2022-08-24 19:03:28 +02:00

1114 lines
52 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: 1_Intro
excerpt:
layout: none
image:
---
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>1_Intro</title>
<!-- <style>
html {
line-height: 1.5;
font-family: Georgia, serif;
font-size: 20px;
color: #1a1a1a;
background-color: #fdfdfd;
}
body {
margin: 0 auto;
max-width: 36em;
padding-left: 50px;
padding-right: 50px;
padding-top: 50px;
padding-bottom: 50px;
hyphens: auto;
overflow-wrap: break-word;
text-rendering: optimizeLegibility;
font-kerning: normal;
}
@media (max-width: 600px) {
body {
font-size: 0.9em;
padding: 1em;
}
h1 {
font-size: 1.8em;
}
}
@media print {
body {
background-color: transparent;
color: black;
font-size: 12pt;
}
p, h2, h3 {
orphans: 3;
widows: 3;
}
h2, h3, h4 {
page-break-after: avoid;
}
}
p {
margin: 1em 0;
}
a {
color: #1a1a1a;
}
a:visited {
color: #1a1a1a;
}
img {
max-width: 100%;
}
h1, h2, h3, h4, h5, h6 {
margin-top: 1.4em;
}
h5, h6 {
font-size: 1em;
font-style: italic;
}
h6 {
font-weight: normal;
}
ol, ul {
padding-left: 1.7em;
margin-top: 1em;
}
li > ol, li > ul {
margin-top: 0;
}
blockquote {
margin: 1em 0 1em 1.7em;
padding-left: 1em;
border-left: 2px solid #e6e6e6;
color: #606060;
}
code {
font-family: Menlo, Monaco, 'Lucida Console', Consolas, monospace;
font-size: 85%;
margin: 0;
}
pre {
margin: 1em 0;
overflow: auto;
}
pre code {
padding: 0;
overflow: visible;
overflow-wrap: normal;
}
.sourceCode {
background-color: transparent;
overflow: visible;
}
hr {
background-color: #1a1a1a;
border: none;
height: 1px;
margin: 1em 0;
}
table {
margin: 1em 0;
border-collapse: collapse;
width: 100%;
overflow-x: auto;
display: block;
font-variant-numeric: lining-nums tabular-nums;
}
table caption {
margin-bottom: 0.75em;
}
tbody {
margin-top: 0.5em;
border-top: 1px solid #1a1a1a;
border-bottom: 1px solid #1a1a1a;
}
th {
border-top: 1px solid #1a1a1a;
padding: 0.25em 0.5em 0.25em 0.5em;
}
td {
padding: 0.125em 0.5em 0.25em 0.5em;
}
header {
margin-bottom: 4em;
text-align: center;
}
#TOC li {
list-style: none;
}
#TOC ul {
padding-left: 1.3em;
}
#TOC > ul {
padding-left: 0;
}
#TOC a:not(:hover) {
text-decoration: none;
}
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
div.csl-bib-body { }
div.csl-entry {
clear: both;
}
.hanging div.csl-entry {
margin-left:2em;
text-indent:-2em;
}
div.csl-left-margin {
min-width:2em;
float:left;
}
div.csl-right-inline {
margin-left:2em;
padding-left:1em;
}
div.csl-indent {
margin-left: 2em;
}
</style> -->
<!-- <script
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js"
type="text/javascript"></script>
-->
<!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3.0.1/es5/tex-mml-chtml.js"></script>
-->
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
<!--[if lt IE 9]>
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
<![endif]-->
<link rel="stylesheet" href="/assets/css/styles.css">
<script src="/assets/js/index.js"></script>
</head>
<body>
<!--Capture the table of contents from pandoc as a jekyll variable -->
{% capture tableOfContents %}
<br>
Contents:
<ul>
<li><a href="#interacting-quantum-many-body-systems"
id="toc-interacting-quantum-many-body-systems">Interacting Quantum Many
Body Systems</a></li>
<li><a href="#mott-insulators" id="toc-mott-insulators">Mott
Insulators</a></li>
<li><a href="#quantum-spin-liquids"
id="toc-quantum-spin-liquids">Quantum Spin Liquids</a></li>
<li><a href="#outline" id="toc-outline">Outline</a></li>
</ul>
{% endcapture %}
<!-- Give the table of contents to header as a variable -->
{% include header.html extra=tableOfContents %}
<main>
<!-- <nav id="TOC" role="doc-toc">
<ul>
<li><a href="#interacting-quantum-many-body-systems"
id="toc-interacting-quantum-many-body-systems">Interacting Quantum Many
Body Systems</a></li>
<li><a href="#mott-insulators" id="toc-mott-insulators">Mott
Insulators</a></li>
<li><a href="#quantum-spin-liquids"
id="toc-quantum-spin-liquids">Quantum Spin Liquids</a></li>
<li><a href="#outline" id="toc-outline">Outline</a></li>
</ul>
</nav>
-->
<h1 id="interacting-quantum-many-body-systems">Interacting Quantum Many
Body Systems</h1>
<p>When you take many objects and let them interact together, it is
often simpler to describe the behaviour of the group differently from
the way one would describe the individual objects. Consider a flock of
starlings like that of fig. <a href="#fig:Studland_Starlings">1</a>.
Watching the flock youll see that it has a distinct outline, that waves
of density will sometimes propagate through the closely packed birds and
that the flock seems to respond to predators as a distinct object. The
natural description of this phenomena is couched in terms of the flock
rather than of the individual birds.</p>
<p>The behaviours of the flock are an <em>emergent phenomena</em>. The
starlings are only interacting with their immediate six or seven
neighbours <span class="citation"
data-cites="king2012murmurations balleriniInteractionRulingAnimal2008"> [<a
href="#ref-king2012murmurations" role="doc-biblioref">1</a>,<a
href="#ref-balleriniInteractionRulingAnimal2008"
role="doc-biblioref">2</a>]</span>, what a physicist would call a
<em>local interaction</em>. There is much philosophical debate about how
exactly to define emergence <span class="citation"
data-cites="andersonMoreDifferent1972 kivelsonDefiningEmergencePhysics2016"> [<a
href="#ref-andersonMoreDifferent1972" role="doc-biblioref">3</a>,<a
href="#ref-kivelsonDefiningEmergencePhysics2016"
role="doc-biblioref">4</a>]</span> but for our purposes it enough to say
that emergence is the fact that the aggregate behaviour of many
interacting objects may necessitate a description very different from
that of the individual objects.</p>
<div id="fig:Studland_Starlings" class="fignos">
<figure>
<img src="/assets/thesis/intro_chapter/Studland_Starlings.jpeg"
data-short-caption="A murmuration of Starlings" style="width:100.0%"
alt="Figure 1: A murmuration of starlings. Dorset, UK. Credit Tanya Hart, “Studland Starlings”, 2017, CC BY-SA 3.0" />
<figcaption aria-hidden="true"><span>Figure 1:</span> A murmuration of
starlings. Dorset, UK. Credit <a href="twitter.com/arripay">Tanya
Hart</a>, “Studland Starlings”, 2017, <a
href="creativecommons.org/licenses/by-sa/3.0/deed.en">CC BY-SA
3.0</a></figcaption>
</figure>
</div>
<p>To give an example closer to the topic at hand, our understanding of
thermodynamics began with bulk properties like heat, energy, pressure
and temperature <span class="citation"
data-cites="saslowHistoryThermodynamicsMissing2020"> [<a
href="#ref-saslowHistoryThermodynamicsMissing2020"
role="doc-biblioref">5</a>]</span>. It was only later that we gained an
understanding of how these properties emerge from microscopic
interactions between very large numbers of particles <span
class="citation" data-cites="flammHistoryOutlookStatistical1998"> [<a
href="#ref-flammHistoryOutlookStatistical1998"
role="doc-biblioref">6</a>]</span>.</p>
<p>Condensed Matter is, at its heart, the study of what behaviours
emerge from large numbers of interacting quantum objects at low energy.
When these three properties are present together: a large number of
objects, those objects being quantum and there are interaction between
the objects, we call it an interacting quantum many body system. From
these three ingredients nature builds all manner of weird and wonderful
materials.</p>
<p>Historically, we made initial headway in the study of many-body
systems, ignoring interactions and quantum properties. The ideal gas law
and the Drude classical electron gas <span class="citation"
data-cites="ashcroftSolidStatePhysics1976"> [<a
href="#ref-ashcroftSolidStatePhysics1976"
role="doc-biblioref">7</a>]</span> are good examples. Including
interactions into many-body physics leads to the Ising model <span
class="citation" data-cites="isingBeitragZurTheorie1925"> [<a
href="#ref-isingBeitragZurTheorie1925"
role="doc-biblioref">8</a>]</span>, Landau theory <span class="citation"
data-cites="landau2013fluid"> [<a href="#ref-landau2013fluid"
role="doc-biblioref">9</a>]</span> and the classical theory of phase
transitions <span class="citation"
data-cites="jaegerEhrenfestClassificationPhase1998"> [<a
href="#ref-jaegerEhrenfestClassificationPhase1998"
role="doc-biblioref">10</a>]</span>. In contrast, condensed matter
theory got it state in quantum many-body theory. Blochs theorem <span
class="citation"
data-cites="blochÜberQuantenmechanikElektronen1929"> [<a
href="#ref-blochÜberQuantenmechanikElektronen1929"
role="doc-biblioref">11</a>]</span> predicted the properties of
non-interacting electrons in crystal lattices, leading to band theory.
In the same vein, advances were made in understanding the quantum
origins of magnetism, including ferromagnetism and
antiferromagnetism <span class="citation"
data-cites="MagnetismCondensedMatter"> [<a
href="#ref-MagnetismCondensedMatter"
role="doc-biblioref">12</a>]</span>.</p>
<p>However, at some point we had to start on the interacting quantum
many body systems. The properties of some materials cannot be understood
without a taking into account all three effects and these are
collectively called strongly correlated materials. The canonical
examples are superconductivity <span class="citation"
data-cites="MicroscopicTheorySuperconductivity"> [<a
href="#ref-MicroscopicTheorySuperconductivity"
role="doc-biblioref">13</a>]</span>, the fractional quantum hall
effect <span class="citation"
data-cites="feldmanFractionalChargeFractional2021"> [<a
href="#ref-feldmanFractionalChargeFractional2021"
role="doc-biblioref">14</a>]</span> and the Mott insulators <span
class="citation"
data-cites="mottBasisElectronTheory1949 fisherMottInsulatorsSpin1999"> [<a
href="#ref-mottBasisElectronTheory1949" role="doc-biblioref">15</a>,<a
href="#ref-fisherMottInsulatorsSpin1999"
role="doc-biblioref">16</a>]</span>. Well start by looking at the
latter but shall see that there are many links between three topics.</p>
<h1 id="mott-insulators">Mott Insulators</h1>
<p>Mott Insulators are remarkable because their electrical insulator
properties come from electron-electron interactions. Electrical
conductivity, the bulk movement of electrons, requires both that there
are electronic states very close in energy to the ground state and that
those states are delocalised so that they can contribute to macroscopic
transport. Band insulators are systems whose Fermi level falls within a
gap in the density of states and thus fail the first criteria. Band
insulators derive their character from the characteristics of the
underlying lattice. Anderson Insulators have only localised electronic
states near the fermi level and therefore fail the second criteria. We
will discuss Anderson insulators and disorder in a later section.</p>
<p>Both band and Anderson insulators occur without electron-electron
interactions. Mott insulators, by contrast, require a many body picture
to understand and thus elude band theory and single-particle
methods.</p>
<div id="fig:venn_diagram" class="fignos">
<figure>
<img src="/assets/thesis/intro_chapter/venn_diagram.svg"
data-short-caption="Interacting Quantum Many Body Systems Venn Diagram"
style="width:57.0%"
alt="Figure 2: Three key adjectives. Many Body, the fact of describing systems in the limit of large numbers of particles. Quantum, objects whose behaviour requires quantum mechanics to describe accurately. Interacting, the constituent particles of the system affect one another via forces, either directly or indirectly. When taken together, these three properties can give rise to what are called strongly correlated materials." />
<figcaption aria-hidden="true"><span>Figure 2:</span> Three key
adjectives. Many Body, the fact of describing systems in the limit of
large numbers of particles. Quantum, objects whose behaviour requires
quantum mechanics to describe accurately. Interacting, the constituent
particles of the system affect one another via forces, either directly
or indirectly. When taken together, these three properties can give rise
to what are called strongly correlated materials.</figcaption>
</figure>
</div>
<p>The theory of Mott insulators developed out of the observation that
many transition metal oxides are erroneously predicted by band theory to
be conductive <span class="citation"
data-cites="boerSemiconductorsPartiallyCompletely1937"> [<a
href="#ref-boerSemiconductorsPartiallyCompletely1937"
role="doc-biblioref">17</a>]</span> leading to the suggestion that
electron-electron interactions were the cause of this effect <span
class="citation" data-cites="mottDiscussionPaperBoer1937"> [<a
href="#ref-mottDiscussionPaperBoer1937"
role="doc-biblioref">18</a>]</span>. Interest grew with the discovery of
high temperature superconductivity in the cuprates in 1986 <span
class="citation"
data-cites="bednorzPossibleHighTcSuperconductivity1986"> [<a
href="#ref-bednorzPossibleHighTcSuperconductivity1986"
role="doc-biblioref">19</a>]</span> which is believed to arise as the
result of a doped Mott insulator state <span class="citation"
data-cites="leeDopingMottInsulator2006"> [<a
href="#ref-leeDopingMottInsulator2006"
role="doc-biblioref">20</a>]</span>.</p>
<p>The canonical toy model of the Mott insulator is the Hubbard
model <span class="citation"
data-cites="gutzwillerEffectCorrelationFerromagnetism1963 kanamoriElectronCorrelationFerromagnetism1963 hubbardj.ElectronCorrelationsNarrow1963"> [<a
href="#ref-gutzwillerEffectCorrelationFerromagnetism1963"
role="doc-biblioref">21</a><a
href="#ref-hubbardj.ElectronCorrelationsNarrow1963"
role="doc-biblioref">23</a>]</span> of <span
class="math inline">\(1/2\)</span> fermions hopping on the lattice with
hopping parameter <span class="math inline">\(t\)</span> and
electron-electron repulsion <span class="math inline">\(U\)</span></p>
<p><span class="math display">\[ H_{\mathrm{H}} = -t \sum_{\langle i,j
\rangle \alpha} c^\dagger_{i\alpha} c_{j\alpha} + U \sum_i n_{i\uparrow}
n_{i\downarrow} - \mu \sum_{i,\alpha} n_{i\alpha}\]</span></p>
<p>where <span class="math inline">\(c^\dagger_{i\alpha}\)</span>
creates a spin <span class="math inline">\(\alpha\)</span> electron at
site <span class="math inline">\(i\)</span> and the number operator
<span class="math inline">\(n_{i\alpha}\)</span> measures the number of
electrons with spin <span class="math inline">\(\alpha\)</span> at site
<span class="math inline">\(i\)</span>. The sum runs over lattice
neighbours <span class="math inline">\(\langle i,j \rangle\)</span>
including both <span class="math inline">\(\langle i,j \rangle\)</span>
and <span class="math inline">\(\langle j,i \rangle\)</span> so that the
model is Hermition.</p>
<p>In the non-interacting limit <span class="math inline">\(U &lt;&lt;
t\)</span>, the model reduces to free fermions and the many-body ground
state is a separable product of Bloch waves filled up to the Fermi
level. In the interacting limit <span class="math inline">\(U &gt;&gt;
t\)</span> on the other hand, the system breaks up into a product of
local moments, each in one the four states <span
class="math inline">\(|0\rangle, |\uparrow\rangle, |\downarrow\rangle,
|\uparrow\downarrow\rangle\)</span> depending on the filing.</p>
<p>The Mott insulating phase occurs at half filling <span
class="math inline">\(\mu = \tfrac{U}{2}\)</span> where there is one
electron per lattice site <span class="citation"
data-cites="hubbardElectronCorrelationsNarrow1964"> [<a
href="#ref-hubbardElectronCorrelationsNarrow1964"
role="doc-biblioref">24</a>]</span>. Here the model can be rewritten in
a symmetric form <span class="math display">\[ H_{\mathrm{H}} = -t
\sum_{\langle i,j \rangle \alpha} c^\dagger_{i\alpha} c_{j\alpha} + U
\sum_i (n_{i\uparrow} - \tfrac{1}{2})(n_{i\downarrow} -
\tfrac{1}{2})\]</span></p>
<p>The basic reason that the half filled state is insulating seems is
trivial. Any excitation must include states of double occupancy that
cost energy <span class="math inline">\(U\)</span>, hence the system has
a finite bandgap and is an interaction driven Mott insulator. Depending
on the lattice, the local moments may then order antiferromagnetically.
Originally it was proposed that this antiferromagnetic order was the
cause of the gap opening <span class="citation"
data-cites="mottMetalInsulatorTransitions1990"> [<a
href="#ref-mottMetalInsulatorTransitions1990"
role="doc-biblioref">25</a>]</span>. However, Mott insulators have been
found <span class="citation"
data-cites="law1TTaS2QuantumSpin2017 ribakGaplessExcitationsGround2017"> [<a
href="#ref-law1TTaS2QuantumSpin2017" role="doc-biblioref">26</a>,<a
href="#ref-ribakGaplessExcitationsGround2017"
role="doc-biblioref">27</a>]</span> without magnetic order. Instead the
local moments may form a highly entangled state known as a quantum spin
liquid, which will be discussed shortly.</p>
<p>Various theoretical treatments of the Hubbard model have been made,
including those based on Fermi liquid theory, mean field treatments, the
local density approximation (LDA) <span class="citation"
data-cites="slaterMagneticEffectsHartreeFock1951"> [<a
href="#ref-slaterMagneticEffectsHartreeFock1951"
role="doc-biblioref">28</a>]</span> and dynamical mean-field
theory <span class="citation"
data-cites="greinerQuantumPhaseTransition2002"> [<a
href="#ref-greinerQuantumPhaseTransition2002"
role="doc-biblioref">29</a>]</span>. None of these approaches are
perfect. Strong correlations are poorly described by the Fermi liquid
theory and the LDA approaches while mean field approximations do poorly
in low dimensional systems. This theoretical difficulty has made the
Hubbard model a target for cold atom simulations <span class="citation"
data-cites="mazurenkoColdatomFermiHubbard2017"> [<a
href="#ref-mazurenkoColdatomFermiHubbard2017"
role="doc-biblioref">30</a>]</span>.</p>
<p>From here the discussion will branch two directions. First, we will
discuss a limit of the Hubbard model called the Falikov-Kimball Model.
Second, we will look at quantum spin liquids and the Kitaev honeycomb
model.</p>
<p><strong>The Falikov-Kimball Model</strong></p>
<p>Though not the original reason for its introduction, the
Falikov-Kimball (FK) model is the limit of the Hubbard model as the mass
ratio of the spin up and spin down electron is taken to infinity. This
gives a model with two fermion species, one itinerant and one entirely
immobile. The number operators for the immobile fermions are therefore
conserved quantities and can be be treated like classical degrees of
freedom. For our purposes it will be useful to replace the immobile
fermions with a classical Ising background field <span
class="math inline">\(S_i = \pm1\)</span>.</p>
<p><span class="math display">\[\begin{aligned}
H_{\mathrm{FK}} = &amp; -\;t \sum_{\langle i,j \rangle}
c^\dagger_{i}c_{j} + \;U \sum_{i} S_i\;(c^\dagger_{i}c_{i} -
\tfrac{1}{2}). \\
\end{aligned}\]</span></p>
<p>Given that the physics of states near the metal-insulator (MI)
transition is still poorly understood <span class="citation"
data-cites="belitzAndersonMottTransition1994 baskoMetalInsulatorTransition2006"> [<a
href="#ref-belitzAndersonMottTransition1994"
role="doc-biblioref">31</a>,<a
href="#ref-baskoMetalInsulatorTransition2006"
role="doc-biblioref">32</a>]</span> the FK model provides a rich test
bed to explore interaction driven MI transition physics. Despite its
simplicity, the model has a rich phase diagram in <span
class="math inline">\(D \geq 2\)</span> dimensions. It shows an Mott
insulator transition even at high temperature, similar to the
corresponding Hubbard Model <span class="citation"
data-cites="brandtThermodynamicsCorrelationFunctions1989"> [<a
href="#ref-brandtThermodynamicsCorrelationFunctions1989"
role="doc-biblioref">33</a>]</span>. In 1D, the ground state
phenomenology as a function of filling can be rich <span
class="citation" data-cites="gruberGroundStatesSpinless1990"> [<a
href="#ref-gruberGroundStatesSpinless1990"
role="doc-biblioref">34</a>]</span> but the system is disordered for all
<span class="math inline">\(T &gt; 0\)</span> <span class="citation"
data-cites="kennedyItinerantElectronModel1986"> [<a
href="#ref-kennedyItinerantElectronModel1986"
role="doc-biblioref">35</a>]</span>. The model has also been a test-bed
for many-body methods, interest took off when an exact dynamical
mean-field theory solution in the infinite dimensional case was
found <span class="citation"
data-cites="antipovCriticalExponentsStrongly2014 ribicNonlocalCorrelationsSpectral2016 freericksExactDynamicalMeanfield2003 herrmannNonequilibriumDynamicalCluster2016"> [<a
href="#ref-antipovCriticalExponentsStrongly2014"
role="doc-biblioref">36</a><a
href="#ref-herrmannNonequilibriumDynamicalCluster2016"
role="doc-biblioref">39</a>]</span>.</p>
<p>In Chapter 3 I will introduce a generalized FK model in one
dimension. With the addition of long-range interactions in the
background field, the model shows a similarly rich phase diagram. I use
an exact Markov chain Monte Carlo method to map the phase diagram and
compute the energy-resolved localization properties of the fermions. I
then compare the behaviour of this transitionally invariant model to an
Anderson model of uncorrelated binary disorder about a background charge
density wave field which confirms that the fermionic sector only fully
localizes for very large system sizes.</p>
<h1 id="quantum-spin-liquids">Quantum Spin Liquids</h1>
<p>To turn to the other key topic of this thesis, we have discussed the
question of the magnetic ordering of local moments in the Mott
insulating state. The local moments may form an AFM ground state.
Alternatively they may fail to order even at zero temperature <span
class="citation"
data-cites="law1TTaS2QuantumSpin2017 ribakGaplessExcitationsGround2017"> [<a
href="#ref-law1TTaS2QuantumSpin2017" role="doc-biblioref">26</a>,<a
href="#ref-ribakGaplessExcitationsGround2017"
role="doc-biblioref">27</a>]</span>, giving rise to what is known as a
quantum spin liquid (QSL) state.</p>
<p>Landau theory characterises phases of matter as inextricably linked
to the emergence of long range order via a spontaneously broken
symmetry. The fractional quantum Hall (FQH) state, discovered in the
1980s is an explicit example of an electronic system that falls outside
of the Landau paradigm. FQH systems exhibit fractionalised excitations
linked to their ground state having long range entanglement and
non-trivial topological properties <span class="citation"
data-cites="broholmQuantumSpinLiquids2020"> [<a
href="#ref-broholmQuantumSpinLiquids2020"
role="doc-biblioref">40</a>]</span>. Quantum spin liquids are the
analogous phase of matter for spin systems. Remarkably the existence of
QSLs was first suggested by Anderson in 1973 <span class="citation"
data-cites="andersonResonatingValenceBonds1973"> [<a
href="#ref-andersonResonatingValenceBonds1973"
role="doc-biblioref">41</a>]</span>.</p>
<div id="fig:correlation_spin_orbit_PT" class="fignos">
<figure>
<img src="/assets/thesis/intro_chapter/correlation_spin_orbit_PT.png"
data-short-caption="Phase Diagram" style="width:100.0%"
alt="Figure 3: From  [42]." />
<figcaption aria-hidden="true"><span>Figure 3:</span> From <span
class="citation" data-cites="TrebstPhysRep2022"> [<a
href="#ref-TrebstPhysRep2022"
role="doc-biblioref">42</a>]</span>.</figcaption>
</figure>
</div>
<p>The main route to QSLs, though there are others <span
class="citation"
data-cites="balentsNodalLiquidTheory1998 balentsDualOrderParameter1999 linExactSymmetryWeaklyinteracting1998"> [<a
href="#ref-balentsNodalLiquidTheory1998" role="doc-biblioref">43</a><a
href="#ref-linExactSymmetryWeaklyinteracting1998"
role="doc-biblioref">45</a>]</span>, is via frustration of spin models
that would otherwise order have AFM order. This frustration can come
geometrically, triangular lattices for instance cannot support AFM
order. It can also come about as a result of spin-orbit coupling.</p>
<p>Electron spin naturally couples to magnetic fields. Spin-orbit
coupling is a relativistic effect, that very roughly corresponds to the
fact that in the frame of reference of a moving electron, the electric
field of nearby nuclei look like magnetic field to which the electron
spin couples. In certain transition metal based compounds, such as those
based on Iridium and Rutheniun, crystal field effects, strong spin-orbit
coupling and narrow bandwidths lead to effective spin-<span
class="math inline">\(\tfrac{1}{2}\)</span> Mott insulating states with
strongly anisotropic spin-spin couplings known as Kitaev Materials <span
class="citation"
data-cites="Jackeli2009 HerrmannsAnRev2018 Winter2017 TrebstPhysRep2022 Takagi2019"> [<a
href="#ref-TrebstPhysRep2022" role="doc-biblioref">42</a>,<a
href="#ref-Jackeli2009" role="doc-biblioref">46</a><a
href="#ref-Takagi2019" role="doc-biblioref">49</a>]</span>. Kitaev
materials draw their name from the celebrated Kitaev Honeycomb Model as
it is believed they will realise the QSL state via the mechanisms of the
Kitaev Model.</p>
<p>The Kitaev Honeycomb model <span class="citation"
data-cites="kitaevAnyonsExactlySolved2006"> [<a
href="#ref-kitaevAnyonsExactlySolved2006"
role="doc-biblioref">50</a>]</span> was the first concrete model with a
QSL ground state. It is defined on the honeycomb lattice and provides an
exactly solvable model whose ground state is a QSL characterized by a
static <span class="math inline">\(\mathbb Z_2\)</span> gauge field and
Majorana fermion excitations. It can be reduced to a free fermion
problem via a mapping to Majorana fermions which yields an extensive
number of static <span class="math inline">\(\mathbb Z_2\)</span> fluxes
tied to an emergent gauge field. The model is remarkable not only for
its QSL ground state, it supports a rich phase diagram hosting gapless,
Abelian and non-Abelian phases and a finite temperature phase transition
to a thermal metal state <span class="citation"
data-cites="selfThermallyInducedMetallic2019"> [<a
href="#ref-selfThermallyInducedMetallic2019"
role="doc-biblioref">51</a>]</span>. It has also been proposed that it
could be used to support topological quantum computing <span
class="citation"
data-cites="freedmanTopologicalQuantumComputation2003"> [<a
href="#ref-freedmanTopologicalQuantumComputation2003"
role="doc-biblioref">52</a>]</span>.</p>
<p>It is by now understood that the Kitaev model on any tri-coordinated
<span class="math inline">\(z=3\)</span> graph has conserved plaquette
operators and local symmetries <span class="citation"
data-cites="Baskaran2007 Baskaran2008"> [<a href="#ref-Baskaran2007"
role="doc-biblioref">53</a>,<a href="#ref-Baskaran2008"
role="doc-biblioref">54</a>]</span> which allow a mapping onto effective
free Majorana fermion problems in a background of static <span
class="math inline">\(\mathbb Z_2\)</span> fluxes <span class="citation"
data-cites="Nussinov2009 OBrienPRB2016 yaoExactChiralSpin2007 hermanns2015weyl"> [<a
href="#ref-Nussinov2009" role="doc-biblioref">55</a><a
href="#ref-hermanns2015weyl" role="doc-biblioref">58</a>]</span>.
However, depending on lattice symmetries, finding the ground state flux
sector and understanding the QSL properties can still be
challenging <span class="citation"
data-cites="eschmann2019thermodynamics Peri2020"> [<a
href="#ref-eschmann2019thermodynamics" role="doc-biblioref">59</a>,<a
href="#ref-Peri2020" role="doc-biblioref">60</a>]</span>.</p>
<p><strong>paragraph about amorphous lattices</strong></p>
<p>In Chapter 4 I will introduce a soluble chiral amorphous quantum spin
liquid by extending the Kitaev honeycomb model to random lattices with
fixed coordination number three. The model retains its exact solubility
but the presence of plaquettes with an odd number of sides leads to a
spontaneous breaking of time reversal symmetry. I unearth a rich phase
diagram displaying Abelian as well as a non-Abelian quantum spin liquid
phases with a remarkably simple ground state flux pattern. Furthermore,
I show that the system undergoes a finite-temperature phase transition
to a conducting thermal metal state and discuss possible experimental
realisations.</p>
<h1 id="outline">Outline</h1>
<p>The next chapter, Chapter 2, will introduce some necessary background
to the Falikov-Kimball Model, the Kitaev Honeycomb Model, disorder and
localisation.</p>
<p>In Chapter 3 I introduce the Long Range Falikov-Kimball Model in
greater detail. I will present results that. Chapter 4 focusses on the
Amorphous Kitaev Model.</p>
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
<div id="ref-king2012murmurations" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[1] </div><div class="csl-right-inline">A.
J. King and D. J. Sumpter, <em>Murmurations</em>, Current Biology
<strong>22</strong>, R112 (2012).</div>
</div>
<div id="ref-balleriniInteractionRulingAnimal2008" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[2] </div><div class="csl-right-inline">M.
Ballerini et al., <em><a
href="https://doi.org/10.1073/pnas.0711437105">Interaction Ruling Animal
Collective Behavior Depends on Topological Rather Than Metric Distance:
Evidence from a Field Study</a></em>, Proceedings of the National
Academy of Sciences <strong>105</strong>, 1232 (2008).</div>
</div>
<div id="ref-andersonMoreDifferent1972" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[3] </div><div class="csl-right-inline">P.
W. Anderson, <em><a
href="https://doi.org/10.1126/science.177.4047.393">More Is
Different</a></em>, Science <strong>177</strong>, 393 (1972).</div>
</div>
<div id="ref-kivelsonDefiningEmergencePhysics2016" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[4] </div><div class="csl-right-inline">S.
Kivelson and S. A. Kivelson, <em><a
href="https://doi.org/10.1038/npjquantmats.2016.24">Defining Emergence
in Physics</a></em>, Npj Quant Mater <strong>1</strong>, 1 (2016).</div>
</div>
<div id="ref-saslowHistoryThermodynamicsMissing2020" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[5] </div><div class="csl-right-inline">W.
M. Saslow, <em><a href="https://doi.org/10.3390/e22010077">A History of
Thermodynamics: The Missing Manual</a></em>, Entropy (Basel)
<strong>22</strong>, 77 (2020).</div>
</div>
<div id="ref-flammHistoryOutlookStatistical1998" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[6] </div><div class="csl-right-inline">D.
Flamm, <em><a
href="https://doi.org/10.48550/arXiv.physics/9803005">History and
Outlook of Statistical Physics</a></em>, arXiv:physics/9803005.</div>
</div>
<div id="ref-ashcroftSolidStatePhysics1976" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[7] </div><div class="csl-right-inline">N.
W. Ashcroft and N. D. Mermin, <em>Solid State Physics</em> (Holt,
Rinehart and Winston, 1976).</div>
</div>
<div id="ref-isingBeitragZurTheorie1925" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[8] </div><div class="csl-right-inline">E.
Ising, <em><a href="https://doi.org/10.1007/BF02980577">Beitrag zur
Theorie des Ferromagnetismus</a></em>, Z. Physik <strong>31</strong>,
253 (1925).</div>
</div>
<div id="ref-landau2013fluid" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[9] </div><div class="csl-right-inline">L.
D. Landau and E. M. Lifshitz, <em>Fluid Mechanics: Landau and Lifshitz:
Course of Theoretical Physics, Volume 6</em>, Vol. 6 (Elsevier,
2013).</div>
</div>
<div id="ref-jaegerEhrenfestClassificationPhase1998" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[10] </div><div class="csl-right-inline">G.
Jaeger, <em><a href="https://doi.org/10.1007/s004070050021">The
Ehrenfest Classification of Phase Transitions: Introduction and
Evolution</a></em>, Arch Hist Exact Sc. <strong>53</strong>, 51
(1998).</div>
</div>
<div id="ref-blochÜberQuantenmechanikElektronen1929" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[11] </div><div class="csl-right-inline">F.
Bloch, <em><a href="https://doi.org/10.1007/BF01339455">Über die
Quantenmechanik der Elektronen in Kristallgittern</a></em>, Z. Physik
<strong>52</strong>, 555 (1929).</div>
</div>
<div id="ref-MagnetismCondensedMatter" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[12] </div><div class="csl-right-inline">S.
Blundell, <em>Magnetism in Condensed Matter</em> (OUP Oxford,
2001).</div>
</div>
<div id="ref-MicroscopicTheorySuperconductivity" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[13] </div><div class="csl-right-inline">J.
Bardeen, L. N. Cooper, and J. R. Schrieffer, <em><a
href="https://doi.org/10.1103/PhysRev.106.162">Microscopic Theory of
Superconductivity</a></em>, Phys. Rev. <strong>106</strong>, 162
(1957).</div>
</div>
<div id="ref-feldmanFractionalChargeFractional2021" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[14] </div><div class="csl-right-inline">D.
E. Feldman and B. I. Halperin, <em><a
href="https://doi.org/10.1088/1361-6633/ac03aa">Fractional Charge and
Fractional Statistics in the Quantum Hall Effects</a></em>, Rep. Prog.
Phys. <strong>84</strong>, 076501 (2021).</div>
</div>
<div id="ref-mottBasisElectronTheory1949" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[15] </div><div class="csl-right-inline">N.
F. Mott, <em><a href="https://doi.org/10.1088/0370-1298/62/7/303">The
Basis of the Electron Theory of Metals, with Special Reference to the
Transition Metals</a></em>, Proc. Phys. Soc. A <strong>62</strong>, 416
(1949).</div>
</div>
<div id="ref-fisherMottInsulatorsSpin1999" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[16] </div><div class="csl-right-inline">M.
P. A. Fisher, <em><a href="https://doi.org/10.1007/3-540-46637-1_8">Mott
Insulators, Spin Liquids and Quantum Disordered
Superconductivity</a></em>, in <em>Aspects Topologiques de La Physique
En Basse Dimension. Topological Aspects of Low Dimensional Systems</em>,
edited by A. Comtet, T. Jolicœur, S. Ouvry, and F. David, Vol. 69
(Springer Berlin Heidelberg, Berlin, Heidelberg, 1999), pp.
575641.</div>
</div>
<div id="ref-boerSemiconductorsPartiallyCompletely1937"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[17] </div><div class="csl-right-inline">J.
H. de Boer and E. J. W. Verwey, <em><a
href="https://doi.org/10.1088/0959-5309/49/4S/307">Semi-Conductors with
Partially and with Completely Filled &lt;Script&gt;3d-Lattice
Bands&lt;/Script&gt;</a></em>, Proc. Phys. Soc. <strong>49</strong>, 59
(1937).</div>
</div>
<div id="ref-mottDiscussionPaperBoer1937" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[18] </div><div class="csl-right-inline">N.
F. Mott and R. Peierls, <em><a
href="https://doi.org/10.1088/0959-5309/49/4S/308">Discussion of the
Paper by de Boer and Verwey</a></em>, Proc. Phys. Soc.
<strong>49</strong>, 72 (1937).</div>
</div>
<div id="ref-bednorzPossibleHighTcSuperconductivity1986"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[19] </div><div class="csl-right-inline">J.
G. Bednorz and K. A. Müller, <em><a
href="https://doi.org/10.1007/BF01303701">Possible highTc
Superconductivity in the BaLaCuO System</a></em>, Z. Physik B -
Condensed Matter <strong>64</strong>, 189 (1986).</div>
</div>
<div id="ref-leeDopingMottInsulator2006" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[20] </div><div class="csl-right-inline">P.
A. Lee, N. Nagaosa, and X.-G. Wen, <em><a
href="https://doi.org/10.1103/RevModPhys.78.17">Doping a Mott Insulator:
Physics of High-Temperature Superconductivity</a></em>, Rev. Mod. Phys.
<strong>78</strong>, 17 (2006).</div>
</div>
<div id="ref-gutzwillerEffectCorrelationFerromagnetism1963"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[21] </div><div class="csl-right-inline">M.
C. Gutzwiller, <em><a
href="https://doi.org/10.1103/PhysRevLett.10.159">Effect of Correlation
on the Ferromagnetism of Transition Metals</a></em>, Phys. Rev. Lett.
<strong>10</strong>, 159 (1963).</div>
</div>
<div id="ref-kanamoriElectronCorrelationFerromagnetism1963"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[22] </div><div class="csl-right-inline">J.
Kanamori, <em><a href="https://doi.org/10.1143/PTP.30.275">Electron
Correlation and Ferromagnetism of Transition Metals</a></em>, Progress
of Theoretical Physics <strong>30</strong>, 275 (1963).</div>
</div>
<div id="ref-hubbardj.ElectronCorrelationsNarrow1963" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[23] </div><div
class="csl-right-inline">Hubbard, J., <em><a
href="https://doi.org/10.1098/rspa.1963.0204">Electron Correlations in
Narrow Energy Bands</a></em>, Proceedings of the Royal Society of
London. Series A. Mathematical and Physical Sciences
<strong>276</strong>, 238 (1963).</div>
</div>
<div id="ref-hubbardElectronCorrelationsNarrow1964" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[24] </div><div class="csl-right-inline">J.
Hubbard and B. H. Flowers, <em><a
href="https://doi.org/10.1098/rspa.1964.0190">Electron Correlations in
Narrow Energy Bands III. An Improved Solution</a></em>, Proceedings of
the Royal Society of London. Series A. Mathematical and Physical
Sciences <strong>281</strong>, 401 (1964).</div>
</div>
<div id="ref-mottMetalInsulatorTransitions1990" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[25] </div><div class="csl-right-inline">N.
Mott, <em><a href="https://doi.org/10.1201/b12795">Metal-Insulator
Transitions</a></em> (CRC Press, London, 1990).</div>
</div>
<div id="ref-law1TTaS2QuantumSpin2017" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[26] </div><div class="csl-right-inline">K.
T. Law and P. A. Lee, <em><a
href="https://doi.org/10.1073/pnas.1706769114">1t-TaS2 as a Quantum Spin
Liquid</a></em>, Proceedings of the National Academy of Sciences
<strong>114</strong>, 6996 (2017).</div>
</div>
<div id="ref-ribakGaplessExcitationsGround2017" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[27] </div><div class="csl-right-inline">A.
Ribak, I. Silber, C. Baines, K. Chashka, Z. Salman, Y. Dagan, and A.
Kanigel, <em><a
href="https://doi.org/10.1103/PhysRevB.96.195131">Gapless Excitations in
the Ground State of
&lt;Script&gt;$1T\text{\ensuremath{-}}{\Mathrm{TaS}}_{2}$&lt;/Script&gt;</a></em>,
Phys. Rev. B <strong>96</strong>, 195131 (2017).</div>
</div>
<div id="ref-slaterMagneticEffectsHartreeFock1951" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[28] </div><div class="csl-right-inline">J.
C. Slater, <em><a href="https://doi.org/10.1103/PhysRev.82.538">Magnetic
Effects and the Hartree-Fock Equation</a></em>, Phys. Rev.
<strong>82</strong>, 538 (1951).</div>
</div>
<div id="ref-greinerQuantumPhaseTransition2002" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[29] </div><div class="csl-right-inline">M.
Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, <em><a
href="https://doi.org/10.1038/415039a">Quantum Phase Transition from a
Superfluid to a Mott Insulator in a Gas of Ultracold Atoms</a></em>,
Nature <strong>415</strong>, 39 (2002).</div>
</div>
<div id="ref-mazurenkoColdatomFermiHubbard2017" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[30] </div><div class="csl-right-inline">A.
Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanász-Nagy, R. Schmidt,
F. Grusdt, E. Demler, D. Greif, and M. Greiner, <em><a
href="https://doi.org/10.1038/nature22362">A Cold-Atom FermiHubbard
Antiferromagnet</a></em>, Nature <strong>545</strong>, 462 (2017).</div>
</div>
<div id="ref-belitzAndersonMottTransition1994" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[31] </div><div class="csl-right-inline">D.
Belitz and T. R. Kirkpatrick, <em><a
href="https://doi.org/10.1103/RevModPhys.66.261">The Anderson-Mott
Transition</a></em>, Rev. Mod. Phys. <strong>66</strong>, 261
(1994).</div>
</div>
<div id="ref-baskoMetalInsulatorTransition2006" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[32] </div><div class="csl-right-inline">D.
M. Basko, I. L. Aleiner, and B. L. Altshuler, <em><a
href="https://doi.org/10.1016/j.aop.2005.11.014">MetalInsulator
Transition in a Weakly Interacting Many-Electron System with Localized
Single-Particle States</a></em>, Annals of Physics <strong>321</strong>,
1126 (2006).</div>
</div>
<div id="ref-brandtThermodynamicsCorrelationFunctions1989"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[33] </div><div class="csl-right-inline">U.
Brandt and C. Mielsch, <em><a
href="https://doi.org/10.1007/BF01321824">Thermodynamics and Correlation
Functions of the Falicov-Kimball Model in Large Dimensions</a></em>, Z.
Physik B - Condensed Matter <strong>75</strong>, 365 (1989).</div>
</div>
<div id="ref-gruberGroundStatesSpinless1990" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[34] </div><div class="csl-right-inline">C.
Gruber, J. Iwanski, J. Jedrzejewski, and P. Lemberger, <em><a
href="https://doi.org/10.1103/PhysRevB.41.2198">Ground States of the
Spinless Falicov-Kimball Model</a></em>, Phys. Rev. B
<strong>41</strong>, 2198 (1990).</div>
</div>
<div id="ref-kennedyItinerantElectronModel1986" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[35] </div><div class="csl-right-inline">T.
Kennedy and E. H. Lieb, <em><a
href="https://doi.org/10.1016/0378-4371(86)90188-3">An Itinerant
Electron Model with Crystalline or Magnetic Long Range Order</a></em>,
Physica A: Statistical Mechanics and Its Applications
<strong>138</strong>, 320 (1986).</div>
</div>
<div id="ref-antipovCriticalExponentsStrongly2014" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[36] </div><div class="csl-right-inline">A.
E. Antipov, E. Gull, and S. Kirchner, <em><a
href="https://doi.org/10.1103/PhysRevLett.112.226401">Critical Exponents
of Strongly Correlated Fermion Systems from Diagrammatic Multiscale
Methods</a></em>, Phys. Rev. Lett. <strong>112</strong>, 226401
(2014).</div>
</div>
<div id="ref-ribicNonlocalCorrelationsSpectral2016" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[37] </div><div class="csl-right-inline">T.
Ribic, G. Rohringer, and K. Held, <em><a
href="https://doi.org/10.1103/PhysRevB.93.195105">Nonlocal Correlations
and Spectral Properties of the Falicov-Kimball Model</a></em>, Phys.
Rev. B <strong>93</strong>, 195105 (2016).</div>
</div>
<div id="ref-freericksExactDynamicalMeanfield2003" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[38] </div><div class="csl-right-inline">J.
K. Freericks and V. Zlatić, <em><a
href="https://doi.org/10.1103/RevModPhys.75.1333">Exact Dynamical
Mean-Field Theory of the Falicov-Kimball Model</a></em>, Rev. Mod. Phys.
<strong>75</strong>, 1333 (2003).</div>
</div>
<div id="ref-herrmannNonequilibriumDynamicalCluster2016"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[39] </div><div class="csl-right-inline">A.
J. Herrmann, N. Tsuji, M. Eckstein, and P. Werner, <em><a
href="https://doi.org/10.1103/PhysRevB.94.245114">Nonequilibrium
Dynamical Cluster Approximation Study of the Falicov-Kimball
Model</a></em>, Phys. Rev. B <strong>94</strong>, 245114 (2016).</div>
</div>
<div id="ref-broholmQuantumSpinLiquids2020" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[40] </div><div class="csl-right-inline">C.
Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, M. R. Norman, and T.
Senthil, <em><a href="https://doi.org/10.1126/science.aay0668">Quantum
Spin Liquids</a></em>, Science <strong>367</strong>, eaay0668
(2020).</div>
</div>
<div id="ref-andersonResonatingValenceBonds1973" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[41] </div><div class="csl-right-inline">P.
W. Anderson, <em><a
href="https://doi.org/10.1016/0025-5408(73)90167-0">Resonating Valence
Bonds: A New Kind of Insulator?</a></em>, Materials Research Bulletin
<strong>8</strong>, 153 (1973).</div>
</div>
<div id="ref-TrebstPhysRep2022" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[42] </div><div class="csl-right-inline">S.
Trebst and C. Hickey, <em><a
href="https://doi.org/10.1016/j.physrep.2021.11.003">Kitaev
Materials</a></em>, Physics Reports <strong>950</strong>, 1
(2022).</div>
</div>
<div id="ref-balentsNodalLiquidTheory1998" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[43] </div><div class="csl-right-inline">L.
Balents, M. P. A. Fisher, and C. Nayak, <em><a
href="https://doi.org/10.1142/S0217979298000570">Nodal Liquid Theory of
the Pseudo-Gap Phase of High-Tc Superconductors</a></em>, Int. J. Mod.
Phys. B <strong>12</strong>, 1033 (1998).</div>
</div>
<div id="ref-balentsDualOrderParameter1999" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[44] </div><div class="csl-right-inline">L.
Balents, M. P. A. Fisher, and C. Nayak, <em><a
href="https://doi.org/10.1103/PhysRevB.60.1654">Dual Order Parameter for
the Nodal Liquid</a></em>, Phys. Rev. B <strong>60</strong>, 1654
(1999).</div>
</div>
<div id="ref-linExactSymmetryWeaklyinteracting1998" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[45] </div><div
class="csl-right-inline">H.-H. Lin, L. Balents, and M. P. A. Fisher,
<em><a href="https://doi.org/10.1103/PhysRevB.58.1794">Exact SO(8)
Symmetry in the Weakly-Interacting Two-Leg Ladder</a></em>, Phys. Rev. B
<strong>58</strong>, 1794 (1998).</div>
</div>
<div id="ref-Jackeli2009" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[46] </div><div class="csl-right-inline">G.
Jackeli and G. Khaliullin, <em><a
href="https://doi.org/10.1103/PhysRevLett.102.017205">Mott Insulators in
the Strong Spin-Orbit Coupling Limit: From Heisenberg to a Quantum
Compass and Kitaev Models</a></em>, Physical Review Letters
<strong>102</strong>, 017205 (2009).</div>
</div>
<div id="ref-HerrmannsAnRev2018" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[47] </div><div class="csl-right-inline">M.
Hermanns, I. Kimchi, and J. Knolle, <em><a
href="https://doi.org/10.1146/annurev-conmatphys-033117-053934">Physics
of the Kitaev Model: Fractionalization, Dynamic Correlations, and
Material Connections</a></em>, Annual Review of Condensed Matter Physics
<strong>9</strong>, 17 (2018).</div>
</div>
<div id="ref-Winter2017" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[48] </div><div class="csl-right-inline">S.
M. Winter, A. A. Tsirlin, M. Daghofer, J. van den Brink, Y. Singh, P.
Gegenwart, and R. Valentí, <em>Models and Materials for Generalized
Kitaev Magnetism</em>, Journal of Physics: Condensed Matter
<strong>29</strong>, 493002 (2017).</div>
</div>
<div id="ref-Takagi2019" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[49] </div><div class="csl-right-inline">H.
Takagi, T. Takayama, G. Jackeli, G. Khaliullin, and S. E. Nagler,
<em>Concept and Realization of Kitaev Quantum Spin Liquids</em>, Nature
Reviews Physics <strong>1</strong>, 264 (2019).</div>
</div>
<div id="ref-kitaevAnyonsExactlySolved2006" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[50] </div><div class="csl-right-inline">A.
Kitaev, <em><a href="https://doi.org/10.1016/j.aop.2005.10.005">Anyons
in an Exactly Solved Model and Beyond</a></em>, Annals of Physics
<strong>321</strong>, 2 (2006).</div>
</div>
<div id="ref-selfThermallyInducedMetallic2019" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[51] </div><div class="csl-right-inline">C.
N. Self, J. Knolle, S. Iblisdir, and J. K. Pachos, <em><a
href="https://doi.org/10.1103/PhysRevB.99.045142">Thermally Induced
Metallic Phase in a Gapped Quantum Spin Liquid - a Monte Carlo Study of
the Kitaev Model with Parity Projection</a></em>, Phys. Rev. B
<strong>99</strong>, 045142 (2019).</div>
</div>
<div id="ref-freedmanTopologicalQuantumComputation2003"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[52] </div><div class="csl-right-inline">M.
Freedman, A. Kitaev, M. Larsen, and Z. Wang, <em><a
href="https://doi.org/10.1090/S0273-0979-02-00964-3">Topological Quantum
Computation</a></em>, Bull. Amer. Math. Soc. <strong>40</strong>, 31
(2003).</div>
</div>
<div id="ref-Baskaran2007" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[53] </div><div class="csl-right-inline">G.
Baskaran, S. Mandal, and R. Shankar, <em><a
href="https://doi.org/10.1103/PhysRevLett.98.247201">Exact Results for
Spin Dynamics and Fractionalization in the Kitaev Model</a></em>, Phys.
Rev. Lett. <strong>98</strong>, 247201 (2007).</div>
</div>
<div id="ref-Baskaran2008" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[54] </div><div class="csl-right-inline">G.
Baskaran, D. Sen, and R. Shankar, <em><a
href="https://doi.org/10.1103/PhysRevB.78.115116">Spin-S Kitaev Model:
Classical Ground States, Order from Disorder, and Exact Correlation
Functions</a></em>, Phys. Rev. B <strong>78</strong>, 115116
(2008).</div>
</div>
<div id="ref-Nussinov2009" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[55] </div><div class="csl-right-inline">Z.
Nussinov and G. Ortiz, <em><a
href="https://doi.org/10.1103/PhysRevB.79.214440">Bond Algebras and
Exact Solvability of Hamiltonians: Spin S=½ Multilayer Systems</a></em>,
Physical Review B <strong>79</strong>, 214440 (2009).</div>
</div>
<div id="ref-OBrienPRB2016" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[56] </div><div class="csl-right-inline">K.
OBrien, M. Hermanns, and S. Trebst, <em><a
href="https://doi.org/10.1103/PhysRevB.93.085101">Classification of
Gapless Z₂ Spin Liquids in Three-Dimensional Kitaev Models</a></em>,
Phys. Rev. B <strong>93</strong>, 085101 (2016).</div>
</div>
<div id="ref-yaoExactChiralSpin2007" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[57] </div><div class="csl-right-inline">H.
Yao and S. A. Kivelson, <em><a
href="https://doi.org/10.1103/PhysRevLett.99.247203">An Exact Chiral
Spin Liquid with Non-Abelian Anyons</a></em>, Phys. Rev. Lett.
<strong>99</strong>, 247203 (2007).</div>
</div>
<div id="ref-hermanns2015weyl" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[58] </div><div class="csl-right-inline">M.
Hermanns, K. OBrien, and S. Trebst, <em>Weyl Spin Liquids</em>,
Physical Review Letters <strong>114</strong>, 157202 (2015).</div>
</div>
<div id="ref-eschmann2019thermodynamics" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[59] </div><div class="csl-right-inline">T.
Eschmann, P. A. Mishchenko, T. A. Bojesen, Y. Kato, M. Hermanns, Y.
Motome, and S. Trebst, <em>Thermodynamics of a Gauge-Frustrated Kitaev
Spin Liquid</em>, Physical Review Research <strong>1</strong>, 032011(R)
(2019).</div>
</div>
<div id="ref-Peri2020" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[60] </div><div class="csl-right-inline">V.
Peri, S. Ok, S. S. Tsirkin, T. Neupert, G. Baskaran, M. Greiter, R.
Moessner, and R. Thomale, <em><a
href="https://doi.org/10.1103/PhysRevB.101.041114">Non-Abelian Chiral
Spin Liquid on a Simple Non-Archimedean Lattice</a></em>, Phys. Rev. B
<strong>101</strong>, 041114 (2020).</div>
</div>
</div>
</main>
</body>
</html>