This commit is contained in:
Tom Hodson 2022-08-24 19:03:28 +02:00
parent da6494301c
commit 0393ef0f2f
2 changed files with 234 additions and 53 deletions

View File

@ -574,61 +574,72 @@ spin couples. In certain transition metal based compounds, such as those
based on Iridium and Rutheniun, crystal field effects, strong spin-orbit based on Iridium and Rutheniun, crystal field effects, strong spin-orbit
coupling and narrow bandwidths lead to effective spin-<span coupling and narrow bandwidths lead to effective spin-<span
class="math inline">\(\tfrac{1}{2}\)</span> Mott insulating states with class="math inline">\(\tfrac{1}{2}\)</span> Mott insulating states with
strongly anisotropic spin-spin couplings <span class="citation" strongly anisotropic spin-spin couplings known as Kitaev Materials <span
data-cites="TrebstPhysRep2022"> [<a href="#ref-TrebstPhysRep2022" class="citation"
role="doc-biblioref">42</a>]</span>.</p> data-cites="Jackeli2009 HerrmannsAnRev2018 Winter2017 TrebstPhysRep2022 Takagi2019"> [<a
<p>The celebrated Kitaev model <span class="citation" href="#ref-TrebstPhysRep2022" role="doc-biblioref">42</a>,<a
href="#ref-Jackeli2009" role="doc-biblioref">46</a><a
href="#ref-Takagi2019" role="doc-biblioref">49</a>]</span>. Kitaev
materials draw their name from the celebrated Kitaev Honeycomb Model as
it is believed they will realise the QSL state via the mechanisms of the
Kitaev Model.</p>
<p>The Kitaev Honeycomb model <span class="citation"
data-cites="kitaevAnyonsExactlySolved2006"> [<a data-cites="kitaevAnyonsExactlySolved2006"> [<a
href="#ref-kitaevAnyonsExactlySolved2006" href="#ref-kitaevAnyonsExactlySolved2006"
role="doc-biblioref">46</a>]</span></p> role="doc-biblioref">50</a>]</span> was the first concrete model with a
<p>QSLs are a long range entangled ground state of a highly QSL ground state. It is defined on the honeycomb lattice and provides an
frustated</p> exactly solvable model whose ground state is a QSL characterized by a
<ul> static <span class="math inline">\(\mathbb Z_2\)</span> gauge field and
<li><p>QSLs introduced by anderson 1973</p></li> Majorana fermion excitations. It can be reduced to a free fermion
<li><p>Frustration can be geometric, such as AFM couplings on a problem via a mapping to Majorana fermions which yields an extensive
triangular lattice. It can also come from anisotropic couplings induced number of static <span class="math inline">\(\mathbb Z_2\)</span> fluxes
via spin-orbit coupling.</p></li> tied to an emergent gauge field. The model is remarkable not only for
</ul> its QSL ground state, it supports a rich phase diagram hosting gapless,
<p>Geometric frustration or spin-orbit coupling can prevent magnetic Abelian and non-Abelian phases and a finite temperature phase transition
ordering is an important part of getting a QSL, suggests exploring the to a thermal metal state <span class="citation"
lattice and avenue of interest.</p> data-cites="selfThermallyInducedMetallic2019"> [<a
<ul> href="#ref-selfThermallyInducedMetallic2019"
<li><p>Spin orbit effect is a relativistic effect that couples electron role="doc-biblioref">51</a>]</span>. It has also been proposed that it
spin to orbital angular moment. Very roughly, an electron sees the could be used to support topological quantum computing <span
electric field of the nucleus as a magnetic field due to its movement class="citation"
and the electron spin couples to this. Can be strong in heavy data-cites="freedmanTopologicalQuantumComputation2003"> [<a
elements</p></li> href="#ref-freedmanTopologicalQuantumComputation2003"
<li><p>The Kitaev Model as a canonical QSL</p></li> role="doc-biblioref">52</a>]</span>.</p>
<li><p>Kitaev model has extensively many conserved charges too</p></li> <p>It is by now understood that the Kitaev model on any tri-coordinated
<li><p>anyons</p></li> <span class="math inline">\(z=3\)</span> graph has conserved plaquette
<li><p>fractionalisation</p></li> operators and local symmetries <span class="citation"
<li><p>Topology -&gt; GS degeneracy depends on the genus of the data-cites="Baskaran2007 Baskaran2008"> [<a href="#ref-Baskaran2007"
surface</p></li> role="doc-biblioref">53</a>,<a href="#ref-Baskaran2008"
<li><p>the chern number</p></li> role="doc-biblioref">54</a>]</span> which allow a mapping onto effective
</ul> free Majorana fermion problems in a background of static <span
<p>kinds of mott insulators: Mott-Heisenberg (AFM order below Néel class="math inline">\(\mathbb Z_2\)</span> fluxes <span class="citation"
temperature) Mott-Hubbard (no long-range order of local magnetic data-cites="Nussinov2009 OBrienPRB2016 yaoExactChiralSpin2007 hermanns2015weyl"> [<a
moments) Mott-Anderson (disorder + correlations) Wigner Crystal</p> href="#ref-Nussinov2009" role="doc-biblioref">55</a><a
href="#ref-hermanns2015weyl" role="doc-biblioref">58</a>]</span>.
However, depending on lattice symmetries, finding the ground state flux
sector and understanding the QSL properties can still be
challenging <span class="citation"
data-cites="eschmann2019thermodynamics Peri2020"> [<a
href="#ref-eschmann2019thermodynamics" role="doc-biblioref">59</a>,<a
href="#ref-Peri2020" role="doc-biblioref">60</a>]</span>.</p>
<p><strong>paragraph about amorphous lattices</strong></p>
<p>In Chapter 4 I will introduce a soluble chiral amorphous quantum spin
liquid by extending the Kitaev honeycomb model to random lattices with
fixed coordination number three. The model retains its exact solubility
but the presence of plaquettes with an odd number of sides leads to a
spontaneous breaking of time reversal symmetry. I unearth a rich phase
diagram displaying Abelian as well as a non-Abelian quantum spin liquid
phases with a remarkably simple ground state flux pattern. Furthermore,
I show that the system undergoes a finite-temperature phase transition
to a conducting thermal metal state and discuss possible experimental
realisations.</p>
<h1 id="outline">Outline</h1> <h1 id="outline">Outline</h1>
<p>This thesis is composed of two main studies of separate but related <p>The next chapter, Chapter 2, will introduce some necessary background
physical models, The Falikov-Kimball Model and the Kitaev-Honeycomb to the Falikov-Kimball Model, the Kitaev Honeycomb Model, disorder and
Model. In this chapter I will discuss the overarching motivations for localisation.</p>
looking at these two physical models. I will then review the literature <p>In Chapter 3 I introduce the Long Range Falikov-Kimball Model in
and methods that are common to both models.</p> greater detail. I will present results that. Chapter 4 focusses on the
<p>In Chapter 2 I will look at the Falikov-Kimball model. I will review Amorphous Kitaev Model.</p>
what it is and why we would want to study it. Ill survey what is
already known about it and identify the gap in the research that we aim
to fill, namely the models behaviour in one dimension. Ill then
introduce the modified model that we came up with to close this gap. I
will present our results on the thermodynamic phase diagram and
localisation properties of the model</p>
<p>In Chapter 3 Ill study the Kitaev Honeycomb Model, following the
same structure as Chapter 2 I will motivate the study, survey the
literature and identify a gap. Ill introduce our Amorphous Kitaev Model
designed to fill this gap and present the results.</p>
<p>Finally in chapter 4 I will summarise the results and discuss what
implications they have for our understanding interacting many-body
quantum systems.</p>
<div id="refs" class="references csl-bib-body" role="doc-bibliography"> <div id="refs" class="references csl-bib-body" role="doc-bibliography">
<div id="ref-king2012murmurations" class="csl-entry" <div id="ref-king2012murmurations" class="csl-entry"
role="doc-biblioentry"> role="doc-biblioentry">
@ -984,13 +995,118 @@ class="csl-right-inline">H.-H. Lin, L. Balents, and M. P. A. Fisher,
Symmetry in the Weakly-Interacting Two-Leg Ladder</a></em>, Phys. Rev. B Symmetry in the Weakly-Interacting Two-Leg Ladder</a></em>, Phys. Rev. B
<strong>58</strong>, 1794 (1998).</div> <strong>58</strong>, 1794 (1998).</div>
</div> </div>
<div id="ref-Jackeli2009" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[46] </div><div class="csl-right-inline">G.
Jackeli and G. Khaliullin, <em><a
href="https://doi.org/10.1103/PhysRevLett.102.017205">Mott Insulators in
the Strong Spin-Orbit Coupling Limit: From Heisenberg to a Quantum
Compass and Kitaev Models</a></em>, Physical Review Letters
<strong>102</strong>, 017205 (2009).</div>
</div>
<div id="ref-HerrmannsAnRev2018" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[47] </div><div class="csl-right-inline">M.
Hermanns, I. Kimchi, and J. Knolle, <em><a
href="https://doi.org/10.1146/annurev-conmatphys-033117-053934">Physics
of the Kitaev Model: Fractionalization, Dynamic Correlations, and
Material Connections</a></em>, Annual Review of Condensed Matter Physics
<strong>9</strong>, 17 (2018).</div>
</div>
<div id="ref-Winter2017" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[48] </div><div class="csl-right-inline">S.
M. Winter, A. A. Tsirlin, M. Daghofer, J. van den Brink, Y. Singh, P.
Gegenwart, and R. Valentí, <em>Models and Materials for Generalized
Kitaev Magnetism</em>, Journal of Physics: Condensed Matter
<strong>29</strong>, 493002 (2017).</div>
</div>
<div id="ref-Takagi2019" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[49] </div><div class="csl-right-inline">H.
Takagi, T. Takayama, G. Jackeli, G. Khaliullin, and S. E. Nagler,
<em>Concept and Realization of Kitaev Quantum Spin Liquids</em>, Nature
Reviews Physics <strong>1</strong>, 264 (2019).</div>
</div>
<div id="ref-kitaevAnyonsExactlySolved2006" class="csl-entry" <div id="ref-kitaevAnyonsExactlySolved2006" class="csl-entry"
role="doc-biblioentry"> role="doc-biblioentry">
<div class="csl-left-margin">[46] </div><div class="csl-right-inline">A. <div class="csl-left-margin">[50] </div><div class="csl-right-inline">A.
Kitaev, <em><a href="https://doi.org/10.1016/j.aop.2005.10.005">Anyons Kitaev, <em><a href="https://doi.org/10.1016/j.aop.2005.10.005">Anyons
in an Exactly Solved Model and Beyond</a></em>, Annals of Physics in an Exactly Solved Model and Beyond</a></em>, Annals of Physics
<strong>321</strong>, 2 (2006).</div> <strong>321</strong>, 2 (2006).</div>
</div> </div>
<div id="ref-selfThermallyInducedMetallic2019" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[51] </div><div class="csl-right-inline">C.
N. Self, J. Knolle, S. Iblisdir, and J. K. Pachos, <em><a
href="https://doi.org/10.1103/PhysRevB.99.045142">Thermally Induced
Metallic Phase in a Gapped Quantum Spin Liquid - a Monte Carlo Study of
the Kitaev Model with Parity Projection</a></em>, Phys. Rev. B
<strong>99</strong>, 045142 (2019).</div>
</div>
<div id="ref-freedmanTopologicalQuantumComputation2003"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[52] </div><div class="csl-right-inline">M.
Freedman, A. Kitaev, M. Larsen, and Z. Wang, <em><a
href="https://doi.org/10.1090/S0273-0979-02-00964-3">Topological Quantum
Computation</a></em>, Bull. Amer. Math. Soc. <strong>40</strong>, 31
(2003).</div>
</div>
<div id="ref-Baskaran2007" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[53] </div><div class="csl-right-inline">G.
Baskaran, S. Mandal, and R. Shankar, <em><a
href="https://doi.org/10.1103/PhysRevLett.98.247201">Exact Results for
Spin Dynamics and Fractionalization in the Kitaev Model</a></em>, Phys.
Rev. Lett. <strong>98</strong>, 247201 (2007).</div>
</div>
<div id="ref-Baskaran2008" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[54] </div><div class="csl-right-inline">G.
Baskaran, D. Sen, and R. Shankar, <em><a
href="https://doi.org/10.1103/PhysRevB.78.115116">Spin-S Kitaev Model:
Classical Ground States, Order from Disorder, and Exact Correlation
Functions</a></em>, Phys. Rev. B <strong>78</strong>, 115116
(2008).</div>
</div>
<div id="ref-Nussinov2009" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[55] </div><div class="csl-right-inline">Z.
Nussinov and G. Ortiz, <em><a
href="https://doi.org/10.1103/PhysRevB.79.214440">Bond Algebras and
Exact Solvability of Hamiltonians: Spin S=½ Multilayer Systems</a></em>,
Physical Review B <strong>79</strong>, 214440 (2009).</div>
</div>
<div id="ref-OBrienPRB2016" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[56] </div><div class="csl-right-inline">K.
OBrien, M. Hermanns, and S. Trebst, <em><a
href="https://doi.org/10.1103/PhysRevB.93.085101">Classification of
Gapless Z₂ Spin Liquids in Three-Dimensional Kitaev Models</a></em>,
Phys. Rev. B <strong>93</strong>, 085101 (2016).</div>
</div>
<div id="ref-yaoExactChiralSpin2007" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[57] </div><div class="csl-right-inline">H.
Yao and S. A. Kivelson, <em><a
href="https://doi.org/10.1103/PhysRevLett.99.247203">An Exact Chiral
Spin Liquid with Non-Abelian Anyons</a></em>, Phys. Rev. Lett.
<strong>99</strong>, 247203 (2007).</div>
</div>
<div id="ref-hermanns2015weyl" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[58] </div><div class="csl-right-inline">M.
Hermanns, K. OBrien, and S. Trebst, <em>Weyl Spin Liquids</em>,
Physical Review Letters <strong>114</strong>, 157202 (2015).</div>
</div>
<div id="ref-eschmann2019thermodynamics" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[59] </div><div class="csl-right-inline">T.
Eschmann, P. A. Mishchenko, T. A. Bojesen, Y. Kato, M. Hermanns, Y.
Motome, and S. Trebst, <em>Thermodynamics of a Gauge-Frustrated Kitaev
Spin Liquid</em>, Physical Review Research <strong>1</strong>, 032011(R)
(2019).</div>
</div>
<div id="ref-Peri2020" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[60] </div><div class="csl-right-inline">V.
Peri, S. Ok, S. S. Tsirkin, T. Neupert, G. Baskaran, M. Greiter, R.
Moessner, and R. Thomale, <em><a
href="https://doi.org/10.1103/PhysRevB.101.041114">Non-Abelian Chiral
Spin Liquid on a Simple Non-Archimedean Lattice</a></em>, Phys. Rev. B
<strong>101</strong>, 041114 (2020).</div>
</div>
</div> </div>
</main> </main>
</body> </body>

View File

@ -160,6 +160,69 @@ image:
div.column{display: inline-block; vertical-align: top; width: 50%;} div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;} div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;} ul.task-list{list-style: none;}
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
div.csl-bib-body { } div.csl-bib-body { }
div.csl-entry { div.csl-entry {
clear: both; clear: both;
@ -266,6 +329,8 @@ Markers</a></li>
</ul> </ul>
</nav> </nav>
--> -->
<div class="sourceCode" id="cb1"><pre
class="sourceCode python"><code class="sourceCode python"></code></pre></div>
<h1 id="methods">Methods</h1> <h1 id="methods">Methods</h1>
<p>The practical implementation of what is described in this section is <p>The practical implementation of what is described in this section is
available as a Python package called Koala (Kitaev On Amorphous available as a Python package called Koala (Kitaev On Amorphous