to transport processes. Initially it was thought that
|
||
in one dimensional disordered models, all states would be localised,
|
||
however it was later shown that in the presence of correlated disorder,
|
||
bands of extended states can exist<span class="citation"
|
||
data-cites="izrailev_localization_1999 croy_anderson_2011 izrailev_anomalous_2012"><sup><a
|
||
href="#ref-izrailev_localization_1999"
|
||
role="doc-biblioref"><strong>izrailev_localization_1999?</strong></a>,<a
|
||
href="#ref-croy_anderson_2011"
|
||
role="doc-biblioref"><strong>croy_anderson_2011?</strong></a>,<a
|
||
href="#ref-izrailev_anomalous_2012"
|
||
role="doc-biblioref"><strong>izrailev_anomalous_2012?</strong></a></sup></span>.</p>
|
||
<p>Later localisation was found in interacting many-body systems with
|
||
quenched disorder:</p>
|
||
<p><span class="math display">\[
|
||
H = -t\sum_{\langle jk \rangle} c^\daggerger_j c_k + \sum_j V_j
|
||
c_j^\daggerger c_j + U\sum_{jk} n_j n_k
|
||
\]</span></p>
|
||
<p>where the number operators <span class="math inline">\(n_j =
|
||
c^\dagger_j c_j\)</span>. Here, in contrast to the Anderson model,
|
||
localisation phenomena can be proven robust to weak perturbations of the
|
||
Hamiltonian. This is called many-body localisation (MBL)<span
|
||
class="citation" data-cites="imbrie_many-body_2016"><sup><a
|
||
href="#ref-imbrie_many-body_2016"
|
||
role="doc-biblioref"><strong>imbrie_many-body_2016?</strong></a></sup></span>.</p>
|
||
<p>Both MBL and Anderson localisation depend crucially on the presence
|
||
of quenched disorder. This has led to ongoing interest in the
|
||
possibility of disorder-free localisation, in which the disorder
|
||
necessary to generate localisation is generated entirely from the
|
||
dynamics of the model. This contracts with typical models of disordered
|
||
systems in which disorder is explicielty introduced into the Hamilton or
|
||
the initial state.</p>
|
||
<p>The concept of disorder-free localisation was first proposed in the
|
||
context of Helium mixtures<span class="citation"
|
||
data-cites="kagan1984localization"><sup><a
|
||
href="#ref-kagan1984localization"
|
||
role="doc-biblioref">1</a></sup></span> and then extended to heavy-light
|
||
mixtures in which multiple species with large mass ratios interact. The
|
||
idea is that the heavier particles act as an effective disorder
|
||
potential for the lighter ones, inducing localisation. Two such
|
||
models<span class="citation"
|
||
data-cites="yao_quasi-many-body_2016 schiulaz_dynamics_2015"><sup><a
|
||
href="#ref-yao_quasi-many-body_2016"
|
||
role="doc-biblioref"><strong>yao_quasi-many-body_2016?</strong></a>,<a
|
||
href="#ref-schiulaz_dynamics_2015"
|
||
role="doc-biblioref"><strong>schiulaz_dynamics_2015?</strong></a></sup></span>
|
||
instead find that the models thermalise exponentially slowly in system
|
||
size, which Ref.<span class="citation"
|
||
data-cites="yao_quasi-many-body_2016"><sup><a
|
||
href="#ref-yao_quasi-many-body_2016"
|
||
role="doc-biblioref"><strong>yao_quasi-many-body_2016?</strong></a></sup></span>
|
||
dubs Quasi-MBL.</p>
|
||
<p>True disorder-free localisation does occur in exactly solveable
|
||
models with extensively many conserved quantities<span class="citation"
|
||
data-cites="smith_disorder-free_2017"><sup><a
|
||
href="#ref-smith_disorder-free_2017"
|
||
role="doc-biblioref"><strong>smith_disorder-free_2017?</strong></a></sup></span>.
|
||
As conserved quantites have no time dynamics this can be thought of as
|
||
taking the separation of timescales to the infinite limit.</p>
|
||
<h3 id="the-falikov-kimball-model">The Falikov Kimball Model</h3>
|
||
<p>In the Falikov Kimball (FK) model spinless fermions <span
|
||
class="math inline">\(c_{i\uparrow}\)</span> are coupled via a repulsive
|
||
on-site interaction to a classical degree of freedom <span
|
||
class="math inline">\(n_{i\downarrow}\)</span>.</p>
|
||
<p><span class="math display">\[\begin{aligned}
|
||
H &= -t \sum_{<ij>} c^\daggerger_{i\uparrow}c_{j\uparrow} + U
|
||
\sum_{i} (n_{i \uparrow} - 1/2)( n_{i\downarrow} - 1/2) \\
|
||
& - \mu \sum_i \left( n_{i \uparrow} + n_{i \downarrow}
|
||
\right) + \sum_{ij} V_{ij} (n_{i\downarrow} - 1/2)(n_{j\downarrow} -
|
||
1/2)
|
||
\end{aligned}\]</span> <strong>replace with hamiltonian from the
|
||
paper</strong></p>
|
||
<p>This notation emphasises that this can also be thought of as an
|
||
asymmetric Hubbard model in which the spin down electrons cannot hop and
|
||
are subject to an additional long range potential. However, to avoid the
|
||
confusion of talking about two distinct species of spinless electrons we
|
||
will use a different interpretation and refer to the classical degrees
|
||
of freedom as the “ionic sector” and the quantum degrees of freedom as
|
||
the “electronic sector”. The final term that induces interactions
|
||
between the classical particles has been added by us to stabilise the
|
||
formation of an ordered phase in 1D. The classical variables commute
|
||
with the Hamiltonian <span class="math inline">\([H, n_{i\downarrow}] =
|
||
0\)</span> so like the lattice gauge model in Ref<span class="citation"
|
||
data-cites="smith_disorder-free_2017"><sup><a
|
||
href="#ref-smith_disorder-free_2017"
|
||
role="doc-biblioref"><strong>smith_disorder-free_2017?</strong></a></sup></span>}
|
||
the FK model has extensively many conserved quantities which can act as
|
||
an effective disorder potential for the electronic sector.</p>
|
||
<p>Due to Pauli exclusion, the maximum filling occurs when one of each
|
||
species occupies each lattice site such that <span
|
||
class="math inline">\(\sum_i (n_{i\downarrow} + n_{i\uparrow} )/ N =
|
||
2\)</span>. Here we focus on the half filled case which also displays
|
||
particle-hole symmetry (see later).</p>
|
||
<h2 id="falikov-kimball-and-hubbard-models">Falikov Kimball and Hubbard
|
||
models</h2>
|
||
<p>We will first introduce the standard Hubbard and Falikov-Kimball (FK)
|
||
models then look at some of their properties. We’ll then cover why the
|
||
Falikov-Kimball model represents an interesting system in which to study
|
||
disorder free localisation.</p>
|
||
<h3 id="hubbard-model">Hubbard model</h3>
|
||
<p>The Hubbard model gives a very simple setting in which to study
|
||
interacting, itinerant electrons. It is a tight binding model of spin
|
||
half electrons with finite bandwidth <span
|
||
class="math inline">\(t\)</span> and a repulsive on-site interaction
|
||
<span class="math inline">\(U > 0\)</span>.</p>
|
||
<p><span class="math display">\[
|
||
H = -\sum_{<ij>,\sigma} t_{\sigma}
|
||
c^\dagger_{i\sigma}c_{j\sigma} + U \sum_{i} (n_{i \uparrow} - 1/2)(
|
||
n_{i\downarrow} - 1/2) - \mu \sum_i \left( n_{i \uparrow} + n_{i
|
||
\downarrow} \right)
|
||
\]</span></p>
|
||
<p>in standard notation. The standard Hubbard model corresponds to the
|
||
case <span class="math inline">\(t_{\uparrow} = t_{\downarrow}\)</span>.
|
||
Here we have used the particle-hole symmetric version of the interaction
|
||
term, which is more often given as <span class="math inline">\(n_{i
|
||
\uparrow} n_{i\downarrow}\)</span>. The difference just amounts to a
|
||
redefinition of the chemical potential.</p>
|
||
<p>Hubbard originally used the model at half filling <span
|
||
class="math inline">\(\mu = 0\)</span> to explain the Mott
|
||
metal-insulator (MI) transition, however it has seen applications to
|
||
high-temperature superconductivity and become target for cold-atom
|
||
optical trap experiments.<span class="citation"
|
||
data-cites="noauthor_hubbard_2013"><sup><a
|
||
href="#ref-noauthor_hubbard_2013"
|
||
role="doc-biblioref"><strong>noauthor_hubbard_2013?</strong></a></sup></span>,
|
||
greiner_quantum_2002, jordens_mott_2008}. While simple, only a few
|
||
analytic results exist, namely the Bethe ansatz<span class="citation"
|
||
data-cites="lieb_absence_1968"><sup><a href="#ref-lieb_absence_1968"
|
||
role="doc-biblioref"><strong>lieb_absence_1968?</strong></a></sup></span>}
|
||
which proves the absence of even a zero temperature phase transition in
|
||
the 1D model and Nagaoka’s theorem<span class="citation"
|
||
data-cites="nagaoka_ferromagnetism_1966"><sup><a
|
||
href="#ref-nagaoka_ferromagnetism_1966"
|
||
role="doc-biblioref"><strong>nagaoka_ferromagnetism_1966?</strong></a></sup></span>}
|
||
which proves that the three dimensional model has a ferromagnetic ground
|
||
state in the vicinity of half filling.</p>
|
||
<h3 id="falikov-kimball-model">Falikov-Kimball model</h3>
|
||
<p>The Falikov-Kimball model corresponds to the case <span
|
||
class="math inline">\(t_{\downarrow} = 0\)</span>. It can be interpreted
|
||
as two coupled spinless electron bands with infinite mass ratio. An
|
||
itinerant light species with creation operator <span
|
||
class="math inline">\(c^\dagger_{i\uparrow}\)</span> coupled to an
|
||
infinitely heavy, immobile species with density operator <span
|
||
class="math inline">\(n_{i\downarrow}\)</span>. These are often called c
|
||
and f electrons or electrons and ions. The model was first introduced by
|
||
Hubbard in 1963 as a model of interacting localised and de-localised
|
||
electron bands and gained its name from Falikov and Kimball’s use of it
|
||
to study the MI transition in rare-earth materials<span class="citation"
|
||
data-cites="hubbard_j._electron_1963"><sup><a
|
||
href="#ref-hubbard_j._electron_1963"
|
||
role="doc-biblioref"><strong>hubbard_j._electron_1963?</strong></a></sup></span>,
|
||
falicov_simple_1969}.</p>
|
||
<p>Here we will use refer to the light spinless species as
|
||
<code>electrons' with creation operator $c^\dagger_{i}$ and the heavy species as</code>ions’
|
||
with density operator <span class="math inline">\(n_i\)</span>. When the
|
||
the density operator of the electrons is needed I’ll always use <span
|
||
class="math inline">\(c^\dagger_{i}c_{i}\)</span>. We also set <span
|
||
class="math inline">\(t = 1\)</span>.</p>
|
||
<p><span class="math display">\[
|
||
H_{\mathrm{FK}} = -\sum_{<ij>} c^\dagger_{i}c_{j} + U \sum_{i}
|
||
(c^\dagger_{i}c_{i} - 1/2)( n_i - 1/2) - \mu \sum_i
|
||
\left(c^\dagger_{i}c_{i} + n_{i}\right)
|
||
\]</span> % ### Particle-Hole Symmetry The Hubbard and FK models on a
|
||
bipartite lattice have particle-hole (PH) symmetry <span
|
||
class="math inline">\(P^\dagger H P = - H\)</span>, accordingly they
|
||
have symmetric energy spectra. The associated symmetry operator <span
|
||
class="math inline">\(P\)</span> exchanges creation and annihilation
|
||
operators along with a sign change between the two sublattices.</p>
|
||
<p><span class="math display">\[ d^\dagger_{i\sigma} = (-1)^i
|
||
c_{i\sigma}\]</span> % The entirely filled state <span
|
||
class="math inline">\(\ket{\Omega} = \sum_{j\rho} c^\dagger_{j\rho}
|
||
\ket{0}\)</span> becomes the new vacuum state: <span
|
||
class="math display">\[d_{i\sigma} \ket{\Omega} = (-1)^i
|
||
c^\dagger_{i\sigma} \sum_{j\rho} c^\dagger_{j\rho} \ket{0} = 0\]</span>
|
||
% The number operator <span class="math inline">\(n_{i\sigma} =
|
||
0,1\)</span> counts holes rather than particles: <span
|
||
class="math display">\[ d^\dagger_{i\sigma} d_{i \sigma} = c_{i\sigma}
|
||
c^\dagger_{i\sigma} = 1 - c^\dagger_{i\sigma} c_{i\sigma}\]</span> %
|
||
With the last equality following from the fermionic commutation
|
||
relations. In the case of nearest neighbour hopping on a bipartite
|
||
lattice this transformation also leaves the hopping term unchanged:
|
||
<span class="math display">\[ d^\dagger_{i\sigma} d_{j \sigma} =
|
||
(-1)^{i+j} c_{i\sigma} c^\dagger_{j\sigma} = c^\dagger_{i\sigma}
|
||
c_{j\sigma} \]</span> % Since when <span
|
||
class="math inline">\(i\)</span> and <span
|
||
class="math inline">\(j\)</span> label sites on separate sublattices,
|
||
<span class="math inline">\((-1)^{i-j} = -1\)</span> and this is
|
||
absorbed into rearranging the operators via their anti-commutator.</p>
|
||
<p>Defining the particle density <span
|
||
class="math inline">\(\rho\)</span> as the number of fermions per site:
|
||
<span class="math display">\[
|
||
\rho = \frac{1}{N} \sum_i \left( n_{i \uparrow} + n_{i \downarrow}
|
||
\right)
|
||
\]</span> % The PH symmetry maps the Hamiltonian to itself with the sign
|
||
of the chemical potential reversed and the density is inverted about
|
||
half filling: <span class="math display">\[ \text{PH} : H(t, U, \mu)
|
||
\rightarrow H(t, U, -\mu) \]</span> <span class="math display">\[ \rho
|
||
\rightarrow 2 - \rho \]</span> % The Hamiltonian is symmetric under PH
|
||
at <span class="math inline">\(\mu = 0\)</span> and so must all the
|
||
observables, hence half filling <span class="math inline">\(\rho =
|
||
1\)</span> occurs here. This symmetry and known observable acts as a
|
||
useful test for the numerical calculations.</p>
|
||
<h3 id="thermodynamics-of-the-fk-model">Thermodynamics of the FK
|
||
model</h3>
|
||
\begin{figure}
|
||
<p>} \end{figure}</p>
|
||
<p>At half filling and in dimensions greater than one, the FK model
|
||
exhibits a phase transition at some <span
|
||
class="math inline">\(U\)</span> dependent critical temperature <span
|
||
class="math inline">\(T_c(U)\)</span> to a low temperature charge
|
||
density wave state in which the ions occupy one of the two sublattices A
|
||
and B<span class="citation"
|
||
data-cites="maska_thermodynamics_2006-1"><sup><a
|
||
href="#ref-maska_thermodynamics_2006-1"
|
||
role="doc-biblioref"><strong>maska_thermodynamics_2006-1?</strong></a></sup></span>}.
|
||
The order parameter is the square of the staggered magnetisation: <span
|
||
class="math display">\[
|
||
M = \sum_{i \in A} n_i - \sum_{i \in B} n_i
|
||
\]</span> % In the disordered phase Ref.<span class="citation"
|
||
data-cites="antipov_interaction-tuned_2016-1"><sup><a
|
||
href="#ref-antipov_interaction-tuned_2016-1"
|
||
role="doc-biblioref"><strong>antipov_interaction-tuned_2016-1?</strong></a></sup></span>}
|
||
identifies an interplay between Anderson localisation at weak
|
||
interaction and a Mott insulator phase in the strongly interacting
|
||
regime.</p>
|
||
<p>In the one dimensional FK model, however, Peierls’ argument<span
|
||
class="citation" data-cites="peierls_isings_1936"><sup><a
|
||
href="#ref-peierls_isings_1936"
|
||
role="doc-biblioref"><strong>peierls_isings_1936?</strong></a></sup></span>,
|
||
kennedy_itinerant_1986} and the Bethe ansatz<span class="citation"
|
||
data-cites="lieb_absence_1968"><sup><a href="#ref-lieb_absence_1968"
|
||
role="doc-biblioref"><strong>lieb_absence_1968?</strong></a></sup></span>}
|
||
make it clear that there is no ordered CDW phase. Peierls’ argument is
|
||
that one should consider the difference in free energy <span
|
||
class="math inline">\(\Delta F = \Delta E - T\Delta S\)</span> between
|
||
an ordered state and a state with single domain wall in the order
|
||
parameter. In the Ising model this would be having the spins pointing up
|
||
in one part of the model and down in the other, for a CDW phase it means
|
||
having the ions occupy the A sublattice in one part and the B sublattice
|
||
in the other.</p>
|
||
<p>Short range interactions will produce a constant energy penalty for
|
||
such a domain wall that does not scale with system size while in 1D
|
||
there are <span class="math inline">\(L\)</span> such states so the
|
||
domain wall is associated with entropy <span class="math inline">\(S
|
||
\propto \ln L\)</span> which dominates in the thermodynamic limit. The
|
||
slow logarithmic scaling suggests we should be wary of finite size
|
||
scaling effects.</p>
|
||
<p>One dimensional systems are more amenable to numerical and
|
||
experimental study so we add long range staggered interactions to bring
|
||
back the ordered phase:</p>
|
||
<p><span class="math display">\[ H_{\textrm{int}} = 4J \sum_{ij}
|
||
\frac{(-1)^{|i-j|}}{ |i - j|^{\alpha} } (n_i - 1/2) (n_j - 1/2) = J
|
||
\sum_{ij} |i - j|^{-\alpha} \tau_i \tau_j\]</span> % at half-filling the
|
||
modified Hamiltonian is then: <span class="math display">\[
|
||
H_{\mathrm{FK}}^* &= -\sum_{<ij>} c^\dagger_{i}c_{j} + U
|
||
\sum_{i} (c^\dagger_{i}c_{i} - 1/2)( n_i - 1/2) \\
|
||
&+ 4J \sum_{ij} \frac{(-1)^{|i-j|}}{ |i - j|^{\alpha} } (n_i -
|
||
1/2) (n_j - 1/2) \\
|
||
&= -\sum_{<ij>} c^\dagger_{i}c_{j} + 2U \sum_{i} (-1)^i
|
||
(c^\dagger_{i}c_{i} - 1/2)\tau_i + J \sum_{ij} |i - j|^{-\alpha} \tau_i
|
||
\tau_j \\
|
||
\]</span> % The form of this interaction comes from interpreting the
|
||
f-electrons as a classical Ising chain using a staggered mapping <span
|
||
class="math inline">\(\tau_i = (-1)^i (2n_i^ f - 1)\)</span> so that
|
||
ferromagnetic order in the <span class="math inline">\(\tau_i\)</span>
|
||
variables corresponds to a CDW state in the <span
|
||
class="math inline">\(n_i^f\)</span> variables. It also preserves the
|
||
particle hole symmetry because for the ions the PH transformation
|
||
corresponds to <span class="math inline">\(n_i \rightarrow 1 -
|
||
n_i\)</span>. When <span class="math inline">\(U = 0\)</span> the model
|
||
decouples into a long ranged Ising model and free fermions.</p>
|
||
<p>Our extension to the FK model could now be though of as spinless
|
||
fermions coupled to a long range Ising (LRI) model. The LRI model has
|
||
been extensively studied and its behaviour may be bear relation to the
|
||
behaviour of our modified FK model.</p>
|
||
<p><span class="math display">\[H_{\mathrm{LRI}} = \sum_{ij}
|
||
J(\abs{i-j}) \tau_i \tau_j = J \sum_{i\neq j} |i - j|^{-\alpha} \tau_i
|
||
\tau_j\]</span> % Rigorous renormalisation group arguments show that the
|
||
LRI model has an ordered phase in 1D for $1 < < 2 $<span
|
||
class="citation" data-cites="dyson_existence_1969"><sup><a
|
||
href="#ref-dyson_existence_1969"
|
||
role="doc-biblioref"><strong>dyson_existence_1969?</strong></a></sup></span>}.
|
||
Peierls’ argument can be extended<span class="citation"
|
||
data-cites="thouless_long-range_1969"><sup><a
|
||
href="#ref-thouless_long-range_1969"
|
||
role="doc-biblioref"><strong>thouless_long-range_1969?</strong></a></sup></span>}
|
||
to provide intuition for why this is the case. Again considering the
|
||
energy difference between the ordered state <span
|
||
class="math inline">\(\ket{\ldots\uparrow\uparrow\uparrow\uparrow\ldots}\)</span>
|
||
and a domain wall state <span
|
||
class="math inline">\(\ket{\ldots\uparrow\uparrow\downarrow\downarrow\ldots}\)</span>.
|
||
In the case of the LRI model, careful counting shows that this energy
|
||
penalty is: <span class="math display">\[\Delta E \propto
|
||
\sum_{n=1}^{\infty} n J(n)\]</span> % because each interaction between
|
||
spins separated across the domain by a bond length <span
|
||
class="math inline">\(n\)</span> can be drawn between <span
|
||
class="math inline">\(n\)</span> equivalent pairs of sites. Ruelle
|
||
proved rigorously for a very general class of 1D systems, that if <span
|
||
class="math inline">\(\Delta E\)</span> or its many-body generalisation
|
||
converges in the thermodynamic limit then the free energy is
|
||
analytic<span class="citation"
|
||
data-cites="ruelle_statistical_1968"><sup><a
|
||
href="#ref-ruelle_statistical_1968"
|
||
role="doc-biblioref"><strong>ruelle_statistical_1968?</strong></a></sup></span>}.
|
||
This rules out a finite order phase transition, though not one of the
|
||
Kosterlitz-Thouless type. Dyson also proves this though with a slightly
|
||
different condition on <span class="math inline">\(J(n)\)</span><span
|
||
class="citation" data-cites="dyson_existence_1969"><sup><a
|
||
href="#ref-dyson_existence_1969"
|
||
role="doc-biblioref"><strong>dyson_existence_1969?</strong></a></sup></span>}.</p>
|
||
<p>With a power law form for <span class="math inline">\(J(n)\)</span>,
|
||
there are three cases to consider:</p>
|
||
<ol type="1">
|
||
<li>$ = 0$ For infinite range interactions the Ising model is exactly
|
||
solveable and mean field theory is exact<span class="citation"
|
||
data-cites="lipkin_validity_1965"><sup><a
|
||
href="#ref-lipkin_validity_1965"
|
||
role="doc-biblioref"><strong>lipkin_validity_1965?</strong></a></sup></span>}.</li>
|
||
<li>$ $ For slowly decaying interactions <span
|
||
class="math inline">\(\sum_n J(n)\)</span> does not converge so the
|
||
Hamiltonian is non-extensive, a case which won’t be further considered
|
||
here.</li>
|
||
<li>$ 1 < < 2 $ A phase transition to an ordered state at a finite
|
||
temperature.</li>
|
||
<li>$ = 2 $ The energy of domain walls diverges logarithmically, and
|
||
this turns out to be a Kostelitz-Thouless transition<span
|
||
class="citation" data-cites="thouless_long-range_1969"><sup><a
|
||
href="#ref-thouless_long-range_1969"
|
||
role="doc-biblioref"><strong>thouless_long-range_1969?</strong></a></sup></span>}.</li>
|
||
<li>$ 2 < $ For quickly decaying interactions, domain walls have a
|
||
finite energy penalty, hence Peirels’ argument holds and there is no
|
||
phase transition.</li>
|
||
</ol>
|
||
<h3 id="thermodynamics">Thermodynamics</h3>
|
||
<p>On bipartite lattices in dimensions 2 and above the FK model exhibits
|
||
a finite temperature phase transition to an ordered charge density wave
|
||
(CDW) phase<span class="citation"
|
||
data-cites="maska_thermodynamics_2006-1"><sup><a
|
||
href="#ref-maska_thermodynamics_2006-1"
|
||
role="doc-biblioref"><strong>maska_thermodynamics_2006-1?</strong></a></sup></span>.
|
||
In this phase, the ions are confined to one of the two sublattices,
|
||
breaking the <span class="math inline">\(\mathbb{Z}_2\)</span>
|
||
symmetry.</p>
|
||
<p>In 1D, however, Periel’s argument<span class="citation"
|
||
data-cites="peierls_isings_1936 kennedy_itinerant_1986"><sup><a
|
||
href="#ref-peierls_isings_1936"
|
||
role="doc-biblioref"><strong>peierls_isings_1936?</strong></a>,<a
|
||
href="#ref-kennedy_itinerant_1986"
|
||
role="doc-biblioref"><strong>kennedy_itinerant_1986?</strong></a></sup></span>
|
||
states that domain walls only introduce a constant energy penalty into
|
||
the free energy while bringing a entropic contribution logarithmic in
|
||
system size. Hence the 1D model does not have a finite temperature phase
|
||
transition. However 1D systems are much easier to study numerically and
|
||
admit simpler realisations experimentally. We therefore introduce a long
|
||
range coupling between the ions in order to stabilise a CDW phase in 1D.
|
||
This leads to a disordered system that is gaped by the CDW background
|
||
but with correlated fluctuations leading to a disorder-free correlation
|
||
induced mobility edge in one dimension.</p>
|
||
<h3 id="markov-chain-monte-carlo">Markov Chain Monte Carlo</h3>
|
||
<p>To evaluate thermodynamic averages we perform a classical Markov
|
||
Chain Monte Carlo random walk over the space of ionic configurations, at
|
||
each step diagonalising the effective electronic Hamiltonian<span
|
||
class="citation" data-cites="maska_thermodynamics_2006-1"><sup><a
|
||
href="#ref-maska_thermodynamics_2006-1"
|
||
role="doc-biblioref"><strong>maska_thermodynamics_2006-1?</strong></a></sup></span>}.
|
||
Using a binder-cumulant method<span class="citation"
|
||
data-cites="binder_finite_1981 musial_monte_2002"><sup><a
|
||
href="#ref-binder_finite_1981"
|
||
role="doc-biblioref"><strong>binder_finite_1981?</strong></a>,<a
|
||
href="#ref-musial_monte_2002"
|
||
role="doc-biblioref"><strong>musial_monte_2002?</strong></a></sup></span>,
|
||
we demonstrate the model has a finite temperature phase transition when
|
||
the interaction is sufficiently long ranged. We then estimate the
|
||
density of states and the inverse participation ratio as a function of
|
||
energy to diagnose localisation properties. We show preliminary results
|
||
that the in-gap states induced at finite temperature are localised while
|
||
the states in the unperturbed bands remain extended, evidence for a
|
||
mobility edge.</p>
|
||
<div id="fig:binder" class="fignos">
|
||
<figure>
|
||
<img src="/assets/thesis/figure_code/fk_chapter/binder.png"
|
||
style="width:100.0%" alt="Figure 1: Hello I am the figure caption!" />
|
||
<figcaption aria-hidden="true"><span>Figure 1:</span> Hello I am the
|
||
figure caption!</figcaption>
|
||
</figure>
|
||
</div>
|
||
<p>Macro definitions in this cell <span class="math display">\[
|
||
\newcommand{\expval}[1]{\langle #1 \rangle}
|
||
\newcommand{\ket}[1]{|#1\rangle}
|
||
\newcommand{\bra}[1]{\langle#1|}
|
||
\newcommand{\op}[2]{|#1\rangle \langle#2|}
|
||
\]</span></p>
|
||
<p><span class="math display">\[
|
||
\expval{O}, \op{\alpha}{\beta}, \ket{\psi}
|
||
\]</span></p>
|
||
<h2 id="localisation-1">Localisation</h2>
|
||
<h3 id="thermalisation">Thermalisation</h3>
|
||
<p>Isolated classical systems generally thermalise if they are large
|
||
enough. Since classical dynamics is the limit of some underlying quantum
|
||
dynamics, it seems reasonable to suggest that isolated quantum systems
|
||
also thermalise in some related sense. However it is not immediately
|
||
obvious what thermalisation should mean in a quantum setting where the
|
||
presence of unitary time dynamics implies full information about a
|
||
system’s initial state is always preserved.</p>
|
||
<p>A potential solution lies in the eigenstate thermalisation
|
||
hypothesis. It states that if a system thermalises, then we can isolate
|
||
small patches of a larger system, trace everyhing else out, and get a
|
||
thermal density matrix.</p>
|
||
<p>Following Ref.<span class="citation"
|
||
data-cites="abanin_recent_2017"><sup><a href="#ref-abanin_recent_2017"
|
||
role="doc-biblioref"><strong>abanin_recent_2017?</strong></a></sup></span>,
|
||
consider the time evolution of a local operator <span
|
||
class="math inline">\(\hat{O}\)</span> <span class="math display">\[
|
||
\expval{\hat{O}}{\psi(t)} = \sum_{\alpha \beta} C^*_\alpha C_\beta
|
||
e^{i(E_\alpha - E_\beta)} O_{\alpha \beta}\]</span></p>
|
||
<p>Where <span class="math inline">\(C_\alpha\)</span> are determined by
|
||
the initial state and <span class="math inline">\(O_{\alpha \beta} =
|
||
\expval{\alpha | \hat{O} | \beta}\)</span> are the matrix elements of
|
||
<span class="math inline">\(\hat{O}\)</span> with respect to the energy
|
||
eigenstates. Srednicki<span class="citation"
|
||
data-cites="srednicki_chaos_1994"><sup><a
|
||
href="#ref-srednicki_chaos_1994"
|
||
role="doc-biblioref"><strong>srednicki_chaos_1994?</strong></a></sup></span>}
|
||
introduced the ansatz that for local operators:</p>
|
||
<p><span class="math display">\[O_{\alpha \beta} =
|
||
O(E)\delta_{\alpha\beta} + e^{-S(E)/2} f(E,\omega)
|
||
R_{\alpha\beta}\]</span></p>
|
||
<p>with <span class="math inline">\(E = (E_\alpha + E_\beta)\)</span>,
|
||
<span class="math inline">\(\omega = (E_\alpha - E_\beta)\)</span> and
|
||
<span class="math inline">\(R_{\alpha\beta}\)</span> are sampled from
|
||
some distribution with zero mean and unit variance. The first term
|
||
asserts that the diagonal elements are given by the thermal expectation
|
||
value <span class="math inline">\(O(E) = Tr[e^{-\beta \hat{H}}
|
||
\hat{O}]/\mathcal{Z}\)</span> with <span
|
||
class="math inline">\(\beta\)</span> an effective temperature defined by
|
||
equating the energy to the expectation of the Hamiltonian at that
|
||
temperature <span class="math inline">\(E = Tr[H e^{-\beta
|
||
\hat{H}}/\mathcal{Z}]\)</span>.</p>
|
||
<p>The second term deals with thermodynamic fluctuations scaled by the
|
||
entropy <span class="math inline">\(S(E) = -Tr(\rho \log \rho)\)</span>
|
||
where <span class="math inline">\(\rho = e^{-\beta \hat{H}}\)</span> and
|
||
<span class="math inline">\(\mathcal{Z} = Tr[e^{-\beta
|
||
\hat{H}}]\)</span>.</p>
|
||
<p>With this ansatz the long time average of the observable becomes
|
||
equal to the thermal expectations with fluctuations suppressed by the
|
||
entropic term <span class="math inline">\(e^{-S(E)}\)</span> and the
|
||
rapidly varying phase factors <span class="math inline">\(e^{i(E_\alpha
|
||
- E_\beta)}\)</span>. This statement of the ETH has verified for the
|
||
quantum hard sphere model<span class="citation"
|
||
data-cites="srednicki_chaos_1994"><sup><a
|
||
href="#ref-srednicki_chaos_1994"
|
||
role="doc-biblioref"><strong>srednicki_chaos_1994?</strong></a></sup></span>
|
||
and numerically for other models<span class="citation"
|
||
data-cites="khatami_fluctuation-dissipation_2013 dalessio_quantum_2016"><sup><a
|
||
href="#ref-khatami_fluctuation-dissipation_2013"
|
||
role="doc-biblioref"><strong>khatami_fluctuation-dissipation_2013?</strong></a>,<a
|
||
href="#ref-dalessio_quantum_2016"
|
||
role="doc-biblioref"><strong>dalessio_quantum_2016?</strong></a></sup></span>.</p>
|
||
<p>An alternate view on ETH is the statement that in thermalising
|
||
systems individual eigenstates look thermal when viewed locally. Take a
|
||
eigenstate <span class="math inline">\(|\alpha\rangle\)</span> with
|
||
energy <span class="math inline">\(E_\alpha\)</span> and as before
|
||
define an effective temperature with <span
|
||
class="math inline">\(E_\alpha = Tr[H e^{-\beta
|
||
\hat{H}}/\mathcal{Z}]\)</span>. This statement of the ETH says that if
|
||
we partition the system into subsystems A and B with a limit taken as B
|
||
becomes very large, B will act as a heat bath for A. Specifically the
|
||
reduced density matrix <span class="math inline">\(\rho_A = Tr_B
|
||
\op{\alpha}{\alpha}\)</span> is equal to the thermal density matrix:</p>
|
||
<p><span class="math display">\[\rho_A = Tr_B |\alpha\rangle \langle
|
||
\alpha| = \mathcal{Z}^{-1} Tr_B [e^{-\beta \hat{H}}] \]</span></p>
|
||
<p>Intuitively, for thermalisation to happen, the degrees of freedom
|
||
must be sufficiently well coupled that energy transport occurs. This
|
||
condition is broken by systems with localised states so a lack of
|
||
thermalisation is often used as a diagnostic tool for localisation.</p>
|
||
<h3 id="anderson-localisation">Anderson Localisation</h3>
|
||
<p>Localisation was first studied by Anderson in 1958<span
|
||
class="citation" data-cites="anderson_absence_1958-1"><sup><a
|
||
href="#ref-anderson_absence_1958-1"
|
||
role="doc-biblioref"><strong>anderson_absence_1958-1?</strong></a></sup></span>
|
||
in the context of non-interacting fermions subject to a static or
|
||
quenched disorder potential <span class="math inline">\(V_j\)</span>
|
||
drawn uniformly from the interval <span
|
||
class="math inline">\([-W,W]\)</span>:</p>
|
||
<p><span class="math display">\[
|
||
H = -t\sum_{\expval{jk}} c^\dagger_j c_k + \sum_j V_j c_j^\dagger c_j
|
||
\]</span></p>
|
||
<p>At sufficiently strong disorder the Anderson model exhibits
|
||
exponentially localised eigenfunctions <span
|
||
class="math inline">\(\psi(x) = f(x) e^{-x/\lambda}\)</span> which
|
||
cannot contribute to diffusive transport processes. Except in 1D where
|
||
any disorder strength is sufficient. Intuitively this happens because
|
||
hopping processes between nearby sites become off-resonant, hindering
|
||
the hybridisation that would normally lead to extended Bloch states<span
|
||
class="citation" data-cites="kramer_localization_1993"><sup><a
|
||
href="#ref-kramer_localization_1993"
|
||
role="doc-biblioref"><strong>kramer_localization_1993?</strong></a></sup></span>.</p>
|
||
<p>In one and two dimensions, all the states in the Anderson model are
|
||
localised. In three dimensions there are mobility edges. Mobility edges
|
||
are critical energies in the spectrum which separate delocalised states
|
||
in a band from localised states which form a band tail<span
|
||
class="citation" data-cites="abanin_recent_2017"><sup><a
|
||
href="#ref-abanin_recent_2017"
|
||
role="doc-biblioref"><strong>abanin_recent_2017?</strong></a></sup></span>}.
|
||
An argument due to Lifshitz shows that the density of state of the band
|
||
tail should decay exponentially and localised and extended stats cannot
|
||
co-exist at the same energy as they would hybridise into extended
|
||
states<span class="citation"
|
||
data-cites="kramer_localization_1993"><sup><a
|
||
href="#ref-kramer_localization_1993"
|
||
role="doc-biblioref"><strong>kramer_localization_1993?</strong></a></sup></span>}.</p>
|
||
<p>It was thought that mobility edges could not exist in 1D because all
|
||
the states localised in the presence of any amount of disorder. This is
|
||
true for uncorrelated potentials<span class="citation"
|
||
data-cites="goldshtein_pure_1977"><sup><a
|
||
href="#ref-goldshtein_pure_1977"
|
||
role="doc-biblioref"><strong>goldshtein_pure_1977?</strong></a></sup></span>}.
|
||
However, it was shown that if the disorder potential <span
|
||
class="math inline">\(V_j\)</span> contains spatial correlations
|
||
mobility edges do exist in 1D<span class="citation"
|
||
data-cites="izrailev_localization_1999"><sup><a
|
||
href="#ref-izrailev_localization_1999"
|
||
role="doc-biblioref"><strong>izrailev_localization_1999?</strong></a></sup></span>,
|
||
izrailev_anomalous_2012}. Ref.<span class="citation"
|
||
data-cites="croy_anderson_2011"><sup><a href="#ref-croy_anderson_2011"
|
||
role="doc-biblioref"><strong>croy_anderson_2011?</strong></a></sup></span>}
|
||
extends this work to look at power law decay of the correlations: <span
|
||
class="math display">\[ C(l) = \expval{V_i V_{i+l}} \propto l^{-\alpha}
|
||
\]</span> % Figure <span
|
||
class="math inline">\(\ref{fig:anderson_dos}\)</span> shows numerical
|
||
calculations of the Localisation length (see later) and density of
|
||
states for the power law correlated Anderson model. At the unperturbed
|
||
band edges <span class="math inline">\(\abs{E} = 2\)</span>, the states
|
||
transition from extended to localised. The behaviour close to the edge
|
||
takes a universal scaling form with exponents dependant on <span
|
||
class="math inline">\(\alpha\)</span>.</p>
|
||
<h3 id="many-body-localisation">Many Body Localisation</h3>
|
||
<p>A related phenomena known as many body localisation (MBL) was found
|
||
in interacting systems with quenched disorder. A simple example comes
|
||
from adding density-density interactions to the Anderson model:</p>
|
||
<p><span class="math display">\[
|
||
H = -t\sum_{\expval{jk}} c^\dagger_j c_k + \sum_j V_j c_j^\dagger c_j +
|
||
U\sum_{jk} n_j n_k
|
||
\]</span> % with <span class="math inline">\(n_j = c^\dagger_j
|
||
c_j\)</span> Here, in contrast to the Anderson model, localisation
|
||
phenomena can be proven robust to weak perturbations of the
|
||
Hamiltonian<span class="citation"
|
||
data-cites="imbrie_many-body_2016"><sup><a
|
||
href="#ref-imbrie_many-body_2016"
|
||
role="doc-biblioref"><strong>imbrie_many-body_2016?</strong></a></sup></span>}.</p>
|
||
<p>MBL is defined by the emergence of an extensive number of quasi-local
|
||
operators called local integrals of motions (LIOMs) or l-bits. Following
|
||
Ref.<span class="citation" data-cites="abanin_recent_2017"><sup><a
|
||
href="#ref-abanin_recent_2017"
|
||
role="doc-biblioref"><strong>abanin_recent_2017?</strong></a></sup></span>},
|
||
using a spin system with variables <span
|
||
class="math inline">\(\sigma^z_i\)</span>, any operator can be written
|
||
in the general form:</p>
|
||
<p><span class="math display">\[ \tau^z_i = \sigma^z_i +
|
||
\sum_{\alpha\beta kl} f_{kl}^{\alpha\beta} \sigma^\alpha_{i+k}
|
||
\sigma_z\beta_{i+k} + ...\]</span> % what defines a MBL system is that
|
||
there exist extensively many <span
|
||
class="math inline">\(\tau^z_i\)</span> for which the coefficients decay
|
||
exponentially with distance <span
|
||
class="math inline">\(f_{kl}^{\alpha\beta} \propto
|
||
e^{-\max(\abs{l},\abs{k}) / \xi}\)</span>. These LIOMs commute with the
|
||
Hamiltonian and each other <span class="math inline">\([\hat{H},
|
||
\tau^z_i] = [\tau^z_i, \tau^z_j] = 0\)</span>. It is this extensive
|
||
number of conserved local charges that leads to the localisation
|
||
properties of MBL. It also has implications for the way entanglement
|
||
grows over time in MBL systems.</p>
|
||
<p>Since the Hamiltonian commutes with all the LIOMs and they are a
|
||
complete operator basis, the Hamiltonian can be written as:</p>
|
||
<p><span class="math display">\[\hat{H} = \sum_{i} h_i \tau^z_i +
|
||
\sum_{ij} J_{ij} \tau^z_i \tau^z_j + \sum_{ijk} J_{ij} \tau^z_i \tau^z_j
|
||
\tau^z_k+ ...\]</span> % Where again the couplings decay exponentially,
|
||
albeit with a different length scale <span
|
||
class="math inline">\(\Bar{\xi}\)</span>. From this form we see that
|
||
distant l-bits can only become entangled on a timescale of:</p>
|
||
<p><span class="math display">\[ t_{\mathrm{ent}}(r) \propto
|
||
\frac{\hbar}{J_0} e^{r/\Bar{\xi}} \]</span> % and hence quantum
|
||
correlations and entanglement propagates logarithmically in MBL
|
||
systems<span class="citation"
|
||
data-cites="imbrie_diagonalization_2016"><sup><a
|
||
href="#ref-imbrie_diagonalization_2016"
|
||
role="doc-biblioref"><strong>imbrie_diagonalization_2016?</strong></a></sup></span>}.</p>
|
||
<h3 id="disorder-free-localisation">Disorder Free localisation</h3>
|
||
<p>Both Anderson localisation and MBL depend on the presence of quenched
|
||
disorder. Recently the idea of disorder-free localisation has gained
|
||
traction, asking whether the disorder necessary to generate localisation
|
||
can be generated entirely from the dynamics of a model itself.</p>
|
||
<p>The idea was first proposed in the context of Helium mixtures<span
|
||
class="citation" data-cites="kagan1984localization"><sup><a
|
||
href="#ref-kagan1984localization"
|
||
role="doc-biblioref">1</a></sup></span>} and then extended to
|
||
heavy-light mixtures in which multiple species with large mass ratios
|
||
interact, the idea being that the heavier particles act as an effective
|
||
disorder potential for the lighter ones, inducing localisation. Two such
|
||
models<span class="citation"
|
||
data-cites="yao_quasi-many-body_2016"><sup><a
|
||
href="#ref-yao_quasi-many-body_2016"
|
||
role="doc-biblioref"><strong>yao_quasi-many-body_2016?</strong></a></sup></span>,schiulaz_dynamics_2015}
|
||
instead find that the models thermalise exponentially slowly in system
|
||
size, which Ref.<span class="citation"
|
||
data-cites="yao_quasi-many-body_2016"><sup><a
|
||
href="#ref-yao_quasi-many-body_2016"
|
||
role="doc-biblioref"><strong>yao_quasi-many-body_2016?</strong></a></sup></span>}
|
||
dubs Quasi-MBL. A. Smith, J. Knolle et al instead looked at models
|
||
containing an extensive number of conserved quantities and demonstrated
|
||
true disorder free localisation<span class="citation"
|
||
data-cites="smith_disorder-free_2017"><sup><a
|
||
href="#ref-smith_disorder-free_2017"
|
||
role="doc-biblioref"><strong>smith_disorder-free_2017?</strong></a></sup></span>}.</p>
|
||
<h3 id="diagnostics-of-localisation">Diagnostics of Localisation</h3>
|
||
<h4 id="inverse-participation-ratio">Inverse Participation Ratio</h4>
|
||
<p>The inverse participation ratio is defined for a normalised wave
|
||
function <span class="math inline">\(\psi_i = \psi(x_i), \sum_i
|
||
\abs{\psi_i}^2 = 1\)</span> as its fourth moment<span class="citation"
|
||
data-cites="kramer_localization_1993"><sup><a
|
||
href="#ref-kramer_localization_1993"
|
||
role="doc-biblioref"><strong>kramer_localization_1993?</strong></a></sup></span>}:
|
||
<span class="math display">\[
|
||
P^{-1} = \sum_i \abs{\psi_i}^4
|
||
\]</span> % It acts as a measure of the portion of space occupied by the
|
||
wave function. For localised states it will be independent of system
|
||
size while for plane wave states in d dimensions $P = L^d $. States may
|
||
also be intermediate between localised and extended, described by their
|
||
fractal dimensionality <span class="math inline">\(d > d* >
|
||
0\)</span>: <span class="math display">\[
|
||
P(L) \goeslike L^{d*}
|
||
\]</span> % For extended states <span class="math inline">\(d* =
|
||
0\)</span> while for localised ones <span class="math inline">\(d* =
|
||
0\)</span>. In this work we take use an energy resolved IPR<span
|
||
class="citation" data-cites="antipov_interaction-tuned_2016-1"><sup><a
|
||
href="#ref-antipov_interaction-tuned_2016-1"
|
||
role="doc-biblioref"><strong>antipov_interaction-tuned_2016-1?</strong></a></sup></span>:
|
||
<span class="math display">\[
|
||
DOS(\omega) = \sum_n \delta(\omega - \epsilon_n)
|
||
IPR(\omega) = DOS(\omega)^{-1} \sum_{n,i} \delta(\omega - \epsilon_n)
|
||
\abs{\psi_{n,i}}^4
|
||
\]</span> Where <span class="math inline">\(\psi_{n,i}\)</span> is the
|
||
wavefunction corresponding to the energy <span
|
||
class="math inline">\(\epsilon_n\)</span> at the ith site. In practice
|
||
we bin the energies and IPRs into a fine energy grid and use Lorentzian
|
||
smoothing if necessary.</p>
|
||
<h4 id="transfer-matrix-approach">Transfer Matrix Approach</h4>
|
||
<p>The transfer matrix method (TMM) can be used to calculate the
|
||
localisation length of the eigenstates of a system. Following Refs.<span
|
||
class="citation" data-cites="kramer_localization_1993"><sup><a
|
||
href="#ref-kramer_localization_1993"
|
||
role="doc-biblioref"><strong>kramer_localization_1993?</strong></a></sup></span>,
|
||
smith_dynamical_2018}, for bi-linear, 1D Hamiltonians the method
|
||
represents the action of <span class="math inline">\(H\)</span> on a
|
||
state <span class="math inline">\(\ket{\psi} = \sum_i \psi_i
|
||
\ket{i}\)</span> with energy E by a matrix equation: <span
|
||
class="math display">\[
|
||
H &= - \sum_i (c^\dagger_i c_{i+1} + c^\dagger_{i+1} c_{i}) - \sum_i
|
||
h_i c^\dagger_i c_i \\
|
||
E\ket{\psi} &= H \ket{\psi} \\
|
||
\label{eq:tmm_difference} E \psi_i &= -(\psi_{i+1} + \psi_{i-1}) -
|
||
h_i \psi_i
|
||
\]</span> % Where Eq. <span
|
||
class="math inline">\(\ref{eq:tmm_difference}\)</span> can be
|
||
represented by a matrix equation: <span class="math display">\[
|
||
\begin{pmatrix}
|
||
\psi_{i+1}\\
|
||
\psi_{i}
|
||
\end{pmatrix}
|
||
=
|
||
\begin{pmatrix}
|
||
-(E + h_i) & -1\\
|
||
1 & 0
|
||
\end{pmatrix}
|
||
\begin{pmatrix}
|
||
\psi_{i}\\
|
||
\psi_{i-1}
|
||
\end{pmatrix}
|
||
= T_i
|
||
\begin{pmatrix}
|
||
\psi_{i}\\
|
||
\psi_{i-1}
|
||
\end{pmatrix}
|
||
\]</span> % Defining a product along the chain: <span
|
||
class="math display">\[Q_L = \prod_{i=0}^L T_i\]</span> % Oseledec’s
|
||
theorem proves that there exists a limiting matrix <span
|
||
class="math inline">\(\Gamma\)</span>: <span class="math display">\[
|
||
\Gamma = \lim_{L \to \infty} (Q_L Q_L^\dagger)^{\frac{1}{2L}}
|
||
\]</span> % with eigenvalues <span
|
||
class="math inline">\(\exp(\gamma_i)\)</span> where <span
|
||
class="math inline">\(\gamma_i\)</span> are the Lyapunov exponents of
|
||
<span class="math inline">\(Q_L\)</span>. The smallest Lyapunov exponent
|
||
is the inverse of the localisation length of the state. In practice one
|
||
takes <span class="math inline">\(Q_L\)</span> with L equal to the
|
||
system size, finds the smallest eigenvalue q and estimates the
|
||
localisation length by: <span class="math display">\[
|
||
\lambda = \frac{L}{\ln{q}}
|
||
\]</span> % As noted by<span class="citation"
|
||
data-cites="smith_dynamical_2018"><sup><a
|
||
href="#ref-smith_dynamical_2018"
|
||
role="doc-biblioref"><strong>smith_dynamical_2018?</strong></a></sup></span>
|
||
this method can be numerically unstable because the matrix elements
|
||
diverge or vanish exponentially. To get around this, the authors break
|
||
the matrix multiplication into chunks and the logarithms of the
|
||
eigenvalues of each are stored separately.</p>
|
||
<h2 id="numerical-methods">Numerical Methods</h2>
|
||
<p>In this section we will define the Markov Chain Monte Carlo (MCMC)
|
||
method in general then detail its application to the FK model. We will
|
||
then cover methods applicable to the measurements obtained from MCMC.
|
||
These include calculation of the density of states and energy resolved
|
||
inverse participation ratio as well as phase transition diagnostics such
|
||
as the Binder cumulant.</p>
|
||
<h3 id="markov-chain-monte-carlo-1">Markov Chain Monte Carlo}</h3>
|
||
<p>Markov Chain Monte Carlo (MCMC) is a technique for evaluating thermal
|
||
expectation values <span class="math inline">\(\expval{O}\)</span> with
|
||
respect to some physical system defined by a set of states <span
|
||
class="math inline">\(\{x: x \in S\}\)</span> and a free energy <span
|
||
class="math inline">\(F(x)\)</span><span class="citation"
|
||
data-cites="krauth_introduction_1996"><sup><a
|
||
href="#ref-krauth_introduction_1996"
|
||
role="doc-biblioref"><strong>krauth_introduction_1996?</strong></a></sup></span>}.
|
||
The thermal expectation value is defined via a Boltzmann weighted sum
|
||
over the entire states: <span class="math display">\[
|
||
\tex{O} &= \frac{1}{\Z} \sum_{x \in S} O(x) P(x) \\
|
||
P(x) &= \frac{1}{\Z} e^{-\beta F(x)} \\
|
||
\Z &= \sum_{x \in S} e^{-\beta F(x)}
|
||
\]</span></p>
|
||
<p>When the state space is too large to evaluate this sum directly, MCMC
|
||
defines a stochastic algorithm which generates a random walk <span
|
||
class="math inline">\(\{x_0\ldots x_i\ldots x_N\}\)</span> whose
|
||
distribution <span class="math inline">\(p(x_i)\)</span> approaches a
|
||
target distribution <span class="math inline">\(P(x)\)</span> in the
|
||
large N limit.</p>
|
||
<p><span class="math display">\[\lim_{i\to\infty} p(x_i) =
|
||
P(x)\]</span></p>
|
||
<p>In this case the target distribution will be the thermal one <span
|
||
class="math inline">\(P(x) \rightarrow \Z^{-1} e^{-\beta F(x)}\)</span>.
|
||
The major benefit of the method being that as long as one can express
|
||
the desired <span class="math inline">\(P(x)\)</span> up to a
|
||
multiplicative constant, MCMC can be applied. Since <span
|
||
class="math inline">\(e^{-\beta F(x)}\)</span> is relatively easy to
|
||
evaluate, MCMC provides a useful method for finite temperature
|
||
physics.</p>
|
||
<p>Once the random walk has been carried out for many steps, the
|
||
expectation values of <span class="math inline">\(O\)</span> can be
|
||
estimated from the MCMC samples: <span class="math display">\[
|
||
\tex{O} = \sum_{i = 0}^{N} O(x_i) + \mathcal{O}(\frac{1}{\sqrt{N}})
|
||
\]</span> The the samples in the random walk are correlated so the
|
||
samples effectively contain less information than <span
|
||
class="math inline">\(N\)</span> independent samples would. As a
|
||
consequence the variance is larger than the <span
|
||
class="math inline">\(\tex{O^2} - \tex{O}^2\)</span> form it would have
|
||
if the estimates were uncorrelated. Methods of estimating the true
|
||
variance of <span class="math inline">\(\tex{O}\)</span> and decided how
|
||
many steps are needed will be considered later.</p>
|
||
<p>Markov chains are defined by a transition function $(x_{i+1} x_i) $
|
||
giving the probability that a chain in state <span
|
||
class="math inline">\(x_i\)</span> at time <span
|
||
class="math inline">\(i\)</span> will transition to a state <span
|
||
class="math inline">\(x_{i+1}\)</span>. Since we must transition
|
||
somewhere at each step, this comes with the normalisation condition that
|
||
<span class="math inline">\(\sum\limits_x \T(x' \rightarrow x) =
|
||
1\)</span>.</p>
|
||
<p>If we define an ensemble of Markov chains and consider the
|
||
distributions we get a sequence of distributions <span
|
||
class="math inline">\(\{p_0(x), p_1(x), p_2(x)\ldots\}\)</span> with
|
||
<span class="math display">\[p_{i+1}(x) &= \sum_{x' \in S}
|
||
p_i(x') \T(x' \rightarrow x)\]</span> <span
|
||
class="math inline">\(p_o(x)\)</span> might be a delta function on one
|
||
particular starting state which would then be smoothed out by the
|
||
transition function repeatedly.</p>
|
||
<p>As we’d like to draw samples from the target distribution <span
|
||
class="math inline">\(P(x)\)</span> the trick is to choose $(x_{i+1}
|
||
x_i) $ such that :</p>
|
||
<p><span class="math display">\[
|
||
P(x) &= \sum_{x'} P(x') \T(x' \rightarrow x)
|
||
\]</span> In other words the MCMC dynamics defined by <span
|
||
class="math inline">\(\T\)</span> must be constructed to have the target
|
||
distribution as their only fixed point. This condition is called the
|
||
global balance condition. Along with some more technical considerations
|
||
such as ergodcity which won’t be considered here, global balance
|
||
suffices to ensure that a MCMC method is correct.</p>
|
||
<p>A sufficient but not necessary condition for global balance to hold
|
||
is detailed balance:</p>
|
||
<p><span class="math display">\[
|
||
P(x) \T(x \rightarrow x') = P(x') \T(x' \rightarrow x)
|
||
\]</span> % In practice most algorithms are constructed to satisfy
|
||
detailed balance though there are arguments that relaxing the condition
|
||
can lead to faster algorithms<span class="citation"
|
||
data-cites="kapfer_sampling_2013"><sup><a
|
||
href="#ref-kapfer_sampling_2013"
|
||
role="doc-biblioref"><strong>kapfer_sampling_2013?</strong></a></sup></span>}.</p>
|
||
<p>The goal of MCMC is then to choose <span
|
||
class="math inline">\(\T\)</span> so that it has the desired thermal
|
||
distribution <span class="math inline">\(P(x)\)</span> as its fixed
|
||
point and that it converges quickly onto it. This boils down to
|
||
requiring that the matrix representation of <span
|
||
class="math inline">\(T_{ij} = \T(x_i \to x_j)\)</span> has an
|
||
eigenvector equal to <span class="math inline">\(P_i = P(x_i)\)</span>
|
||
with eigenvalue 1 and all other eigenvalues with magnitude less than
|
||
one. The convergence time depends on the magnitude of the second largest
|
||
eigenvalue.</p>
|
||
<p>In order to actually choose new states according to <span
|
||
class="math inline">\(\T\)</span> one chooses states from a proposal
|
||
distribution <span class="math inline">\(q(x_i \to x')\)</span> that
|
||
can be directly sampled from. For instance, this might mean flipping a
|
||
single random spin in a spin chain, in which case <span
|
||
class="math inline">\(q(x'\to x_i)\)</span> is the uniform
|
||
distribution on states reachable by one spin flip from <span
|
||
class="math inline">\(x_i\)</span>. The proposal <span
|
||
class="math inline">\(x'\)</span> is then accepted or rejected with
|
||
an acceptance probability <span class="math inline">\(\A(x'\to
|
||
x_{i+1})\)</span>, if the proposal is rejected then <span
|
||
class="math inline">\(x_{i+1} = x_{i}\)</span>. Now <span
|
||
class="math inline">\(\T(x\to x') = q(x\to x')\A(x \to
|
||
x')\)</span>.</p>
|
||
<p>The Metropolis-Hasting algorithm is a slight extension of the
|
||
original Metropolis algorithm that allows for non-symmetric proposal
|
||
distributions $q(xx’) q(x’x) $. It can be derived starting from detailed
|
||
balance<span class="citation"
|
||
data-cites="krauth_introduction_1996"><sup><a
|
||
href="#ref-krauth_introduction_1996"
|
||
role="doc-biblioref"><strong>krauth_introduction_1996?</strong></a></sup></span>}:
|
||
<span class="math display">\[
|
||
P(x)\T(x \to x') &= P(x')\T(x' \to x) \\
|
||
P(x)q(x \to x')\A(x \to x') &= P(x')q(x' \to
|
||
x)\A(x' \to x) \\
|
||
\label{eq:db2} \frac{\A(x \to x')}{\A(x' \to x)} &=
|
||
\frac{P(x')q(x' \to x)}{P(x)q(x \to x')} = f(x, x')\\
|
||
\]</span> % The Metropolis-Hastings algorithm is the choice: <span
|
||
class="math display">\[\label{eq:mh} \A(x \to x') = \min\left(1,
|
||
f(x,x')\right)\]</span> % Noting that <span
|
||
class="math inline">\(f(x,x') = 1/f(x',x)\)</span>, Eq. <span
|
||
class="math inline">\(\ref{eq:mh}\)</span> can be seen to satisfy Eq.
|
||
<span class="math inline">\(\ref{eq:db2}\)</span> by considering the two
|
||
cases <span class="math inline">\(f(x,x') > 1\)</span> and <span
|
||
class="math inline">\(f(x,x') < 1\)</span>.</p>
|
||
<p>By choosing the proposal distribution such that <span
|
||
class="math inline">\(f(x,x')\)</span> is as close as possible to
|
||
one, the rate of rejections can be reduced and the algorithm sped
|
||
up.</p>
|
||
%
|
||
<p>%Thinning, burn in, multiple runs %Simulated annealing and Parallel
|
||
Tempering</p>
|
||
<h3 id="applying-mcmc-to-the-fk-model">Applying MCMC to the FK
|
||
model}</h3>
|
||
<p>MCMC can be applied to sample over the classical degrees of freedom
|
||
of the model. We take the full Hamiltonian and split it into a classical
|
||
and a quantum part: <span class="math display">\[
|
||
H_{\mathrm{FK}} &= -\sum_{<ij>} c^\dagger_{i}c_{j} + U
|
||
\sum_{i} (c^\dagger_{i}c_{i} - 1/2)( n_i - 1/2) \\
|
||
&+ \sum_{ij} J_{ij} (n_i - 1/2) (n_j - 1/2) - \mu \sum_i
|
||
(c^\dagger_{i}c_{i} + n_i)\\
|
||
H_q &= -\sum_{<ij>} c^\dagger_{i}c_{j} + \sum_{i}
|
||
\left(U(n_i - 1/2) - \mu\right) c^\dagger_{i}c_{i}\\
|
||
H_c &= \sum_i \mu n_i - \frac{U}{2}(n_i - 1/2) +
|
||
\sum_{ij}J_{ij}(n_i - 1/2)(n_j - 1/2)
|
||
\]</span> % There are <span class="math inline">\(2^N\)</span> possible
|
||
ion configurations <span class="math inline">\(\{ n_i \}\)</span>, we
|
||
define <span class="math inline">\(n^k_i\)</span> to be the occupation
|
||
of the ith site of the kth configuration. The quantum part of the free
|
||
energy can then be defined through the quantum partition function <span
|
||
class="math inline">\(\Z^k\)</span> associated with each ionic state
|
||
<span class="math inline">\(n^k_i\)</span>: <span
|
||
class="math display">\[
|
||
F^k &= -1/\beta \ln{\Z^k} \\
|
||
\]</span> % Such that the overall partition function is: <span
|
||
class="math display">\[
|
||
\Z &= \sum_k e^{- \beta H^k} Z^k \\
|
||
&= \sum_k e^{-\beta (H^k + F^k)} \\
|
||
\]</span> % Because fermions are limited to occupation numbers of 0 or 1
|
||
<span class="math inline">\(Z^k\)</span> simplifies nicely. If <span
|
||
class="math inline">\(m^j_i = \{0,1\}\)</span> is defined as the
|
||
occupation of the level with energy <span
|
||
class="math inline">\(\epsilon^k_i\)</span> then the partition function
|
||
is a sum over all the occupation states labelled by j: <span
|
||
class="math display">\[
|
||
Z^k &= \Tr e^{-\beta F^k} = \sum_j e^{-\beta \sum_i m^j_i
|
||
\epsilon^k_i}\\
|
||
&= \sum_j \prod_i e^{- \beta m^j_i \epsilon^k_i}= \prod_i
|
||
\sum_j e^{- \beta m^j_i \epsilon^k_i}\\
|
||
&= \prod_i (1 + e^{- \beta \epsilon^k_i})\\
|
||
F^k &= -1/\beta \sum_k \ln{(1 + e^{- \beta \epsilon^k_i})}
|
||
\]</span> % Observables can then be calculated from the partition
|
||
function, for examples the occupation numbers:</p>
|
||
<p><span class="math display">\[
|
||
\tex{N} &= \frac{1}{\beta} \frac{1}{Z} \frac{\partial Z}{\partial
|
||
\mu} = - \frac{\partial F}{\partial \mu}\\
|
||
&= \frac{1}{\beta} \frac{1}{Z} \frac{\partial}{\partial \mu}
|
||
\sum_k e^{-\beta (H^k + F^k)}\\
|
||
&= 1/Z \sum_k (N^k_{\mathrm{ion}} + N^k_{\mathrm{electron}})
|
||
e^{-\beta (H^k + F^k)}\\
|
||
\]</span> % with the definitions:</p>
|
||
<p><span class="math display">\[
|
||
N^k_{\mathrm{ion}} &= - \frac{\partial H^k}{\partial \mu} = \sum_i
|
||
n^k_i\\
|
||
N^k_{\mathrm{electron}} &= - \frac{\partial F^k}{\partial \mu} =
|
||
\sum_i \left(1 + e^{\beta \epsilon^k_i}\right)^{-1}\\
|
||
\]</span> % The MCMC algorithm consists of performing a random walk over
|
||
the states <span class="math inline">\(\{ n^k_i \}\)</span>. In the
|
||
simplest case the proposal distribution corresponds to flipping a random
|
||
site from occupied to unoccupied or vice versa, since this proposal is
|
||
symmetric the acceptance function becomes: <span class="math display">\[
|
||
P(k) &= \Z^{-1} e^{-\beta(H^k + F^k)} \\
|
||
\A(k \to k') &= \min\left(1, \frac{P(k')}{P(k)}\right) =
|
||
\min\left(1, e^{\beta(H^{k'} + F^{k'})-\beta(H^k + F^k)}\right)
|
||
\]</span> % At each step <span class="math inline">\(F^k\)</span> is
|
||
calculated by diagonalising the tri-diagonal matrix representation of
|
||
<span class="math inline">\(H_q\)</span> with open boundary conditions.
|
||
Observables are simply averages over the their value at each step of the
|
||
random walk. The full spectrum and eigenbasis is too large to save to
|
||
disk so usually running averages of key observables are taken as the
|
||
walk progresses.</p>
|
||
<p>In a MCMC method a key property is the proportion of the time that
|
||
proposals are accepted, the acceptance rate. If this rate is too low the
|
||
random walk is trying to take overly large steps in energy space which
|
||
problematic because it means very few new samples will be generated. If
|
||
it is too high it implies the steps are too small, a problem because
|
||
then the walk will take longer to explore the state space and the
|
||
samples will be highly correlated. Ideal values for the acceptance rate
|
||
can be calculated under certain assumptions<span class="citation"
|
||
data-cites="roberts_weak_1997"><sup><a href="#ref-roberts_weak_1997"
|
||
role="doc-biblioref"><strong>roberts_weak_1997?</strong></a></sup></span>}.
|
||
Here we monitor the acceptance rate and if it is too high we re-run the
|
||
MCMC with a modified proposal distribution that has a chance to propose
|
||
moves that flip multiple sites at a time.</p>
|
||
<p>In addition we exploit the particle-hole symmetry of the problem by
|
||
occasionally proposing a flip of the entire state. This works because
|
||
near half-filling, flipping the occupations of all the sites will
|
||
produce a state at or near the energy of the current one.</p>
|
||
<p>The matrix diagonalisation is the most computationally expensive step
|
||
of the process, a speed up can be obtained by modifying the proposal
|
||
distribution to depend on the classical part of the energy, a trick
|
||
gleaned from Ref.<span class="citation"
|
||
data-cites="krauth_introduction_1996"><sup><a
|
||
href="#ref-krauth_introduction_1996"
|
||
role="doc-biblioref"><strong>krauth_introduction_1996?</strong></a></sup></span>}:
|
||
<span class="math display">\[
|
||
q(k \to k') &= \min\left(1, e^{\beta (H^{k'} - H^k)}\right)
|
||
\\
|
||
\A(k \to k') &= \min\left(1, e^{\beta(F^{k'}- F^k)}\right)
|
||
\]</span> % This allows the method to reject some states without
|
||
performing the diagonalisation at no cost to the accuracy of the MCMC
|
||
method.</p>
|
||
<p>An extension of this idea is to try to define a classical model with
|
||
a similar free energy dependence on the classical state as the full
|
||
quantum, Ref.<span class="citation"
|
||
data-cites="huang_accelerated_2017"><sup><a
|
||
href="#ref-huang_accelerated_2017"
|
||
role="doc-biblioref"><strong>huang_accelerated_2017?</strong></a></sup></span>}
|
||
does this with restricted Boltzmann machines whose form is very similar
|
||
to a classical spin model.</p>
|
||
<p>In order to reduce the effects of the boundary conditions and the
|
||
finite size of the system we redefine and normalise the coupling matrix
|
||
to have 0 derivative at its furthest extent rather than cutting off
|
||
abruptly.</p>
|
||
<p><span class="math display">\[
|
||
J'(x) &= \abs{\frac{L}{\pi}\sin \frac{\pi x}{L}}^{-\alpha} \\
|
||
J(x) &= \frac{J_0 J'(x)}{\sum_y J'(y)}
|
||
\]</span> % The scaling ensures that, in the ordered phase, the overall
|
||
potential felt by each site due to the rest of the system is independent
|
||
of system size.</p>
|
||
<p>The Binder cumulant is defined as: <span class="math display">\[U_B =
|
||
1 - \frac{\tex{\mu_4}}{3\tex{\mu_2}^2}\]</span> % where <span
|
||
class="math display">\[\mu_n = \tex{(m - \tex{m})^n}\]</span> % are the
|
||
central moments of the order parameter m: <span class="math display">\[m
|
||
= \sum_i (-1)^i (2n_i - 1) / N\]</span> % The Binder cumulant evaluated
|
||
against temperature can be used as a diagnostic for the existence of a
|
||
phase transition. If multiple such curves are plotted for different
|
||
system sizes, a crossing indicates the location of a critical point<span
|
||
class="citation" data-cites="binder_finite_1981"><sup><a
|
||
href="#ref-binder_finite_1981"
|
||
role="doc-biblioref"><strong>binder_finite_1981?</strong></a></sup></span>,
|
||
musial_monte_2002}.</p>
|
||
<h2 id="markov-chain-monte-carlo-in-practice">Markov Chain Monte-Carlo
|
||
in Practice}</h2>
|
||
<h3 id="quick-intro-to-mcmc">Quick Intro to MCMC}</h3>
|
||
<p>The main paper relies on extensively to evaluate thermal expectation
|
||
values within the model by walking over states of the classical spin
|
||
system <span class="math inline">\(S_i\)</span>. For a classical system,
|
||
the thermal expectation value of some operator <span
|
||
class="math inline">\(O\)</span> is defined by a Boltzmann weighted sum
|
||
over the classical state space: <span class="math display">\[
|
||
\tex{O} &= \frac{1}{\Z} \sum_{\s \in S} O(x) P(x) \\
|
||
P(x) &= \frac{1}{\Z} e^{-\beta F(x)} \\
|
||
\Z &= \sum_{\s \in S} e^{-\beta F(x)}
|
||
\]</span> While for a quantum system these sums are replaced by
|
||
equivalent traces. The obvious approach to evaluate these sums
|
||
numerically would be to directly loop over all the classical states in
|
||
the system and perform the sum. But we all know know why this isn’t
|
||
feasible: the state space is too large! Indeed even if we could do it,
|
||
it would still be computationally wasteful since at low temperatures the
|
||
sums are dominated by low energy excitations about the ground states of
|
||
the system. Even worse, in our case we must fully solve the fermionic
|
||
system via exact diagonalisation for each classical state in the sum, a
|
||
very expensive operation!~.}</p>
|
||
<p> sidesteps these issues by defining a random walk that focuses on the
|
||
states with the greatest Boltzmann weight. At low temperatures this
|
||
means we need only visit a few low energy states to make good estimates
|
||
while at high temperatures the weights become uniform so a small number
|
||
of samples distributed across the state space suffice. However we will
|
||
see that the method is not without difficulties of its own.</p>
|
||
<p>%MCMC from an ensemble point of view In implementation can be boiled
|
||
down to choosing a transition function $(_{t} _t+1) $ where <span
|
||
class="math inline">\(\s\)</span> are vectors representing classical
|
||
spin configurations. We start in some initial state <span
|
||
class="math inline">\(\s_0\)</span> and then repeatedly jump to new
|
||
states according to the probabilities given by <span
|
||
class="math inline">\(\T\)</span>. This defines a set of random walks
|
||
<span class="math inline">\(\{\s_0\ldots \s_i\ldots \s_N\}\)</span>.
|
||
Fig.~<span class="math inline">\(\ref{fig:single}\)</span> shows this in
|
||
practice: we have a (rather small) ensemble of <span
|
||
class="math inline">\(M = 2\)</span> walkers starting at the same point
|
||
in state space and then spreading outwards by flipping spins along the
|
||
way.</p>
|
||
<p>In pseudo-code one could write the MCMC simulation for a single
|
||
walker as:</p>
|
||
<p>Where the function here produces a state with probability determined
|
||
by the and the transition function <span
|
||
class="math inline">\(\T\)</span>.</p>
|
||
<p>If we ran many such walkers in parallel we could then approximate the
|
||
distribution <span class="math inline">\(p_t(\s; \s_0)\)</span> which
|
||
tells us where the walkers are likely to be after they’ve evolved for
|
||
<span class="math inline">\(t\)</span> steps from an initial state <span
|
||
class="math inline">\(\s_0\)</span>. We need to carefully choose <span
|
||
class="math inline">\(\T\)</span> such that after a large number of
|
||
steps <span class="math inline">\(k\)</span> (the convergence time) the
|
||
probability <span class="math inline">\(p_t(\s;\s_0)\)</span> approaches
|
||
the thermal distribution <span class="math inline">\(P(\s; \beta) =
|
||
\Z^{-1} e^{-\beta F(\s)}\)</span>. This turns out to be quite easy to
|
||
achieve using the Metropolis-Hasting algorithm.</p>
|
||
<h3 id="convergence-time">Convergence Time}</h3>
|
||
<p>Considering <span class="math inline">\(p(\s)\)</span> as a vector
|
||
<span class="math inline">\(\vec{p}\)</span> whose jth entry is the
|
||
probability of the jth state <span class="math inline">\(p_j =
|
||
p(\s_j)\)</span>, and writing <span class="math inline">\(\T\)</span> as
|
||
the matrix with entries <span class="math inline">\(T_{ij} = \T(\s_j
|
||
\rightarrow \s_i)\)</span> we can write the update rule for the ensemble
|
||
probability as: <span class="math display">\[\vec{p}_{t+1} = \T
|
||
\vec{p}_t \implies \vec{p}_{t} = \T^t \vec{p}_0\]</span> where <span
|
||
class="math inline">\(\vec{p}_0\)</span> is vector which is one on the
|
||
starting state and zero everywhere else. Since all states must
|
||
transition to somewhere with probability one: <span
|
||
class="math inline">\(\sum_i T_{ij} = 1\)</span>.</p>
|
||
<p>Matrices that satisfy this are called stochastic matrices exactly
|
||
because they model these kinds of Markov processes. It can be shown that
|
||
they have real eigenvalues, and ordering them by magnitude, that <span
|
||
class="math inline">\(\lambda_0 = 1\)</span> and <span
|
||
class="math inline">\(0 < \lambda_{i\neq0} < 1\)</span>.
|
||
%https://en.wikipedia.org/wiki/Stochastic_matrix Assuming <span
|
||
class="math inline">\(\T\)</span> has been chosen correctly, its single
|
||
eigenvector with eigenvalue 1 will be the thermal distribution so
|
||
repeated application of the transition function eventually leads there,
|
||
while memory of the initial conditions decays exponentially with a
|
||
convergence time <span class="math inline">\(k\)</span> determined by
|
||
<span class="math inline">\(\lambda_1\)</span>. In practice this means
|
||
that one throws away the data from the beginning of the random walk in
|
||
order reduce the dependence on the initial conditions and be close
|
||
enough to the target distribution.</p>
|
||
<h3 id="auto-correlation-time">Auto-correlation Time}</h3>
|
||
<p>At this stage one might think we’re done. We can indeed draw
|
||
independent samples from <span class="math inline">\(P(\s;
|
||
\beta)\)</span> by starting from some arbitrary initial state and doing
|
||
<span class="math inline">\(k\)</span> steps to arrive at a sample.
|
||
However a key insight is that after the convergence time, every state
|
||
generated is a sample from <span class="math inline">\(P(\s;
|
||
\beta)\)</span>! They are not, however, independent samples. In
|
||
Fig.~<span class="math inline">\(\ref{fig:raw}\)</span> it is already
|
||
clear that the samples of the order parameter m have some
|
||
auto-correlation because only a few spins are flipped each step but even
|
||
when the number of spins flipped per step is increased, Fig.~<span
|
||
class="math inline">\(\ref{fig:m_autocorr}\)</span> shows that it can be
|
||
an important effect near the phase transition. Let’s define the
|
||
auto-correlation time <span class="math inline">\(\tau(O)\)</span>
|
||
informally as the number of MCMC samples of some observable O that are
|
||
statistically equal to one independent sample.~ for a more rigorous
|
||
definition involving a sum over the auto-correlation function.} The
|
||
auto-correlation time is generally shorter than the convergence time so
|
||
it therefore makes sense from an efficiency standpoint to run a single
|
||
walker for many MCMC steps rather than to run a huge ensemble for <span
|
||
class="math inline">\(k\)</span> steps each.</p>
|
||
<p>Once the random walk has been carried out for many steps, the
|
||
expectation values of <span class="math inline">\(O\)</span> can be
|
||
estimated from the MCMC samples <span
|
||
class="math inline">\(\s_i\)</span>: <span class="math display">\[
|
||
\tex{O} = \sum_{i = 0}^{N} O(\s_i) + \mathcal{O}(\frac{1}{\sqrt{N}})
|
||
\]</span> The the samples are correlated so the N of them effectively
|
||
contains less information than <span class="math inline">\(N\)</span>
|
||
independent samples would, in fact roughly <span
|
||
class="math inline">\(N/\tau\)</span> effective samples. As a
|
||
consequence the variance is larger than the <span
|
||
class="math inline">\(\qex{O^2} - \qex{O}^2\)</span> form it would have
|
||
if the estimates were uncorrelated. There are many methods in the
|
||
literature for estimating the true variance of <span
|
||
class="math inline">\(\qex{O}\)</span> and deciding how many steps are
|
||
needed but my approach has been to run a small number of parallel
|
||
chains, which are independent, in order to estimate the statistical
|
||
error produced. This is a slightly less computationally efficient
|
||
because it requires throwing away those <span
|
||
class="math inline">\(k\)</span> steps generated before convergence
|
||
multiple times but it is a conceptually simple workaround.</p>
|
||
<p>In summary, to do efficient simulations we want to reduce both the
|
||
convergence time and the auto-correlation time as much as possible. In
|
||
order to explain how, we need to introduce the Metropolis-Hasting (MH)
|
||
algorithm and how it gives an explicit form for the transition
|
||
function.</p>
|
||
<h3 id="the-metropolis-hastings-algorithm">The Metropolis-Hastings
|
||
Algorithm}</h3>
|
||
<p>MH breaks up the transition function into a proposal distribution
|
||
<span class="math inline">\(q(\s \to \s')\)</span> and an acceptance
|
||
function <span class="math inline">\(\A(\s \to \s')\)</span>. <span
|
||
class="math inline">\(q\)</span> needs to be something that we can
|
||
directly sample from, and in our case generally takes the form of
|
||
flipping some number of spins in <span
|
||
class="math inline">\(\s\)</span>, i.e if we’re flipping a single random
|
||
spin in the spin chain, <span class="math inline">\(q(\s \to
|
||
\s')\)</span> is the uniform distribution on states reachable by one
|
||
spin flip from <span class="math inline">\(\s\)</span>. This also gives
|
||
the nice symmetry property that <span class="math inline">\(q(\s \to
|
||
\s') = q(\s' \to \s)\)</span>.</p>
|
||
<p>The proposal <span class="math inline">\(\s'\)</span> is then
|
||
accepted or rejected with an acceptance probability <span
|
||
class="math inline">\(\A(\s \to \s')\)</span>, if the proposal is
|
||
rejected then <span class="math inline">\(\s_{i+1} = \s_{i}\)</span>.
|
||
Hence:</p>
|
||
<p><span class="math display">\[\T(x\to x') = q(x\to x')\A(x \to
|
||
x')\]</span></p>
|
||
<p>When the proposal distribution is symmetric as ours is, it cancels
|
||
out in the expression for the acceptance function and the
|
||
Metropolis-Hastings algorithm is simply the choice: <span
|
||
class="math display">\[ \A(x \to x') = \min\left(1,
|
||
e^{-\beta\;\Delta F}\right)\]</span> Where <span
|
||
class="math inline">\(F\)</span> is the overall free energy of the
|
||
system, including both the quantum and classical sector.</p>
|
||
<p>To implement the acceptance function in practice we pick a random
|
||
number in the unit interval and accept if it is less than <span
|
||
class="math inline">\(e^{-\beta\;\Delta F}\)</span>:</p>
|
||
<p>This has the effect of always accepting proposed states that are
|
||
lower in energy and sometimes accepting those that are higher in energy
|
||
than the current state.</p>
|
||
<h3 id="choosing-the-proposal-distribution">Choosing the proposal
|
||
distribution}</h3>
|
||
<p>Now we can discuss how to minimise the auto-correlations. The general
|
||
principle is that one must balance the proposal distribution between two
|
||
extremes. Choose overlay small steps, like flipping only a single spin
|
||
and the acceptance rate will be high because <span
|
||
class="math inline">\(\Delta F\)</span> will usually be small, but each
|
||
state will be very similar to the previous and the auto-correlations
|
||
will be high too, making sampling inefficient. On the other hand,
|
||
overlay large steps, like randomising a large portion of the spins each
|
||
step, will result in very frequent rejections, especially at low
|
||
temperatures.</p>
|
||
<p>I evaluated a few different proposal distributions for use with the
|
||
FK model.</p>
|
||
<p>Fro Figure~<span class="math inline">\(\ref{fig:comparison}\)</span>
|
||
we see that even at moderately high temperatures <span
|
||
class="math inline">\(T > T_c\)</span> flipping one or two sites is
|
||
the best choice. However for some simulations at very high temperature
|
||
flipping more spins is warranted. Tuning the proposal distribution
|
||
automatically seems like something that would not yield enough benefit
|
||
for the additional complexity it would require.</p>
|
||
<h3 id="two-step-trick">Two Step Trick</h3>
|
||
<p>Our method already relies heavily on the split between the classical
|
||
and quantum sector to derive a sign problem free MCMC algorithm but it
|
||
turns out that there is a further trick we can play with it. The free
|
||
energy term is the sum of an easy to compute classical energy and a more
|
||
expensive quantum free energy, we can split the acceptance function into
|
||
two in such as way as to avoid having to compute the full exact
|
||
diagonalisation some of the time:</p>
|
||
<div class="sourceCode" id="cb2"><pre
|
||
class="sourceCode python"><code class="sourceCode python"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a></span>
|
||
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>current_state <span class="op">=</span> initial_state</span>
|
||
<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a></span>
|
||
<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span> i <span class="kw">in</span> <span class="bu">range</span>(N_steps):</span>
|
||
<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a> new_state <span class="op">=</span> proposal(current_state)</span>
|
||
<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a></span>
|
||
<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a> df_classical <span class="op">=</span> classical_free_energy_change(current_state, new_state, parameters)</span>
|
||
<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a> <span class="cf">if</span> exp(<span class="op">-</span>beta <span class="op">*</span> df_classical) <span class="op"><</span> uniform(<span class="dv">0</span>,<span class="dv">1</span>):</span>
|
||
<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a> f_quantum <span class="op">=</span> quantum_free_energy(current_state, new_state, parameters)</span>
|
||
<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a> </span>
|
||
<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a> <span class="cf">if</span> exp(<span class="op">-</span> beta <span class="op">*</span> df_quantum) <span class="op"><</span> uniform(<span class="dv">0</span>,<span class="dv">1</span>):</span>
|
||
<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a> current_state <span class="op">=</span> new_state</span>
|
||
<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a> </span>
|
||
<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a> states[i] <span class="op">=</span> current_state</span>
|
||
<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a> </span></code></pre></div>
|
||
<p>lets cite Figure<a href="#fig:binder">1</a></p>
|
||
<p>lets cite to person<span class="citation"
|
||
data-cites="trebstKitaevMaterials2022"><sup><a
|
||
href="#ref-trebstKitaevMaterials2022"
|
||
role="doc-biblioref">2</a></sup></span>. and then multple<span
|
||
class="citation"
|
||
data-cites="banerjeeProximateKitaevQuantum2016 trebstKitaevMaterials2022"><sup><a
|
||
href="#ref-trebstKitaevMaterials2022" role="doc-biblioref">2</a>,<a
|
||
href="#ref-banerjeeProximateKitaevQuantum2016"
|
||
role="doc-biblioref">3</a></sup></span>. what is we surround it by
|
||
spaces?<span class="citation"
|
||
data-cites="trebstKitaevMaterials2022"><sup><a
|
||
href="#ref-trebstKitaevMaterials2022"
|
||
role="doc-biblioref">2</a></sup></span></p>
|
||
<div class="sourceCode" id="cb3"><pre
|
||
class="sourceCode python"><code class="sourceCode python"></code></pre></div>
|
||
<div class="sourceCode" id="cb4"><pre
|
||
class="sourceCode python"><code class="sourceCode python"></code></pre></div>
|
||
<p></ij></ij></ij></ij></ij></ij></ij></p>
|
||
<div id="refs" class="references csl-bib-body" data-line-spacing="2"
|
||
role="doc-bibliography">
|
||
<div id="ref-kagan1984localization" class="csl-entry"
|
||
role="doc-biblioentry">
|
||
<div class="csl-left-margin">1. </div><div
|
||
class="csl-right-inline">Kagan, Y. & Maksimov, L. Localization in a
|
||
system of interacting particles diffusing in a regular crystal.
|
||
<em>Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki</em>
|
||
<strong>87</strong>, 348–365 (1984).</div>
|
||
</div>
|
||
<div id="ref-trebstKitaevMaterials2022" class="csl-entry"
|
||
role="doc-biblioentry">
|
||
<div class="csl-left-margin">2. </div><div
|
||
class="csl-right-inline">Trebst, S. & Hickey, C. <a
|
||
href="https://doi.org/10.1016/j.physrep.2021.11.003">Kitaev
|
||
materials</a>. <em>Physics Reports</em> <strong>950</strong>, 1–37
|
||
(2022).</div>
|
||
</div>
|
||
<div id="ref-banerjeeProximateKitaevQuantum2016" class="csl-entry"
|
||
role="doc-biblioentry">
|
||
<div class="csl-left-margin">3. </div><div
|
||
class="csl-right-inline">Banerjee, A. <em>et al.</em> <a
|
||
href="https://doi.org/10.1038/nmat4604">Proximate <span>Kitaev Quantum
|
||
Spin Liquid Behaviour</span> in {\alpha}-<span>RuCl</span>$_3$</a>.
|
||
<em>Nature Mater</em> <strong>15</strong>, 733–740 (2016).</div>
|
||
</div>
|
||
</div>
|
||
</main>
|
||
</body>
|
||
</html>
|