mirror of
https://github.com/TomHodson/tomhodson.github.com.git
synced 2025-06-26 10:01:18 +02:00
updates
This commit is contained in:
parent
da6494301c
commit
0393ef0f2f
@ -574,61 +574,72 @@ spin couples. In certain transition metal based compounds, such as those
|
||||
based on Iridium and Rutheniun, crystal field effects, strong spin-orbit
|
||||
coupling and narrow bandwidths lead to effective spin-<span
|
||||
class="math inline">\(\tfrac{1}{2}\)</span> Mott insulating states with
|
||||
strongly anisotropic spin-spin couplings <span class="citation"
|
||||
data-cites="TrebstPhysRep2022"> [<a href="#ref-TrebstPhysRep2022"
|
||||
role="doc-biblioref">42</a>]</span>.</p>
|
||||
<p>The celebrated Kitaev model <span class="citation"
|
||||
strongly anisotropic spin-spin couplings known as Kitaev Materials <span
|
||||
class="citation"
|
||||
data-cites="Jackeli2009 HerrmannsAnRev2018 Winter2017 TrebstPhysRep2022 Takagi2019"> [<a
|
||||
href="#ref-TrebstPhysRep2022" role="doc-biblioref">42</a>,<a
|
||||
href="#ref-Jackeli2009" role="doc-biblioref">46</a>–<a
|
||||
href="#ref-Takagi2019" role="doc-biblioref">49</a>]</span>. Kitaev
|
||||
materials draw their name from the celebrated Kitaev Honeycomb Model as
|
||||
it is believed they will realise the QSL state via the mechanisms of the
|
||||
Kitaev Model.</p>
|
||||
<p>The Kitaev Honeycomb model <span class="citation"
|
||||
data-cites="kitaevAnyonsExactlySolved2006"> [<a
|
||||
href="#ref-kitaevAnyonsExactlySolved2006"
|
||||
role="doc-biblioref">46</a>]</span></p>
|
||||
<p>QSLs are a long range entangled ground state of a highly
|
||||
frustated</p>
|
||||
<ul>
|
||||
<li><p>QSLs introduced by anderson 1973</p></li>
|
||||
<li><p>Frustration can be geometric, such as AFM couplings on a
|
||||
triangular lattice. It can also come from anisotropic couplings induced
|
||||
via spin-orbit coupling.</p></li>
|
||||
</ul>
|
||||
<p>Geometric frustration or spin-orbit coupling can prevent magnetic
|
||||
ordering is an important part of getting a QSL, suggests exploring the
|
||||
lattice and avenue of interest.</p>
|
||||
<ul>
|
||||
<li><p>Spin orbit effect is a relativistic effect that couples electron
|
||||
spin to orbital angular moment. Very roughly, an electron sees the
|
||||
electric field of the nucleus as a magnetic field due to its movement
|
||||
and the electron spin couples to this. Can be strong in heavy
|
||||
elements</p></li>
|
||||
<li><p>The Kitaev Model as a canonical QSL</p></li>
|
||||
<li><p>Kitaev model has extensively many conserved charges too</p></li>
|
||||
<li><p>anyons</p></li>
|
||||
<li><p>fractionalisation</p></li>
|
||||
<li><p>Topology -> GS degeneracy depends on the genus of the
|
||||
surface</p></li>
|
||||
<li><p>the chern number</p></li>
|
||||
</ul>
|
||||
<p>kinds of mott insulators: Mott-Heisenberg (AFM order below Néel
|
||||
temperature) Mott-Hubbard (no long-range order of local magnetic
|
||||
moments) Mott-Anderson (disorder + correlations) Wigner Crystal</p>
|
||||
role="doc-biblioref">50</a>]</span> was the first concrete model with a
|
||||
QSL ground state. It is defined on the honeycomb lattice and provides an
|
||||
exactly solvable model whose ground state is a QSL characterized by a
|
||||
static <span class="math inline">\(\mathbb Z_2\)</span> gauge field and
|
||||
Majorana fermion excitations. It can be reduced to a free fermion
|
||||
problem via a mapping to Majorana fermions which yields an extensive
|
||||
number of static <span class="math inline">\(\mathbb Z_2\)</span> fluxes
|
||||
tied to an emergent gauge field. The model is remarkable not only for
|
||||
its QSL ground state, it supports a rich phase diagram hosting gapless,
|
||||
Abelian and non-Abelian phases and a finite temperature phase transition
|
||||
to a thermal metal state <span class="citation"
|
||||
data-cites="selfThermallyInducedMetallic2019"> [<a
|
||||
href="#ref-selfThermallyInducedMetallic2019"
|
||||
role="doc-biblioref">51</a>]</span>. It has also been proposed that it
|
||||
could be used to support topological quantum computing <span
|
||||
class="citation"
|
||||
data-cites="freedmanTopologicalQuantumComputation2003"> [<a
|
||||
href="#ref-freedmanTopologicalQuantumComputation2003"
|
||||
role="doc-biblioref">52</a>]</span>.</p>
|
||||
<p>It is by now understood that the Kitaev model on any tri-coordinated
|
||||
<span class="math inline">\(z=3\)</span> graph has conserved plaquette
|
||||
operators and local symmetries <span class="citation"
|
||||
data-cites="Baskaran2007 Baskaran2008"> [<a href="#ref-Baskaran2007"
|
||||
role="doc-biblioref">53</a>,<a href="#ref-Baskaran2008"
|
||||
role="doc-biblioref">54</a>]</span> which allow a mapping onto effective
|
||||
free Majorana fermion problems in a background of static <span
|
||||
class="math inline">\(\mathbb Z_2\)</span> fluxes <span class="citation"
|
||||
data-cites="Nussinov2009 OBrienPRB2016 yaoExactChiralSpin2007 hermanns2015weyl"> [<a
|
||||
href="#ref-Nussinov2009" role="doc-biblioref">55</a>–<a
|
||||
href="#ref-hermanns2015weyl" role="doc-biblioref">58</a>]</span>.
|
||||
However, depending on lattice symmetries, finding the ground state flux
|
||||
sector and understanding the QSL properties can still be
|
||||
challenging <span class="citation"
|
||||
data-cites="eschmann2019thermodynamics Peri2020"> [<a
|
||||
href="#ref-eschmann2019thermodynamics" role="doc-biblioref">59</a>,<a
|
||||
href="#ref-Peri2020" role="doc-biblioref">60</a>]</span>.</p>
|
||||
<p><strong>paragraph about amorphous lattices</strong></p>
|
||||
<p>In Chapter 4 I will introduce a soluble chiral amorphous quantum spin
|
||||
liquid by extending the Kitaev honeycomb model to random lattices with
|
||||
fixed coordination number three. The model retains its exact solubility
|
||||
but the presence of plaquettes with an odd number of sides leads to a
|
||||
spontaneous breaking of time reversal symmetry. I unearth a rich phase
|
||||
diagram displaying Abelian as well as a non-Abelian quantum spin liquid
|
||||
phases with a remarkably simple ground state flux pattern. Furthermore,
|
||||
I show that the system undergoes a finite-temperature phase transition
|
||||
to a conducting thermal metal state and discuss possible experimental
|
||||
realisations.</p>
|
||||
<h1 id="outline">Outline</h1>
|
||||
<p>This thesis is composed of two main studies of separate but related
|
||||
physical models, The Falikov-Kimball Model and the Kitaev-Honeycomb
|
||||
Model. In this chapter I will discuss the overarching motivations for
|
||||
looking at these two physical models. I will then review the literature
|
||||
and methods that are common to both models.</p>
|
||||
<p>In Chapter 2 I will look at the Falikov-Kimball model. I will review
|
||||
what it is and why we would want to study it. I’ll survey what is
|
||||
already known about it and identify the gap in the research that we aim
|
||||
to fill, namely the model’s behaviour in one dimension. I’ll then
|
||||
introduce the modified model that we came up with to close this gap. I
|
||||
will present our results on the thermodynamic phase diagram and
|
||||
localisation properties of the model</p>
|
||||
<p>In Chapter 3 I’ll study the Kitaev Honeycomb Model, following the
|
||||
same structure as Chapter 2 I will motivate the study, survey the
|
||||
literature and identify a gap. I’ll introduce our Amorphous Kitaev Model
|
||||
designed to fill this gap and present the results.</p>
|
||||
<p>Finally in chapter 4 I will summarise the results and discuss what
|
||||
implications they have for our understanding interacting many-body
|
||||
quantum systems.</p>
|
||||
<p>The next chapter, Chapter 2, will introduce some necessary background
|
||||
to the Falikov-Kimball Model, the Kitaev Honeycomb Model, disorder and
|
||||
localisation.</p>
|
||||
<p>In Chapter 3 I introduce the Long Range Falikov-Kimball Model in
|
||||
greater detail. I will present results that. Chapter 4 focusses on the
|
||||
Amorphous Kitaev Model.</p>
|
||||
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
|
||||
<div id="ref-king2012murmurations" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
@ -984,13 +995,118 @@ class="csl-right-inline">H.-H. Lin, L. Balents, and M. P. A. Fisher,
|
||||
Symmetry in the Weakly-Interacting Two-Leg Ladder</a></em>, Phys. Rev. B
|
||||
<strong>58</strong>, 1794 (1998).</div>
|
||||
</div>
|
||||
<div id="ref-Jackeli2009" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[46] </div><div class="csl-right-inline">G.
|
||||
Jackeli and G. Khaliullin, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.102.017205">Mott Insulators in
|
||||
the Strong Spin-Orbit Coupling Limit: From Heisenberg to a Quantum
|
||||
Compass and Kitaev Models</a></em>, Physical Review Letters
|
||||
<strong>102</strong>, 017205 (2009).</div>
|
||||
</div>
|
||||
<div id="ref-HerrmannsAnRev2018" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[47] </div><div class="csl-right-inline">M.
|
||||
Hermanns, I. Kimchi, and J. Knolle, <em><a
|
||||
href="https://doi.org/10.1146/annurev-conmatphys-033117-053934">Physics
|
||||
of the Kitaev Model: Fractionalization, Dynamic Correlations, and
|
||||
Material Connections</a></em>, Annual Review of Condensed Matter Physics
|
||||
<strong>9</strong>, 17 (2018).</div>
|
||||
</div>
|
||||
<div id="ref-Winter2017" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[48] </div><div class="csl-right-inline">S.
|
||||
M. Winter, A. A. Tsirlin, M. Daghofer, J. van den Brink, Y. Singh, P.
|
||||
Gegenwart, and R. Valentí, <em>Models and Materials for Generalized
|
||||
Kitaev Magnetism</em>, Journal of Physics: Condensed Matter
|
||||
<strong>29</strong>, 493002 (2017).</div>
|
||||
</div>
|
||||
<div id="ref-Takagi2019" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[49] </div><div class="csl-right-inline">H.
|
||||
Takagi, T. Takayama, G. Jackeli, G. Khaliullin, and S. E. Nagler,
|
||||
<em>Concept and Realization of Kitaev Quantum Spin Liquids</em>, Nature
|
||||
Reviews Physics <strong>1</strong>, 264 (2019).</div>
|
||||
</div>
|
||||
<div id="ref-kitaevAnyonsExactlySolved2006" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[46] </div><div class="csl-right-inline">A.
|
||||
<div class="csl-left-margin">[50] </div><div class="csl-right-inline">A.
|
||||
Kitaev, <em><a href="https://doi.org/10.1016/j.aop.2005.10.005">Anyons
|
||||
in an Exactly Solved Model and Beyond</a></em>, Annals of Physics
|
||||
<strong>321</strong>, 2 (2006).</div>
|
||||
</div>
|
||||
<div id="ref-selfThermallyInducedMetallic2019" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[51] </div><div class="csl-right-inline">C.
|
||||
N. Self, J. Knolle, S. Iblisdir, and J. K. Pachos, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.99.045142">Thermally Induced
|
||||
Metallic Phase in a Gapped Quantum Spin Liquid - a Monte Carlo Study of
|
||||
the Kitaev Model with Parity Projection</a></em>, Phys. Rev. B
|
||||
<strong>99</strong>, 045142 (2019).</div>
|
||||
</div>
|
||||
<div id="ref-freedmanTopologicalQuantumComputation2003"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[52] </div><div class="csl-right-inline">M.
|
||||
Freedman, A. Kitaev, M. Larsen, and Z. Wang, <em><a
|
||||
href="https://doi.org/10.1090/S0273-0979-02-00964-3">Topological Quantum
|
||||
Computation</a></em>, Bull. Amer. Math. Soc. <strong>40</strong>, 31
|
||||
(2003).</div>
|
||||
</div>
|
||||
<div id="ref-Baskaran2007" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[53] </div><div class="csl-right-inline">G.
|
||||
Baskaran, S. Mandal, and R. Shankar, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.98.247201">Exact Results for
|
||||
Spin Dynamics and Fractionalization in the Kitaev Model</a></em>, Phys.
|
||||
Rev. Lett. <strong>98</strong>, 247201 (2007).</div>
|
||||
</div>
|
||||
<div id="ref-Baskaran2008" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[54] </div><div class="csl-right-inline">G.
|
||||
Baskaran, D. Sen, and R. Shankar, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.78.115116">Spin-S Kitaev Model:
|
||||
Classical Ground States, Order from Disorder, and Exact Correlation
|
||||
Functions</a></em>, Phys. Rev. B <strong>78</strong>, 115116
|
||||
(2008).</div>
|
||||
</div>
|
||||
<div id="ref-Nussinov2009" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[55] </div><div class="csl-right-inline">Z.
|
||||
Nussinov and G. Ortiz, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.79.214440">Bond Algebras and
|
||||
Exact Solvability of Hamiltonians: Spin S=½ Multilayer Systems</a></em>,
|
||||
Physical Review B <strong>79</strong>, 214440 (2009).</div>
|
||||
</div>
|
||||
<div id="ref-OBrienPRB2016" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[56] </div><div class="csl-right-inline">K.
|
||||
O’Brien, M. Hermanns, and S. Trebst, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.93.085101">Classification of
|
||||
Gapless Z₂ Spin Liquids in Three-Dimensional Kitaev Models</a></em>,
|
||||
Phys. Rev. B <strong>93</strong>, 085101 (2016).</div>
|
||||
</div>
|
||||
<div id="ref-yaoExactChiralSpin2007" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[57] </div><div class="csl-right-inline">H.
|
||||
Yao and S. A. Kivelson, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevLett.99.247203">An Exact Chiral
|
||||
Spin Liquid with Non-Abelian Anyons</a></em>, Phys. Rev. Lett.
|
||||
<strong>99</strong>, 247203 (2007).</div>
|
||||
</div>
|
||||
<div id="ref-hermanns2015weyl" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[58] </div><div class="csl-right-inline">M.
|
||||
Hermanns, K. O’Brien, and S. Trebst, <em>Weyl Spin Liquids</em>,
|
||||
Physical Review Letters <strong>114</strong>, 157202 (2015).</div>
|
||||
</div>
|
||||
<div id="ref-eschmann2019thermodynamics" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[59] </div><div class="csl-right-inline">T.
|
||||
Eschmann, P. A. Mishchenko, T. A. Bojesen, Y. Kato, M. Hermanns, Y.
|
||||
Motome, and S. Trebst, <em>Thermodynamics of a Gauge-Frustrated Kitaev
|
||||
Spin Liquid</em>, Physical Review Research <strong>1</strong>, 032011(R)
|
||||
(2019).</div>
|
||||
</div>
|
||||
<div id="ref-Peri2020" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">[60] </div><div class="csl-right-inline">V.
|
||||
Peri, S. Ok, S. S. Tsirkin, T. Neupert, G. Baskaran, M. Greiter, R.
|
||||
Moessner, and R. Thomale, <em><a
|
||||
href="https://doi.org/10.1103/PhysRevB.101.041114">Non-Abelian Chiral
|
||||
Spin Liquid on a Simple Non-Archimedean Lattice</a></em>, Phys. Rev. B
|
||||
<strong>101</strong>, 041114 (2020).</div>
|
||||
</div>
|
||||
</div>
|
||||
</main>
|
||||
</body>
|
||||
|
@ -160,6 +160,69 @@ image:
|
||||
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
||||
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
||||
ul.task-list{list-style: none;}
|
||||
pre > code.sourceCode { white-space: pre; position: relative; }
|
||||
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
|
||||
pre > code.sourceCode > span:empty { height: 1.2em; }
|
||||
.sourceCode { overflow: visible; }
|
||||
code.sourceCode > span { color: inherit; text-decoration: inherit; }
|
||||
div.sourceCode { margin: 1em 0; }
|
||||
pre.sourceCode { margin: 0; }
|
||||
@media screen {
|
||||
div.sourceCode { overflow: auto; }
|
||||
}
|
||||
@media print {
|
||||
pre > code.sourceCode { white-space: pre-wrap; }
|
||||
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
|
||||
}
|
||||
pre.numberSource code
|
||||
{ counter-reset: source-line 0; }
|
||||
pre.numberSource code > span
|
||||
{ position: relative; left: -4em; counter-increment: source-line; }
|
||||
pre.numberSource code > span > a:first-child::before
|
||||
{ content: counter(source-line);
|
||||
position: relative; left: -1em; text-align: right; vertical-align: baseline;
|
||||
border: none; display: inline-block;
|
||||
-webkit-touch-callout: none; -webkit-user-select: none;
|
||||
-khtml-user-select: none; -moz-user-select: none;
|
||||
-ms-user-select: none; user-select: none;
|
||||
padding: 0 4px; width: 4em;
|
||||
color: #aaaaaa;
|
||||
}
|
||||
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
|
||||
div.sourceCode
|
||||
{ }
|
||||
@media screen {
|
||||
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
|
||||
}
|
||||
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
|
||||
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
|
||||
code span.at { color: #7d9029; } /* Attribute */
|
||||
code span.bn { color: #40a070; } /* BaseN */
|
||||
code span.bu { } /* BuiltIn */
|
||||
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
|
||||
code span.ch { color: #4070a0; } /* Char */
|
||||
code span.cn { color: #880000; } /* Constant */
|
||||
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
|
||||
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
|
||||
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
|
||||
code span.dt { color: #902000; } /* DataType */
|
||||
code span.dv { color: #40a070; } /* DecVal */
|
||||
code span.er { color: #ff0000; font-weight: bold; } /* Error */
|
||||
code span.ex { } /* Extension */
|
||||
code span.fl { color: #40a070; } /* Float */
|
||||
code span.fu { color: #06287e; } /* Function */
|
||||
code span.im { } /* Import */
|
||||
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
|
||||
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
|
||||
code span.op { color: #666666; } /* Operator */
|
||||
code span.ot { color: #007020; } /* Other */
|
||||
code span.pp { color: #bc7a00; } /* Preprocessor */
|
||||
code span.sc { color: #4070a0; } /* SpecialChar */
|
||||
code span.ss { color: #bb6688; } /* SpecialString */
|
||||
code span.st { color: #4070a0; } /* String */
|
||||
code span.va { color: #19177c; } /* Variable */
|
||||
code span.vs { color: #4070a0; } /* VerbatimString */
|
||||
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
|
||||
div.csl-bib-body { }
|
||||
div.csl-entry {
|
||||
clear: both;
|
||||
@ -266,6 +329,8 @@ Markers</a></li>
|
||||
</ul>
|
||||
</nav>
|
||||
-->
|
||||
<div class="sourceCode" id="cb1"><pre
|
||||
class="sourceCode python"><code class="sourceCode python"></code></pre></div>
|
||||
<h1 id="methods">Methods</h1>
|
||||
<p>The practical implementation of what is described in this section is
|
||||
available as a Python package called Koala (Kitaev On Amorphous
|
||||
|
Loading…
x
Reference in New Issue
Block a user