personal_site/_thesis/2.3_AMK_Results.html
2022-08-08 11:59:36 +01:00

1195 lines
60 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: The Amorphous Kitaev Model - Results
excerpt: The Amorphous Kitaev model is a chiral spin liquid!
layout: none
image:
---
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<meta name="description" content="The Amorphous Kitaev model is a chiral spin liquid!" />
<title>The Amorphous Kitaev Model - Results</title>
<!-- <style>
html {
line-height: 1.5;
font-family: Georgia, serif;
font-size: 20px;
color: #1a1a1a;
background-color: #fdfdfd;
}
body {
margin: 0 auto;
max-width: 36em;
padding-left: 50px;
padding-right: 50px;
padding-top: 50px;
padding-bottom: 50px;
hyphens: auto;
overflow-wrap: break-word;
text-rendering: optimizeLegibility;
font-kerning: normal;
}
@media (max-width: 600px) {
body {
font-size: 0.9em;
padding: 1em;
}
h1 {
font-size: 1.8em;
}
}
@media print {
body {
background-color: transparent;
color: black;
font-size: 12pt;
}
p, h2, h3 {
orphans: 3;
widows: 3;
}
h2, h3, h4 {
page-break-after: avoid;
}
}
p {
margin: 1em 0;
}
a {
color: #1a1a1a;
}
a:visited {
color: #1a1a1a;
}
img {
max-width: 100%;
}
h1, h2, h3, h4, h5, h6 {
margin-top: 1.4em;
}
h5, h6 {
font-size: 1em;
font-style: italic;
}
h6 {
font-weight: normal;
}
ol, ul {
padding-left: 1.7em;
margin-top: 1em;
}
li > ol, li > ul {
margin-top: 0;
}
blockquote {
margin: 1em 0 1em 1.7em;
padding-left: 1em;
border-left: 2px solid #e6e6e6;
color: #606060;
}
code {
font-family: Menlo, Monaco, 'Lucida Console', Consolas, monospace;
font-size: 85%;
margin: 0;
}
pre {
margin: 1em 0;
overflow: auto;
}
pre code {
padding: 0;
overflow: visible;
overflow-wrap: normal;
}
.sourceCode {
background-color: transparent;
overflow: visible;
}
hr {
background-color: #1a1a1a;
border: none;
height: 1px;
margin: 1em 0;
}
table {
margin: 1em 0;
border-collapse: collapse;
width: 100%;
overflow-x: auto;
display: block;
font-variant-numeric: lining-nums tabular-nums;
}
table caption {
margin-bottom: 0.75em;
}
tbody {
margin-top: 0.5em;
border-top: 1px solid #1a1a1a;
border-bottom: 1px solid #1a1a1a;
}
th {
border-top: 1px solid #1a1a1a;
padding: 0.25em 0.5em 0.25em 0.5em;
}
td {
padding: 0.125em 0.5em 0.25em 0.5em;
}
header {
margin-bottom: 4em;
text-align: center;
}
#TOC li {
list-style: none;
}
#TOC ul {
padding-left: 1.3em;
}
#TOC > ul {
padding-left: 0;
}
#TOC a:not(:hover) {
text-decoration: none;
}
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
div.csl-bib-body { }
div.csl-entry {
clear: both;
}
.hanging div.csl-entry {
margin-left:2em;
text-indent:-2em;
}
div.csl-left-margin {
min-width:2em;
float:left;
}
div.csl-right-inline {
margin-left:2em;
padding-left:1em;
}
div.csl-indent {
margin-left: 2em;
}
</style> -->
<!-- <script
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js"
type="text/javascript"></script>
-->
<!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3.0.1/es5/tex-mml-chtml.js"></script>
-->
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
<!--[if lt IE 9]>
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
<![endif]-->
<link rel="stylesheet" href="/assets/css/styles.css">
<script src="/assets/js/index.js"></script>
</head>
<body>
{% include header.html %}
<main>
<nav id="TOC" role="doc-toc">
<ul>
<li><a href="#results" id="toc-results">Results</a>
<ul>
<li><a href="#the-ground-state-flux-sector"
id="toc-the-ground-state-flux-sector">The Ground State Flux
Sector</a></li>
<li><a href="#spontaneous-chiral-symmetry-breaking"
id="toc-spontaneous-chiral-symmetry-breaking">Spontaneous Chiral
Symmetry Breaking</a></li>
<li><a href="#ground-state-phase-diagram"
id="toc-ground-state-phase-diagram">Ground State Phase Diagram</a>
<ul>
<li><a href="#is-it-abelian-or-non-abelian"
id="toc-is-it-abelian-or-non-abelian">Is it Abelian or
non-Abelian?</a></li>
<li><a href="#edge-modes" id="toc-edge-modes">Edge Modes</a></li>
</ul></li>
<li><a href="#anderson-transition-to-a-thermal-metal"
id="toc-anderson-transition-to-a-thermal-metal">Anderson Transition to a
Thermal Metal</a></li>
</ul></li>
<li><a href="#conclusion" id="toc-conclusion">Conclusion</a></li>
<li><a href="#discussion" id="toc-discussion">Discussion</a>
<ul>
<li><a href="#limits-of-the-ground-state-conjecture"
id="toc-limits-of-the-ground-state-conjecture">Limits of the ground
state conjecture</a></li>
</ul></li>
<li><a href="#outlook" id="toc-outlook">Outlook</a>
<ul>
<li><a href="#experimental-realisations-and-signatures"
id="toc-experimental-realisations-and-signatures">Experimental
Realisations and Signatures</a></li>
<li><a href="#generalisations"
id="toc-generalisations">Generalisations</a></li>
</ul></li>
</ul>
</nav>
<h1 id="results">Results</h1>
<h2 id="the-ground-state-flux-sector">The Ground State Flux Sector</h2>
<p>Here I will discuss the numerical evidence that our guess for the
ground state flux sector is correct. We will do this by enumerating all
the flux sectors of many separate system realisations. However there are
some issues we will need to address to make this argument work.</p>
<p>We have two seemingly irreconcilable problems. Finite size effects
have a large energetic contribution for small systems<span
class="citation" data-cites="kitaevAnyonsExactlySolved2006"><sup><a
href="#ref-kitaevAnyonsExactlySolved2006"
role="doc-biblioref">1</a></sup></span> so we would like to perform our
analysis for very large lattices. However for an amorphous system with
<span class="math inline">\(N\)</span> plaquettes, <span
class="math inline">\(2N\)</span> edges and <span
class="math inline">\(3N\)</span> vertices we have <span
class="math inline">\(2^{N-1}\)</span> flux sectors to check and
diagonalisation scales with <span
class="math inline">\(\mathcal{0}(N^3)\)</span>. That exponential
scaling makes it infeasible to work with lattices much larger than <span
class="math inline">\(16\)</span> plaquettes.</p>
<p>To get around this we instead look at periodic systems with amorphous
unit cells. For a similarly sized periodic system with <span
class="math inline">\(A\)</span> unit cells and <span
class="math inline">\(B\)</span> plaquettes in each unit cell where
<span class="math inline">\(N \sim AB\)</span> things get much better.
We can use Blochs theorem to diagonalise this system in about <span
class="math inline">\(\mathcal{0}(A B^3)\)</span> operations, and more
importantly there are only <span class="math inline">\(2^{B-1}\)</span>
flux sectors to check.</p>
<p>We fully enumerated the flux sectors of ~25,000 periodic systems with
disordered unit cells of up to <span class="math inline">\(B =
16\)</span> plaquettes and <span class="math inline">\(A = 100\)</span>
unit cells.</p>
<p>However, showing that our guess is correct for periodic systems with
disordered unit cells is not quite convincing on its own. We have
effectively removed longer-range disorder from our lattices.</p>
<p>The second part of the argument is to show that the energetic effect
of introducing periodicity scales away as we go to larger system sizes
and has already diminished to a small enough value at 16 plaquettes,
which is indeed what we find.</p>
<p>From this we argue that the results for small periodic systems
generalise to large amorphous systems. We perform this analysis for both
the isotropic point (<span class="math inline">\(J^\alpha = 1\)</span>),
as well as in the toric code phase (<span class="math inline">\(J^x =
J^y = 0.25, J^z = 1\)</span>).</p>
<p>In the isotropic case (<span class="math inline">\(J^\alpha =
1\)</span>), our conjecture correctly predicted the ground state flux
sector for all of the lattices we tested.</p>
<p>For the toric code phase (<span class="math inline">\(J^x, J^y =
0.25, J^z = 1\)</span>) all but around (<span class="math inline">\(\sim
0.5 \%\)</span>) lattices had ground states conforming to our
conjecture. In these cases, the energy difference between the true
ground state and our prediction was on the order of <span
class="math inline">\(10^{-6} J\)</span>. It is unclear whether this is
a finite size effect or something else.</p>
<h2 id="spontaneous-chiral-symmetry-breaking">Spontaneous Chiral
Symmetry Breaking</h2>
<p>The spin Kitaev Hamiltonian is real and therefore has time reversal
symmetry (TRS). However, the flux <span
class="math inline">\(\phi_p\)</span> through any plaquette with an odd
number of sides has imaginary eigenvalues <span
class="math inline">\(\pm i\)</span>. The ground state sector induces a
relatively regular pattern for the imaginary fluxes with only a global
two-fold chiral degeneracy.</p>
<p>Thus, states with a fixed flux sector spontaneously break time
reversal symmetry. This was first described by Yao and Kivelson for a
translation invariant Kitaev model with odd sided plaquettes<span
class="citation" data-cites="Yao2011"><sup><a href="#ref-Yao2011"
role="doc-biblioref">2</a></sup></span>.</p>
<p>So we have flux sectors that come in degenerate pairs, where time
reversal is equivalent to inverting the flux through every odd
plaquette, a general feature for lattices with odd plaquettes <span
class="citation" data-cites="yaoExactChiralSpin2007 Peri2020"><sup><a
href="#ref-yaoExactChiralSpin2007" role="doc-biblioref">3</a>,<a
href="#ref-Peri2020" role="doc-biblioref">4</a></sup></span>. This
spontaneously broken symmetry avoids the need to explicitly break TRS
with a magnetic field term as is done in the original honeycomb
model.</p>
<h2 id="ground-state-phase-diagram">Ground State Phase Diagram</h2>
<p>As previously discussed, the standard Honeycomb model has a Abelian,
gapped phase in the anisotropic region (the A phase) and is gapless in
the isotropic region. The introduction of a magnetic field breaks the
chiral symmetry, leading to the isotropic region becoming a gapped,
non-Abelian phase, the B phase.</p>
<p>We set the energy scale by requiring that <span
class="math inline">\(J_x + J_y + J_z = 1\)</span>, this restricts the
3D phase space down to an equilateral triangle that is convenient for
diagrams. Imagine the cube defined by <span
class="math inline">\(J_\alpha \in [0,1]\)</span> being cut by the plane
<span class="math inline">\(J_x + J_y + J_z = 1\)</span>, we plot the
projection of that plane in diagrams like fig. <a
href="#fig:phase_diagram">1</a>.</p>
<p>Similar to the Kitaev Honeycomb model with a magnetic field, we find
that the amorphous model is only gapless along critical lines, see
fig. <a href="#fig:phase_diagram">1</a> (Left).</p>
<p>Interestingly, the gap closing exists in only one of the four
topological sectors, though this is certainly a finite size effect as
the sectors must become degenerate in the thermodynamic limit.
Nevertheless this could be a useful way to define the (0, 0) topological
flux sector for the amorphous model.</p>
<p>In the honeycomb model, the phase boundaries are located on the
straight lines <span class="math inline">\(|J^x| = |J^y| +
|J^x|\)</span> and permutations of <span
class="math inline">\(x,y,z\)</span>, shown as dotted line on ~<a
href="#fig:phase_diagram">1</a> (Right). We find that on the amorphous
lattice these boundaries exhibit an inward curvature, similar to
honeycomb Kitaev models with flux<span class="citation"
data-cites="Nasu_Thermal_2015"><sup><a href="#ref-Nasu_Thermal_2015"
role="doc-biblioref">5</a></sup></span> or bond<span class="citation"
data-cites="knolle_dynamics_2016"><sup><a
href="#ref-knolle_dynamics_2016" role="doc-biblioref">6</a></sup></span>
disorder.</p>
<div id="fig:phase_diagram" class="fignos">
<figure>
<img
src="/assets/thesis/figure_code/amk_chapter/results/phase_diagram/phase_diagram.svg"
style="width:100.0%"
alt="Figure 1: (Center) We choose an energy scale for the Hamiltonian by setting J_x + J_y + J_z = 1. This intersects a plane with the unit cube spanned by J_\alpha \in [0,1], giving a triangle with corners (1,0,0), (0,1,0), (0,0,1). To compute critical lines efficiently in this space we evaluate the order parameter of interest along rays shooting from the corners. The ray highlighted in red defines the values of J used for the left figure. (Left) The fermion gap as a function of J for an amorphous system with 20 plaquettes, where the x axis is the position on the red line in the central figure from 0 to 1. For finite size systems the four topological sectors are not degenerate and only one of them has a true gap closing. (Right) The Abelian A_\alpha phases of the model and the non-Abelian B phase separated by critical lines where the fermion gap closes. Later we will show that the Chern number \nu changes from 0 to \pm 1 from the A phases to the B phase. Indeed the gap must close in order for the Chern number to change citation." />
<figcaption aria-hidden="true"><span>Figure 1:</span> (Center) We choose
an energy scale for the Hamiltonian by setting <span
class="math inline">\(J_x + J_y + J_z = 1\)</span>. This intersects a
plane with the unit cube spanned by <span class="math inline">\(J_\alpha
\in [0,1]\)</span>, giving a triangle with corners <span
class="math inline">\((1,0,0), (0,1,0), (0,0,1)\)</span>. To compute
critical lines efficiently in this space we evaluate the order parameter
of interest along rays shooting from the corners. The ray highlighted in
red defines the values of J used for the left figure. (Left) The fermion
gap as a function of J for an amorphous system with 20 plaquettes, where
the x axis is the position on the red line in the central figure from 0
to 1. For finite size systems the four topological sectors are not
degenerate and only one of them has a true gap closing. (Right) The
Abelian <span class="math inline">\(A_\alpha\)</span> phases of the
model and the non-Abelian B phase separated by critical lines where the
fermion gap closes. Later we will show that the Chern number <span
class="math inline">\(\nu\)</span> changes from <span
class="math inline">\(0\)</span> to <span class="math inline">\(\pm
1\)</span> from the A phases to the B phase. Indeed the gap
<em>must</em> close in order for the Chern number to change
<strong>citation</strong>.</figcaption>
</figure>
</div>
<h3 id="is-it-abelian-or-non-abelian">Is it Abelian or non-Abelian?</h3>
<p>The two phases of the amorphous model are clearly gapped, though
later Ill double check this with finite size scaling.</p>
<p>The next question is: do these phases support excitations with
Abelian or non-Abelian statistics? To answer that we turn to Chern
numbers<span class="citation"
data-cites="berryQuantalPhaseFactors1984 simonHolonomyQuantumAdiabatic1983 thoulessQuantizedHallConductance1982"><sup><a
href="#ref-berryQuantalPhaseFactors1984" role="doc-biblioref">7</a><a
href="#ref-thoulessQuantizedHallConductance1982"
role="doc-biblioref">9</a></sup></span>. As discussed earlier the Chern
number is a quantity intimately linked to both the topological
properties and the anyonic statistics of a model. Here we will make use
of the fact that the Abelian/non-Abelian character of a model is linked
to its Chern number <strong>[citation]</strong>. However the Chern
number is only defined for the translation invariant case because it
relies on integrals defined in k-space.</p>
<p>A family of real space generalisations of the Chern number that work
for amorphous systems exist called local topological markers<span
class="citation"
data-cites="bianco_mapping_2011 Hastings_Almost_2010 mitchellAmorphousTopologicalInsulators2018"><sup><a
href="#ref-bianco_mapping_2011" role="doc-biblioref">10</a><a
href="#ref-mitchellAmorphousTopologicalInsulators2018"
role="doc-biblioref">12</a></sup></span> and indeed Kitaev defines one
in his original paper on the model<span class="citation"
data-cites="kitaevAnyonsExactlySolved2006"><sup><a
href="#ref-kitaevAnyonsExactlySolved2006"
role="doc-biblioref">1</a></sup></span>.</p>
<p>Here we use the crosshair marker of<span class="citation"
data-cites="peru_preprint"><sup><a href="#ref-peru_preprint"
role="doc-biblioref">13</a></sup></span> because it works well on
smaller systems. We calculate the projector <span
class="math inline">\(P = \sum_i |\psi_i\rangle \langle \psi_i|\)</span>
onto the occupied fermion eigenstates of the system in open boundary
conditions. The projector encodes local information about the occupied
eigenstates of the system and is typically exponentially localised
<strong>[cite]</strong>. The name <em>crosshair</em> comes from the fact
that the marker is defined with respect to a particular point <span
class="math inline">\((x_0, y_0)\)</span> by step functions in x and
y</p>
<p><span class="math display">\[\begin{aligned}
\nu (x, y) = 4\pi \; \Im\; \mathrm{Tr}_{\mathrm{B}}
\left (
\hat{P}\;\hat{\theta}(x-x_0)\;\hat{P}\;\hat{\theta}(y-y_0)\; \hat{P}
\right ),
\end{aligned}\]</span></p>
<p>when the trace is taken over a region <span
class="math inline">\(B\)</span> around <span
class="math inline">\((x_0, y_0)\)</span> that is large enough to
include local information about the system but does not come too close
to the edges. If these conditions are met then then this quantity will
be very close to quantised to the Chern number, see fig. <a
href="#fig:phase_diagram_chern">2</a>.</p>
<p>Well use the crosshair marker to assess the Abelian/non-Abelian
character of the phases.</p>
<p>In the A phase of the amorphous model we find that <span
class="math inline">\(\nu=0\)</span> and hence the excitations have
Abelian character, similar to the honeycomb model. This phase is thus
the amorphous analogue of the Abelian toric-code quantum spin
liquid<span class="citation"
data-cites="kitaev_fault-tolerant_2003"><sup><a
href="#ref-kitaev_fault-tolerant_2003"
role="doc-biblioref">14</a></sup></span>.</p>
<p>The B phase has <span class="math inline">\(\nu=\pm1\)</span> so is a
non-Abelian <em>chiral spin liquid</em> (CSL) similar to that of the
Yao-Kivelson model<span class="citation"
data-cites="yaoExactChiralSpin2007"><sup><a
href="#ref-yaoExactChiralSpin2007"
role="doc-biblioref">3</a></sup></span>. The CSL state is the the
magnetic analogue of the fractional quantum Hall state
<strong>[cite]</strong>. Hereafter we focus our attention on this
phase.</p>
<div id="fig:phase_diagram_chern" class="fignos">
<figure>
<img
src="/assets/thesis/figure_code/amk_chapter/results/phase_diagram_chern/phase_diagram_chern.svg"
style="width:100.0%"
alt="Figure 2: (Center) The crosshair marker13, a local topological marker, evaluated on the Amorphous Kitaev Model. The marker is defined around a point, denoted by the dotted crosshair. Information about the local topological properties of the system are encoded within a region around that point. (Left) Summing these contributions up to some finite radius (dotted line here, dotted circle in the centre) gives a generalised version of the Chern number for the system which becomes quantised in the thermodynamic limit. The radius must be chosen large enough to capture information about the local properties of the lattice while not so large as to include contributions from the edge states. The isotropic regime J_\alpha = 1 in red has \nu = \pm 1 implying it supports excitations with non-Abelian statistics, while the anisotropic regime in orange has \nu = \pm 0 implying it has Abelian statistics. (Right) Extending this analysis to the whole J_\alpha phase diagram with fixed r = 0.3 nicely confirms that the isotropic phase is non-Abelian." />
<figcaption aria-hidden="true"><span>Figure 2:</span> (Center) The
crosshair marker<span class="citation"
data-cites="peru_preprint"><sup><a href="#ref-peru_preprint"
role="doc-biblioref">13</a></sup></span>, a local topological marker,
evaluated on the Amorphous Kitaev Model. The marker is defined around a
point, denoted by the dotted crosshair. Information about the local
topological properties of the system are encoded within a region around
that point. (Left) Summing these contributions up to some finite radius
(dotted line here, dotted circle in the centre) gives a generalised
version of the Chern number for the system which becomes quantised in
the thermodynamic limit. The radius must be chosen large enough to
capture information about the local properties of the lattice while not
so large as to include contributions from the edge states. The isotropic
regime <span class="math inline">\(J_\alpha = 1\)</span> in red has
<span class="math inline">\(\nu = \pm 1\)</span> implying it supports
excitations with non-Abelian statistics, while the anisotropic regime in
orange has <span class="math inline">\(\nu = \pm 0\)</span> implying it
has Abelian statistics. (Right) Extending this analysis to the whole
<span class="math inline">\(J_\alpha\)</span> phase diagram with fixed
<span class="math inline">\(r = 0.3\)</span> nicely confirms that the
isotropic phase is non-Abelian.</figcaption>
</figure>
</div>
<h3 id="edge-modes">Edge Modes</h3>
<p>Chiral Spin Liquids support topological protected edge modes on open
boundary conditions<span class="citation"
data-cites="qi_general_2006"><sup><a href="#ref-qi_general_2006"
role="doc-biblioref">15</a></sup></span>. fig. <a
href="#fig:edge_modes">3</a> shows the probability density of one such
edge mode. It is near zero energy and exponentially localised to the
boundary of the system. While the model is gapped in periodic boundary
conditions (i.e on the torus) these edge modes appear in the gap when
the boundary is cut.</p>
<p>The localization of the edge modes can be quantified by their inverse
participation ratio (IPR), <span class="math display">\[\mathrm{IPR} =
\int d^2r|\psi(\mathbf{r})|^4 \propto L^{-\tau},\]</span> where <span
class="math inline">\(L\sim\sqrt{N}\)</span> is the linear dimension of
the amorphous lattices and <span class="math inline">\(\tau\)</span> the
dimensional scaling exponent of IPR. This is relevant because localised
in-gap states do not participate in transport and hence do not turn band
insulators into metals. It is only when the gap fills with extended
states that we get a metallic state.</p>
<div id="fig:edge_modes" class="fignos">
<figure>
<img
src="/assets/thesis/figure_code/amk_chapter/results/edge_modes/edge_modes.svg"
style="width:100.0%"
alt="Figure 3: (a) The density of one of the topologically protected edge states in the B phase. (Below) the log density plotted along the black path showing that the state is exponentially localised. (a)/(b) The density of states of the corresponding lattice in (a) periodic boundary conditions, (b) open boundary conditions. The colour of the bars shows the mean log IPR for each energy window. Cutting the boundary fills the gap with localised states." />
<figcaption aria-hidden="true"><span>Figure 3:</span> (a) The density of
one of the topologically protected edge states in the B phase. (Below)
the log density plotted along the black path showing that the state is
exponentially localised. (a)/(b) The density of states of the
corresponding lattice in (a) periodic boundary conditions, (b) open
boundary conditions. The colour of the bars shows the mean log IPR for
each energy window. Cutting the boundary fills the gap with localised
states.</figcaption>
</figure>
</div>
<h2 id="anderson-transition-to-a-thermal-metal">Anderson Transition to a
Thermal Metal</h2>
<p>Previous work on the honeycomb model at finite temperature has shown
that the B phase undergoes a thermal transition from a quantum spin
liquid phase a to a <strong>thermal metal</strong> phase<span
class="citation" data-cites="selfThermallyInducedMetallic2019"><sup><a
href="#ref-selfThermallyInducedMetallic2019"
role="doc-biblioref">16</a></sup></span>.</p>
<p>This happens because at finite temperature, thermal fluctuations lead
to spontaneous vortex-pair formation. As discussed previously these
fluxes are dressed by Majorana bounds states and the composite object is
an Ising-type non-Abelian anyon<span class="citation"
data-cites="Beenakker2013"><sup><a href="#ref-Beenakker2013"
role="doc-biblioref">17</a></sup></span>. The interactions between these
anyons are oscillatory similar to the RKKY exchange and decay
exponentially with separation<span class="citation"
data-cites="Laumann2012 Lahtinen_2011 lahtinenTopologicalLiquidNucleation2012"><sup><a
href="#ref-Laumann2012" role="doc-biblioref">18</a><a
href="#ref-lahtinenTopologicalLiquidNucleation2012"
role="doc-biblioref">20</a></sup></span>. At sufficient density, the
anyons hybridise to a macroscopically degenerate state known as
<em>thermal metal</em><span class="citation"
data-cites="Laumann2012"><sup><a href="#ref-Laumann2012"
role="doc-biblioref">18</a></sup></span>. At close range the oscillatory
behaviour of the interactions can be modelled by a random sign which
forms the basis for a random matrix theory description of the thermal
metal state.</p>
<p>The amorphous chiral spin liquid undergoes the same form of Anderson
transition to a thermal metal state. Markov Chain Monte Carlo would be
necessary to simulate this in full detail<span class="citation"
data-cites="selfThermallyInducedMetallic2019"><sup><a
href="#ref-selfThermallyInducedMetallic2019"
role="doc-biblioref">16</a></sup></span> but in order to avoid that
complexity in the current work we instead opted to use vortex density
<span class="math inline">\(\rho\)</span> as a proxy for
temperature.</p>
<p>We simply give each plaquette probability <span
class="math inline">\(\rho\)</span> of being a vortex, possibly with one
additional adjustment to preserve overall vortex parity. This
approximation is exact in the limits <span class="math inline">\(T =
0\)</span> (corresponding to <span class="math inline">\(\rho =
0\)</span>) and <span class="math inline">\(T \to \infty\)</span>
(corresponding to <span class="math inline">\(\rho = 0.5\)</span>) while
at intermediate temperatures there may be vortex-vortex correlations
that are not captured by positioning vortices using uncorrelated random
variables.</p>
<p>First we performed a finite size scaling to that the presence of a
gap in the CSL ground state and absence of a gap in the thermal phase
are both robust as we go to larger systems, see fig. <a
href="#fig:fermion_gap_vs_L">4</a>.</p>
<div id="fig:fermion_gap_vs_L" class="fignos">
<figure>
<img
src="/assets/thesis/figure_code/amk_chapter/results/fermion_gap_vs_L/fermion_gap_vs_L.svg"
style="width:114.0%"
alt="Figure 4: Within a flux sector, the fermion gap \Delta_f measures the energy between the fermionic ground state and the first excited state. This graph shows the fermion gap as a function of system size for the ground state flux sector and for a configuration of random fluxes. We see that the disorder induced by an putting the Kitaev model on an amorphous lattice does not close the gap in the ground state. The gap closes in the flux disordered limit is good evidence that the system transitions to a gapless thermal metal state at high temperature. Each point shows an average over 100 lattice realisations. System size L is defined \sqrt{N} where N is the number of plaquettes in the system. Error bars shown are 3 times the standard error of the mean. The lines shown are fits of \tfrac{\Delta_f}{J} = aL ^ b with fit parameters: Ground State: a = 0.138 \pm 0.002, b = -0.0972 \pm 0.004 Random Flux Sector: a = 1.8 \pm 0.2, b = -2.21 \pm 0.03" />
<figcaption aria-hidden="true"><span>Figure 4:</span> Within a flux
sector, the fermion gap <span class="math inline">\(\Delta_f\)</span>
measures the energy between the fermionic ground state and the first
excited state. This graph shows the fermion gap as a function of system
size for the ground state flux sector and for a configuration of random
fluxes. We see that the disorder induced by an putting the Kitaev model
on an amorphous lattice does not close the gap in the ground state. The
gap closes in the flux disordered limit is good evidence that the system
transitions to a gapless thermal metal state at high temperature. Each
point shows an average over 100 lattice realisations. System size <span
class="math inline">\(L\)</span> is defined <span
class="math inline">\(\sqrt{N}\)</span> where N is the number of
plaquettes in the system. Error bars shown are <span
class="math inline">\(3\)</span> times the standard error of the mean.
The lines shown are fits of <span
class="math inline">\(\tfrac{\Delta_f}{J} = aL ^ b\)</span> with fit
parameters: Ground State: <span class="math inline">\(a = 0.138 \pm
0.002, b = -0.0972 \pm 0.004\)</span> Random Flux Sector: <span
class="math inline">\(a = 1.8 \pm 0.2, b = -2.21 \pm
0.03\)</span></figcaption>
</figure>
</div>
<p>Next we evaluated the fermionic density of states (DOS), Inverse
Participation Ratio (IPR) and IPR scaling exponent <span
class="math inline">\(\tau\)</span> as functions of the vortex density
<span class="math inline">\(\rho\)</span>, see fig. <a
href="#fig:DOS_vs_rho">5</a>. This leads to a nice picture of what
happens as we raise the temperature of the system away from the gapped,
insulating CSL phase. At small <span
class="math inline">\(\rho\)</span>, states begin to populate the gap
but they have <span class="math inline">\(\tau\approx0\)</span>,
indicating that they are localised states pinned to the vortices, and
the system remains insulating. At large <span
class="math inline">\(\rho\)</span>, the in-gap states merge with the
bulk band and become extensive, closing the gap, and the system
transitions to the thermal metal phase.</p>
<div id="fig:DOS_vs_rho" class="fignos">
<figure>
<img
src="/assets/thesis/figure_code/amk_chapter/results/DOS_vs_rho/DOS_vs_rho.svg"
style="width:100.0%"
alt="Figure 5: (Top) Density of states and (Bottom) scaling exponent \tau of the amorphous Kitaev model as a vortex density \rho is increased. The scaling exponent \tau is the exponent with which the inverse participation ratio scales with system size. It gives a measure of the degree of localisation of the states in each (E/J, \rho) bin. At zero \rho we have the gapped ground state. At small \rho, states begin to populate the gap. These states have \tau\approx0, indicating that they are localised states pinned to fluxes, and the system remains insulating. As \rho increases further, the in-gap states merge with the bulk band and become extensive, fully closing the gap, and the system transitions to a thermal metal phase." />
<figcaption aria-hidden="true"><span>Figure 5:</span> (Top) Density of
states and (Bottom) scaling exponent <span
class="math inline">\(\tau\)</span> of the amorphous Kitaev model as a
vortex density <span class="math inline">\(\rho\)</span> is increased.
The scaling exponent <span class="math inline">\(\tau\)</span> is the
exponent with which the inverse participation ratio scales with system
size. It gives a measure of the degree of localisation of the states in
each <span class="math inline">\((E/J, \rho)\)</span> bin. At zero <span
class="math inline">\(\rho\)</span> we have the gapped ground state. At
small <span class="math inline">\(\rho\)</span>, states begin to
populate the gap. These states have <span
class="math inline">\(\tau\approx0\)</span>, indicating that they are
localised states pinned to fluxes, and the system remains insulating. As
<span class="math inline">\(\rho\)</span> increases further, the in-gap
states merge with the bulk band and become extensive, fully closing the
gap, and the system transitions to a thermal metal phase.</figcaption>
</figure>
</div>
<p>The thermal metal phase has a signature logarithmic divergence at
zero energy and oscillations in the DOS. These signatures can be shown
to occur by a recursive argument that involves mapping the original
model onto a Majorana model with interactions that take random signs
which can itself be mapped onto a coarser lattice with lower energy
excitations and so on. This can be repeating indefinitely, showing the
model must have excitations at arbitrarily low energies in the
thermodynamic limit<span class="citation"
data-cites="bocquet_disordered_2000 selfThermallyInducedMetallic2019"><sup><a
href="#ref-selfThermallyInducedMetallic2019"
role="doc-biblioref">16</a>,<a href="#ref-bocquet_disordered_2000"
role="doc-biblioref">21</a></sup></span>.</p>
<p>These signatures for our model and for the honeycomb model are shown
in fig. <a href="#fig:DOS_oscillations">6</a>. They do not occur in the
honeycomb model unless the chiral symmetry is broken by a magnetic
field.</p>
<div id="fig:DOS_oscillations" class="fignos">
<figure>
<img
src="/assets/thesis/figure_code/amk_chapter/results/DOS_oscillations/DOS_oscillations.svg"
style="width:100.0%"
alt="Figure 6: Density of states at high temperature showing the logarithmic divergence at zero energy and oscillations characteristic of the thermal metal state16,21. (a) shows the honeycomb lattice model in the B phase with magnetic field, while (b) shows that our model transitions to a thermal metal phase without an external magnetic field but rather due to the spontaneous chiral symmetry breaking. In both plots the density of vortices is \rho = 0.5 corresponding to the T = \infty limit." />
<figcaption aria-hidden="true"><span>Figure 6:</span> Density of states
at high temperature showing the logarithmic divergence at zero energy
and oscillations characteristic of the thermal metal state<span
class="citation"
data-cites="bocquet_disordered_2000 selfThermallyInducedMetallic2019"><sup><a
href="#ref-selfThermallyInducedMetallic2019"
role="doc-biblioref">16</a>,<a href="#ref-bocquet_disordered_2000"
role="doc-biblioref">21</a></sup></span>. (a) shows the honeycomb
lattice model in the B phase with magnetic field, while (b) shows that
our model transitions to a thermal metal phase without an external
magnetic field but rather due to the spontaneous chiral symmetry
breaking. In both plots the density of vortices is <span
class="math inline">\(\rho = 0.5\)</span> corresponding to the <span
class="math inline">\(T = \infty\)</span> limit.</figcaption>
</figure>
</div>
<h1 id="conclusion">Conclusion</h1>
<p>In this chapter we have looked at an extension of the Kitaev
honeycomb model to amorphous lattices with coordination number three. We
discussed a method to construct arbitrary trivalent lattices using
Voronoi partitions, how to embed them onto the torus and how to
edge-colour them using a SAT solver.</p>
<p>We provided extensive numerical evidence that the ground state flux
sector of the model is given by a simply function of the number of sides
of each plaquette backed up by an analysis of the energetic finite size
effects.</p>
<p>We found two quantum spin liquid phases that can be distinguished
using a real-space generalisation of the Chern number. We showed that
via finite size scaling that these phases are robustly gapped. The
presence of odd-sided plaquettes on these lattices let to a spontaneous
breaking of time reversal symmetry, leading to the emergence of a chiral
spin liquid phase.</p>
<p>Finally we showed evidence that the amorphous system undergoes an
Anderson transition to a thermal metal phase, driven by the
proliferation of vortices with increasing temperature.</p>
<h1 id="discussion">Discussion</h1>
<h2 id="limits-of-the-ground-state-conjecture">Limits of the ground
state conjecture</h2>
<p>We found a small number of lattices for which the ground state
conjecture did not correctly predict the true ground state flux sector.
I see two possibilities for what could cause this.</p>
<p>Firstly it could be a a finite size effect that is amplified by
certain rare lattice configurations. It would be interesting to try to
elucidate what lattice features are present when the ground state
conjecture fails.</p>
<p>Alternatively, it might be telling that the ground state conjecture
failed in the toric code A phase where the couplings are anisotropic. We
showed that the colouring does not matter in the B phase. However an
avenue that I did not explore was whether the particular choice of
colouring for a lattice affects the physical properties in the toric
code A phase. It is possible that some property of the particular
colouring chosen is what leads to failure of the ground state conjecture
here.</p>
<h1 id="outlook">Outlook</h1>
<p>This exactly solvable chiral QSL provides a first example of a
topological quantum many-body phase in amorphous magnets, which raises a
number of questions for future research.</p>
<h2 id="experimental-realisations-and-signatures">Experimental
Realisations and Signatures</h2>
<p>The obvious question is whether amorphous Kitaev materials could be
physically realised.</p>
<p>Most crystals can as exists in a metastable amorphous state if they
are cooled rapidly, freezing them into a disordered configuration<span
class="citation"
data-cites="Weaire1976 Petrakovski1981 Kaneyoshi2018"><sup><a
href="#ref-Weaire1976" role="doc-biblioref">22</a><a
href="#ref-Kaneyoshi2018" role="doc-biblioref">24</a></sup></span>.
Indeed quenching has been used by humans to control the hardness of
steel or iron for thousands of years. It would therefore be interesting
to study amorphous version of candidate Kitaev materials<span
class="citation" data-cites="trebstKitaevMaterials2022"><sup><a
href="#ref-trebstKitaevMaterials2022"
role="doc-biblioref">25</a></sup></span> such as <span
class="math inline">\(\alpha-\textrm{RuCl}_3\)</span> to see whether
they maintain even approximate fixed coordination number locally as is
the case with amorphous Silicon and Germanium<span class="citation"
data-cites="Weaire1971 betteridge1973possible"><sup><a
href="#ref-Weaire1971" role="doc-biblioref">26</a>,<a
href="#ref-betteridge1973possible"
role="doc-biblioref">27</a></sup></span>.</p>
<p>Looking instead at more engineered realisation, metal organic
frameworks have been shown to be capable of forming amorphous
lattices <span class="citation"
data-cites="bennett2014amorphous"><sup><a
href="#ref-bennett2014amorphous"
role="doc-biblioref">28</a></sup></span> and there are recent proposals
for realizing strong Kitaev interactions <span class="citation"
data-cites="yamadaDesigningKitaevSpin2017"><sup><a
href="#ref-yamadaDesigningKitaevSpin2017"
role="doc-biblioref">29</a></sup></span> as well as reports of QSL
behavior <span class="citation"
data-cites="misumiQuantumSpinLiquid2020"><sup><a
href="#ref-misumiQuantumSpinLiquid2020"
role="doc-biblioref">30</a></sup></span>.</p>
<h2 id="generalisations">Generalisations</h2>
<p>The model presented here could be generalized in several ways.</p>
<p>First, it would be interesting to study the stability of the chiral
amorphous Kitaev QSL with respect to perturbations <span
class="citation"
data-cites="Rau2014 Chaloupka2010 Chaloupka2013 Chaloupka2015 Winter2016"><sup><a
href="#ref-Rau2014" role="doc-biblioref">31</a><a
href="#ref-Winter2016" role="doc-biblioref">35</a></sup></span>.</p>
<p>Second, one could investigate whether a QSL phase may exist for for
other models defined on amorphous lattices. For example, in real
materials, there will generally be an additional small Heisenberg term
<span class="math display">\[H_{KH} = - \sum_{\langle
j,k\rangle_\alpha} J^{\alpha}\sigma_j^{\alpha}\sigma_k^{\alpha} +
\sigma_j\sigma_k\]</span> With a view to more realistic prospects of
observation, it would be interesting to see if the properties of the
Kitaev-Heisenberg model generalise from the honeycomb to the amorphous
case[<span class="citation" data-cites="Chaloupka2010"><sup><a
href="#ref-Chaloupka2010" role="doc-biblioref">32</a></sup></span>;<span
class="citation" data-cites="Chaloupka2015"><sup><a
href="#ref-Chaloupka2015" role="doc-biblioref">34</a></sup></span>;<span
class="citation" data-cites="Jackeli2009"><sup><a
href="#ref-Jackeli2009" role="doc-biblioref">36</a></sup></span>;<span
class="citation" data-cites="Kalmeyer1989"><sup><a
href="#ref-Kalmeyer1989" role="doc-biblioref">37</a></sup></span>;<span
class="citation"
data-cites="manousakisSpinTextonehalfHeisenberg1991"><sup><a
href="#ref-manousakisSpinTextonehalfHeisenberg1991"
role="doc-biblioref">38</a></sup></span>;].</p>
<p>Finally it might be possible to look at generalizations to
higher-spin models or those on random networks with different
coordination numbers<span class="citation"
data-cites="Baskaran2008 Yao2009 Nussinov2009 Yao2011 Chua2011 Natori2020 Chulliparambil2020 Chulliparambil2021 Seifert2020 WangHaoranPRB2021 Wu2009"><sup><a
href="#ref-Yao2011" role="doc-biblioref">2</a>,<a
href="#ref-Baskaran2008" role="doc-biblioref">39</a><a
href="#ref-Wu2009" role="doc-biblioref">48</a></sup></span></p>
<p>Overall, there has been surprisingly little research on amorphous
quantum many body phases albeit material candidates aplenty. We expect
our exact chiral amorphous spin liquid to find many generalisation to
realistic amorphous quantum magnets and beyond.</p>
<div id="refs" class="references csl-bib-body" data-line-spacing="2"
role="doc-bibliography">
<div id="ref-kitaevAnyonsExactlySolved2006" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">1. </div><div
class="csl-right-inline">Kitaev, A. <a
href="https://doi.org/10.1016/j.aop.2005.10.005">Anyons in an exactly
solved model and beyond</a>. <em>Annals of Physics</em>
<strong>321</strong>, 2111 (2006).</div>
</div>
<div id="ref-Yao2011" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">2. </div><div class="csl-right-inline">Yao,
H. &amp; Lee, D.-H. <a
href="https://doi.org/10.1103/PhysRevLett.107.087205">Fermionic magnons,
non-abelian spinons, and the spin quantum hall effect from an exactly
solvable spin-1/2 kitaev model with <span>SU</span>(2) symmetry</a>.
<em>Phys. Rev. Lett.</em> <strong>107</strong>, 087205 (2011).</div>
</div>
<div id="ref-yaoExactChiralSpin2007" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">3. </div><div class="csl-right-inline">Yao,
H. &amp; Kivelson, S. A. <a
href="https://doi.org/10.1103/PhysRevLett.99.247203">An exact chiral
spin liquid with non-<span>Abelian</span> anyons</a>. <em>Phys. Rev.
Lett.</em> <strong>99</strong>, 247203 (2007).</div>
</div>
<div id="ref-Peri2020" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">4. </div><div
class="csl-right-inline">Peri, V. <em>et al.</em> <a
href="https://doi.org/10.1103/PhysRevB.101.041114">Non-<span>Abelian</span>
chiral spin liquid on a simple non-<span>Archimedean</span> lattice</a>.
<em>Phys. Rev. B</em> <strong>101</strong>, 041114 (2020).</div>
</div>
<div id="ref-Nasu_Thermal_2015" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">5. </div><div
class="csl-right-inline">Nasu, J., Udagawa, M. &amp; Motome, Y. <a
href="https://doi.org/10.1103/PhysRevB.92.115122">Thermal
fractionalization of quantum spins in a <span>Kitaev</span> model: <span
class="nocase">Temperature-linear</span> specific heat and coherent
transport of <span>Majorana</span> fermions</a>. <em>Phys. Rev. B</em>
<strong>92</strong>, 115122 (2015).</div>
</div>
<div id="ref-knolle_dynamics_2016" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">6. </div><div
class="csl-right-inline">Knolle, J. Dynamics of a quantum spin liquid.
(Max Planck Institute for the Physics of Complex Systems, Dresden,
2016).</div>
</div>
<div id="ref-berryQuantalPhaseFactors1984" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">7. </div><div
class="csl-right-inline">Berry, M. V. <a
href="https://doi.org/10.1098/rspa.1984.0023">Quantal phase factors
accompanying adiabatic changes</a>. <em>Proceedings of the Royal Society
of London. A. Mathematical and Physical Sciences</em>
<strong>392</strong>, 4557 (1984).</div>
</div>
<div id="ref-simonHolonomyQuantumAdiabatic1983" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">8. </div><div
class="csl-right-inline">Simon, B. <a
href="https://doi.org/10.1103/PhysRevLett.51.2167">Holonomy, the
<span>Quantum Adiabatic Theorem</span>, and <span>Berry</span>s
<span>Phase</span></a>. <em>Phys. Rev. Lett.</em> <strong>51</strong>,
21672170 (1983).</div>
</div>
<div id="ref-thoulessQuantizedHallConductance1982" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">9. </div><div
class="csl-right-inline">Thouless, D. J., Kohmoto, M., Nightingale, M.
P. &amp; den Nijs, M. <a
href="https://doi.org/10.1103/PhysRevLett.49.405">Quantized <span>Hall
Conductance</span> in a <span>Two-Dimensional Periodic
Potential</span></a>. <em>Phys. Rev. Lett.</em> <strong>49</strong>,
405408 (1982).</div>
</div>
<div id="ref-bianco_mapping_2011" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">10. </div><div
class="csl-right-inline">Bianco, R. &amp; Resta, R. <a
href="https://doi.org/10.1103/PhysRevB.84.241106">Mapping topological
order in coordinate space</a>. <em>Physical Review B</em>
<strong>84</strong>, 241106 (2011).</div>
</div>
<div id="ref-Hastings_Almost_2010" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">11. </div><div
class="csl-right-inline">Hastings, M. B. &amp; Loring, T. A. <a
href="https://doi.org/10.1063/1.3274817">Almost commuting matrices,
localized <span>Wannier</span> functions, and the quantum
<span>Hall</span> effect</a>. <em>Journal of Mathematical Physics</em>
<strong>51</strong>, 015214 (2010).</div>
</div>
<div id="ref-mitchellAmorphousTopologicalInsulators2018"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">12. </div><div
class="csl-right-inline">Mitchell, N. P., Nash, L. M., Hexner, D.,
Turner, A. M. &amp; Irvine, W. T. M. <a
href="https://doi.org/10.1038/s41567-017-0024-5">Amorphous topological
insulators constructed from random point sets</a>. <em>Nature Phys</em>
<strong>14</strong>, 380385 (2018).</div>
</div>
<div id="ref-peru_preprint" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">13. </div><div
class="csl-right-inline">dOrnellas, P., Barnett, R. &amp; Lee, D. K. K.
Quantised bulk conductivity as a local chern marker. <em>arXiv
preprint</em> (2022) doi:<a
href="https://doi.org/10.48550/ARXIV.2207.01389">10.48550/ARXIV.2207.01389</a>.</div>
</div>
<div id="ref-kitaev_fault-tolerant_2003" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">14. </div><div
class="csl-right-inline">Kitaev, A. Y. <a
href="https://doi.org/10.1016/S0003-4916(02)00018-0">Fault-tolerant
quantum computation by anyons</a>. <em>Annals of Physics</em>
<strong>303</strong>, 230 (2003).</div>
</div>
<div id="ref-qi_general_2006" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">15. </div><div class="csl-right-inline">Qi,
X.-L., Wu, Y.-S. &amp; Zhang, S.-C. <a
href="https://doi.org/10.1103/PhysRevB.74.045125">General theorem
relating the bulk topological number to edge states in two-dimensional
insulators</a>. <em>Physical Review B</em> <strong>74</strong>, 045125
(2006).</div>
</div>
<div id="ref-selfThermallyInducedMetallic2019" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">16. </div><div
class="csl-right-inline">Self, C. N., Knolle, J., Iblisdir, S. &amp;
Pachos, J. K. <a
href="https://doi.org/10.1103/PhysRevB.99.045142">Thermally induced
metallic phase in a gapped quantum spin liquid - a <span>Monte
Carlo</span> study of the <span>Kitaev</span> model with parity
projection</a>. <em>Phys. Rev. B</em> <strong>99</strong>, 045142
(2019).</div>
</div>
<div id="ref-Beenakker2013" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">17. </div><div
class="csl-right-inline">Beenakker, C. W. J. <a
href="https://doi.org/10.1146/annurev-conmatphys-030212-184337">Search
for majorana fermions in superconductors</a>. <em>Annual Review of
Condensed Matter Physics</em> <strong>4</strong>, 113136 (2013).</div>
</div>
<div id="ref-Laumann2012" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">18. </div><div
class="csl-right-inline">Laumann, C. R., Ludwig, A. W. W., Huse, D. A.
&amp; Trebst, S. <a
href="https://doi.org/10.1103/PhysRevB.85.161301">Disorder-induced
<span>Majorana</span> metal in interacting non-<span>Abelian</span>
anyon systems</a>. <em>Phys. Rev. B</em> <strong>85</strong>, 161301
(2012).</div>
</div>
<div id="ref-Lahtinen_2011" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">19. </div><div
class="csl-right-inline">Lahtinen, V. <a
href="https://doi.org/10.1088/1367-2630/13/7/075009">Interacting
non-<span>Abelian</span> anyons as <span>Majorana</span> fermions in the
honeycomb lattice model</a>. <em>New Journal of Physics</em>
<strong>13</strong>, 075009 (2011).</div>
</div>
<div id="ref-lahtinenTopologicalLiquidNucleation2012" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">20. </div><div
class="csl-right-inline">Lahtinen, V., Ludwig, A. W. W., Pachos, J. K.
&amp; Trebst, S. <a
href="https://doi.org/10.1103/PhysRevB.86.075115">Topological liquid
nucleation induced by vortex-vortex interactions in
<span>Kitaev</span>s honeycomb model</a>. <em>Phys. Rev. B</em>
<strong>86</strong>, 075115 (2012).</div>
</div>
<div id="ref-bocquet_disordered_2000" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">21. </div><div
class="csl-right-inline">Bocquet, M., Serban, D. &amp; Zirnbauer, M. R.
<a href="https://doi.org/10.1016/S0550-3213(00)00208-X">Disordered 2d
quasiparticles in class <span>D</span>: <span>Dirac</span> fermions with
random mass, and dirty superconductors</a>. <em>Nuclear Physics B</em>
<strong>578</strong>, 628680 (2000).</div>
</div>
<div id="ref-Weaire1976" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">22. </div><div
class="csl-right-inline">Weaire, D. &amp; Thorpe, M. F. <a
href="https://doi.org/10.1080/00107517608210851">The structure of
amorphous solids</a>. <em>Contemporary Physics</em> <strong>17</strong>,
173191 (1976).</div>
</div>
<div id="ref-Petrakovski1981" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">23. </div><div
class="csl-right-inline">Petrakovskiı̆, G. A. <a
href="https://doi.org/10.1070/pu1981v024n06abeh004850">Amorphous
magnetic materials</a>. <em>Soviet Physics Uspekhi</em>
<strong>24</strong>, 511525 (1981).</div>
</div>
<div id="ref-Kaneyoshi2018" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">24. </div><div
class="csl-right-inline"><em>Amorphous magnetism</em>. (<span>CRC
Press</span>, 2018).</div>
</div>
<div id="ref-trebstKitaevMaterials2022" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">25. </div><div
class="csl-right-inline">Trebst, S. &amp; Hickey, C. <a
href="https://doi.org/10.1016/j.physrep.2021.11.003">Kitaev
materials</a>. <em>Physics Reports</em> <strong>950</strong>, 137
(2022).</div>
</div>
<div id="ref-Weaire1971" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">26. </div><div
class="csl-right-inline">Weaire, D. &amp; Thorpe, M. F. <a
href="https://doi.org/10.1103/PhysRevB.4.2508">Electronic properties of
an amorphous solid. <span>I</span>. <span>A</span> simple tight-binding
theory</a>. <em>Phys. Rev. B</em> <strong>4</strong>, 25082520
(1971).</div>
</div>
<div id="ref-betteridge1973possible" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">27. </div><div
class="csl-right-inline">Betteridge, G. A possible model of amorphous
silicon and germanium. <em>Journal of Physics C: Solid State
Physics</em> <strong>6</strong>, L427 (1973).</div>
</div>
<div id="ref-bennett2014amorphous" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">28. </div><div
class="csl-right-inline">Bennett, T. D. &amp; Cheetham, A. K. Amorphous
metalorganic frameworks. <em>Accounts of chemical research</em>
<strong>47</strong>, 15551562 (2014).</div>
</div>
<div id="ref-yamadaDesigningKitaevSpin2017" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">29. </div><div
class="csl-right-inline">Yamada, M. G., Fujita, H. &amp; Oshikawa, M. <a
href="https://doi.org/10.1103/PhysRevLett.119.057202">Designing
<span>Kitaev Spin Liquids</span> in <span>Metal-Organic
Frameworks</span></a>. <em>Phys. Rev. Lett.</em> <strong>119</strong>,
057202 (2017).</div>
</div>
<div id="ref-misumiQuantumSpinLiquid2020" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">30. </div><div
class="csl-right-inline">Misumi, Y. <em>et al.</em> <a
href="https://doi.org/10.1021/jacs.0c05472">Quantum <span>Spin Liquid
State</span> in a <span>Two-Dimensional Semiconductive Metal</span></a>.
<em>J. Am. Chem. Soc.</em> <strong>142</strong>, 1651316517
(2020).</div>
</div>
<div id="ref-Rau2014" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">31. </div><div
class="csl-right-inline">Rau, J. G., Lee, E. K.-H. &amp; Kee, H.-Y. <a
href="https://doi.org/10.1103/PhysRevLett.112.077204">Generic spin model
for the honeycomb iridates beyond the kitaev limit</a>. <em>Phys. Rev.
Lett.</em> <strong>112</strong>, 077204 (2014).</div>
</div>
<div id="ref-Chaloupka2010" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">32. </div><div
class="csl-right-inline">Chaloupka, J., Jackeli, G. &amp; Khaliullin, G.
Kitaev-<span>Heisenberg</span> model on a honeycomb lattice: Possible
exotic phases in iridium oxides <span>A</span><span><span
class="math inline">\(_{2}\)</span></span><span>IrO</span><span><span
class="math inline">\(_{3}\)</span></span>. <em>Phys. Rev. Lett.</em>
<strong>105</strong>, 027204 (2010).</div>
</div>
<div id="ref-Chaloupka2013" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">33. </div><div
class="csl-right-inline">Chaloupka, J., Jackeli, G. &amp; Khaliullin, G.
<a href="https://doi.org/10.1103/PhysRevLett.110.097204">Zigzag magnetic
order in the iridium oxide <span>Na</span><span><span
class="math inline">\(_{2}\)</span></span><span>IrO</span><span><span
class="math inline">\(_{3}\)</span></span></a>. <em>Phys. Rev.
Lett.</em> <strong>110</strong>, 097204 (2013).</div>
</div>
<div id="ref-Chaloupka2015" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">34. </div><div
class="csl-right-inline">Chaloupka, J. &amp; Khaliullin, G. Hidden
symmetries of the extended <span>Kitaev-Heisenberg</span> model:
<span>Implications</span> for honeycomb lattice iridates
<span>A</span><span><span
class="math inline">\(_{2}\)</span></span><span>IrO</span><span><span
class="math inline">\(_{3}\)</span></span>. <em>Phys. Rev. B</em>
<strong>92</strong>, 024413 (2015).</div>
</div>
<div id="ref-Winter2016" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">35. </div><div
class="csl-right-inline">Winter, S. M., Li, Y., Jeschke, H. O. &amp;
Valentí, R. <a
href="https://doi.org/10.1103/PhysRevB.93.214431">Challenges in design
of <span>Kitaev</span> materials: <span>Magnetic</span> interactions
from competing energy scales</a>. <em>Phys. Rev. B</em>
<strong>93</strong>, 214431 (2016).</div>
</div>
<div id="ref-Jackeli2009" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">36. </div><div
class="csl-right-inline">Jackeli, G. &amp; Khaliullin, G. <a
href="https://doi.org/10.1103/PhysRevLett.102.017205">Mott insulators in
the strong spin-orbit coupling limit: From <span>Heisenberg</span> to a
quantum compass and <span>Kitaev</span> models</a>. <em>Physical Review
Letters</em> <strong>102</strong>, 017205 (2009).</div>
</div>
<div id="ref-Kalmeyer1989" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">37. </div><div
class="csl-right-inline">Kalmeyer, V. &amp; Laughlin, R. B. <a
href="https://doi.org/10.1103/PhysRevB.39.11879">Theory of the spin
liquid state of the <span>Heisenberg</span> antiferromagnet</a>.
<em>Phys. Rev. B</em> <strong>39</strong>, 1187911899 (1989).</div>
</div>
<div id="ref-manousakisSpinTextonehalfHeisenberg1991" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">38. </div><div
class="csl-right-inline">Manousakis, E. <a
href="https://doi.org/10.1103/RevModPhys.63.1">The spin-\textonehalf{}
<span>Heisenberg</span> antiferromagnet on a square lattice and its
application to the cuprous oxides</a>. <em>Rev. Mod. Phys.</em>
<strong>63</strong>, 162 (1991).</div>
</div>
<div id="ref-Baskaran2008" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">39. </div><div
class="csl-right-inline">Baskaran, G., Sen, D. &amp; Shankar, R. <a
href="https://doi.org/10.1103/PhysRevB.78.115116">Spin-<span>S
Kitaev</span> model: <span>Classical</span> ground states, order from
disorder, and exact correlation functions</a>. <em>Phys. Rev. B</em>
<strong>78</strong>, 115116 (2008).</div>
</div>
<div id="ref-Yao2009" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">40. </div><div
class="csl-right-inline">Yao, H., Zhang, S.-C. &amp; Kivelson, S. A. <a
href="https://doi.org/10.1103/PhysRevLett.102.217202">Algebraic spin
liquid in an exactly solvable spin model</a>. <em>Phys. Rev. Lett.</em>
<strong>102</strong>, 217202 (2009).</div>
</div>
<div id="ref-Nussinov2009" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">41. </div><div
class="csl-right-inline">Nussinov, Z. &amp; Ortiz, G. <a
href="https://doi.org/10.1103/PhysRevB.79.214440">Bond algebras and
exact solvability of <span>Hamiltonians</span>: Spin
<span>S</span>=<span><span
class="math inline">\(\frac{1}{2}\)</span></span> multilayer
systems</a>. <em>Physical Review B</em> <strong>79</strong>, 214440
(2009).</div>
</div>
<div id="ref-Chua2011" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">42. </div><div
class="csl-right-inline">Chua, V., Yao, H. &amp; Fiete, G. A. <a
href="https://doi.org/10.1103/PhysRevB.83.180412">Exact chiral spin
liquid with stable spin <span>Fermi</span> surface on the kagome
lattice</a>. <em>Phys. Rev. B</em> <strong>83</strong>, 180412
(2011).</div>
</div>
<div id="ref-Natori2020" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">43. </div><div
class="csl-right-inline">Natori, W. M. H. &amp; Knolle, J. <a
href="https://doi.org/10.1103/PhysRevLett.125.067201">Dynamics of a
two-dimensional quantum spin-orbital liquid: <span>Spectroscopic</span>
signatures of fermionic magnons</a>. <em>Phys. Rev. Lett.</em>
<strong>125</strong>, 067201 (2020).</div>
</div>
<div id="ref-Chulliparambil2020" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">44. </div><div
class="csl-right-inline">Chulliparambil, S., Seifert, U. F. P., Vojta,
M., Janssen, L. &amp; Tu, H.-H. <a
href="https://doi.org/10.1103/PhysRevB.102.201111">Microscopic models
for <span>Kitaev</span>s sixteenfold way of anyon theories</a>.
<em>Phys. Rev. B</em> <strong>102</strong>, 201111 (2020).</div>
</div>
<div id="ref-Chulliparambil2021" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">45. </div><div
class="csl-right-inline">Chulliparambil, S., Janssen, L., Vojta, M., Tu,
H.-H. &amp; Seifert, U. F. P. <a
href="https://doi.org/10.1103/PhysRevB.103.075144">Flux crystals,
<span>Majorana</span> metals, and flat bands in exactly solvable
spin-orbital liquids</a>. <em>Phys. Rev. B</em> <strong>103</strong>,
075144 (2021).</div>
</div>
<div id="ref-Seifert2020" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">46. </div><div
class="csl-right-inline">Seifert, U. F. P. <em>et al.</em> <a
href="https://doi.org/10.1103/PhysRevLett.125.257202">Fractionalized
fermionic quantum criticality in spin-orbital mott insulators</a>.
<em>Phys. Rev. Lett.</em> <strong>125</strong>, 257202 (2020).</div>
</div>
<div id="ref-WangHaoranPRB2021" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">47. </div><div
class="csl-right-inline">Wang, H. &amp; Principi, A. <a
href="https://doi.org/10.1103/PhysRevB.104.214422">Majorana edge and
corner states in square and kagome quantum spin-<span><span
class="math inline">\(^{3}\fracslash_2\)</span></span> liquids</a>.
<em>Phys. Rev. B</em> <strong>104</strong>, 214422 (2021).</div>
</div>
<div id="ref-Wu2009" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">48. </div><div class="csl-right-inline">Wu,
C., Arovas, D. &amp; Hung, H.-H. <span><span
class="math inline">\(\Gamma\)</span></span>-matrix generalization of
the <span>Kitaev</span> model. <em>Physical Review B</em>
<strong>79</strong>, 134427 (2009).</div>
</div>
</div>
</main>
</body>
</html>