--- jupytext: text_representation: extension: .md format_name: myst format_version: 0.13 jupytext_version: 1.16.4 --- # Quickstart ## Installation ```bash pip install qubed ``` ## Usage Make an uncompressed qube: ```{code-cell} python3 from qubed import Qube q = Qube.from_dict({ "class=od" : { "expver=0001": {"param=1":{}, "param=2":{}}, "expver=0002": {"param=1":{}, "param=2":{}}, }, "class=rd" : { "expver=0001": {"param=1":{}, "param=2":{}, "param=3":{}}, "expver=0002": {"param=1":{}, "param=2":{}}, }, }) print(f"{q.n_leaves = }, {q.n_nodes = }") q ``` Compress it: ```{code-cell} python3 cq = q.compress() assert cq.n_leaves == q.n_leaves print(f"{cq.n_leaves = }, {cq.n_nodes = }") cq ``` With the HTML representation you can click on the leaves to expand them. You can copy a path representation of a node to the clipboard by alt/option/⌥ clicking on it. You can then extract that node in code using `[]`: ```{code-cell} python3 cq["class=rd,expver=0001"] ``` Select a subtree: ```{code-cell} python3 cq["class", "od"]["expver", "0001"] ``` Intersect with a dense datacube: ```{code-cell} python3 dq = Qube.from_datacube({ "class": ["od", "rd", "cd"], "expver": ["0001", "0002", "0003"], "param": "2", }) (cq & dq).print() ``` ### Tree Construction One of the quickest ways to construct non-trivial trees is to use the `Qube.from_datacube` method to construct dense trees and then use the set operations to combine or intersect them: ```{code-cell} python3 q = Qube.from_datacube({ "class": "d1", "dataset": ["climate-dt", "another-value"], 'generation': ['1', "2", "3"], }) r = Qube.from_datacube({ "class": "d1", "dataset": ["weather-dt", "climate-dt"], 'generation': ['1', "2", "3", "4"], }) q | r ``` ### Iteration / Flattening Iterate over the leaves: ```{code-cell} python3 for i, identifier in enumerate(cq.leaves()): print(identifier) if i > 10: print("...") break ``` Iterate over the datacubes: ```{code-cell} python3 cq.datacubes() ``` ### A Real World Example Load a larger example qube: ```{code-cell} python3 import requests qube_json = requests.get("https://github.com/ecmwf/qubed/raw/refs/heads/main/tests/example_qubes/climate_dt.json").json() climate_dt = Qube.from_json(qube_json) # Using the html or print methods is optional but lets you specify things like the depth of the tree to display. print(f"{climate_dt.n_leaves = }, {climate_dt.n_nodes = }") climate_dt.html(depth=1) # Limit how much is open initially, click leave to see more. ``` Select a subset of the tree: ```{code-cell} python3 climate_dt.select({ "activity": "scenariomip" }).html(depth=1) ``` Use `.span("key")` to get the set of possibles values for a key, note this includes anywhere this key appears in the tree. ```{code-cell} python3 climate_dt.span("activity") ``` Use `.axes()` to get the span of every key in one go. ```{code-cell} python3 axes = climate_dt.axes() for key, values in axes.items(): print(f"{key} : {list(values)[:10]}") ``` ### Set Operations The union/intersection/difference of two dense datacubes is not itself dense. ```{code-cell} python3 A = Qube.from_dict({"a=1/2/3" : {"b=i/j/k" : {}},}) B = Qube.from_dict({"a=2/3/4" : {"b=j/k/l" : {}},}) A.print(), B.print(); ``` Union: ```{code-cell} python3 (A | B).print(); ``` Intersection: ```{code-cell} python3 (A & B).print(); ``` Difference: ```{code-cell} python3 (A - B).print(); ``` Symmetric Difference: ```{code-cell} python3 (A ^ B).print(); ``` ### Transformations `q.transform` takes a python function from one node to one or more nodes and uses this to build a new tree. This can be used for simple operations on the key or values but also to split or remove nodes. Note that you can't use it to merge nodes beause it's only allowed to see one node at a time. ```{code-cell} python3 def capitalize(node): return node.replace(key = node.key.capitalize()) climate_dt.transform(capitalize).html(depth=1) ```