mirror of
https://github.com/TomHodson/tomhodson.github.com.git
synced 2025-06-26 10:01:18 +02:00
updates
This commit is contained in:
parent
ff148fee25
commit
4c5541ecd4
@ -1,14 +0,0 @@
|
||||
figure {
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
align-items: center;
|
||||
}
|
||||
figure img {
|
||||
max-width: 900px;
|
||||
width: 80%;
|
||||
margin-bottom: 2em;
|
||||
}
|
||||
figcaption {
|
||||
aria-hidden: true;
|
||||
max-width: 700px;
|
||||
}
|
@ -4,7 +4,7 @@
|
||||
@import "header";
|
||||
@import "article";
|
||||
@import "cv";
|
||||
@import "figures";
|
||||
@import "thesis";
|
||||
|
||||
* {
|
||||
box-sizing: border-box;
|
||||
@ -66,29 +66,6 @@ img {
|
||||
margin-bottom: 1em;
|
||||
}
|
||||
|
||||
// For the thesis table of contents, should probably put this in a container
|
||||
li {
|
||||
margin-bottom: 0.2em;
|
||||
}
|
||||
|
||||
main > ul > li {
|
||||
margin-top: 1em;
|
||||
}
|
||||
|
||||
main > ul > ul > li {
|
||||
margin-top: 0.5em;
|
||||
}
|
||||
|
||||
div.csl-entry {
|
||||
margin-bottom: 0.5em;
|
||||
}
|
||||
// div.csl-entry a {
|
||||
// text-decoration: none;
|
||||
// }
|
||||
div.csl-entry div {
|
||||
display: inline;
|
||||
}
|
||||
|
||||
@media
|
||||
only screen and (max-width: $horizontal_breakpoint),
|
||||
only screen and (max-height: $vertical_breakpoint)
|
||||
|
48
_sass/thesis.scss
Normal file
48
_sass/thesis.scss
Normal file
@ -0,0 +1,48 @@
|
||||
|
||||
// Make figures looks nice
|
||||
figure {
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
align-items: center;
|
||||
}
|
||||
figure img {
|
||||
max-width: 900px;
|
||||
width: 100%;
|
||||
margin-bottom: 2em;
|
||||
}
|
||||
figcaption {
|
||||
aria-hidden: true;
|
||||
max-width: 700px;
|
||||
}
|
||||
|
||||
// For the table of contents, should probably put this in a container
|
||||
|
||||
// remove underline from toc links
|
||||
nav a {
|
||||
text-decoration: none;
|
||||
}
|
||||
|
||||
// modify the spacing of the various levels
|
||||
li {
|
||||
margin-bottom: 0.2em;
|
||||
}
|
||||
|
||||
main > ul > li {
|
||||
margin-top: 1em;
|
||||
}
|
||||
|
||||
main > ul > ul > li {
|
||||
margin-top: 0.5em;
|
||||
}
|
||||
|
||||
// Mess with the formatting of the citations
|
||||
div.csl-entry {
|
||||
margin-bottom: 0.5em;
|
||||
}
|
||||
// div.csl-entry a {
|
||||
// text-decoration: none;
|
||||
// }
|
||||
|
||||
div.csl-entry div {
|
||||
display: inline;
|
||||
}
|
@ -205,8 +205,7 @@ image:
|
||||
<main>
|
||||
<nav id="TOC" role="doc-toc">
|
||||
<ul>
|
||||
<li><a href="#properties-of-the-gauge-field"
|
||||
id="toc-properties-of-the-gauge-field">Properties of the Gauge Field</a>
|
||||
<li><a href="#gauge-fields" id="toc-gauge-fields">Gauge Fields</a>
|
||||
<ul>
|
||||
<li><a href="#vortices-and-their-movements"
|
||||
id="toc-vortices-and-their-movements">Vortices and their
|
||||
@ -223,26 +222,29 @@ plaquettes and vertices</a></li>
|
||||
</ul></li>
|
||||
<li><a href="#the-projector" id="toc-the-projector">The
|
||||
Projector</a></li>
|
||||
<li><a href="#open-boundary-conditions"
|
||||
id="toc-open-boundary-conditions">Open boundary conditions</a></li>
|
||||
<li><a href="#the-ground-state-vortex-sector"
|
||||
id="toc-the-ground-state-vortex-sector">The Ground State Vortex
|
||||
Sector</a>
|
||||
<li><a href="#the-ground-state" id="toc-the-ground-state">The Ground
|
||||
State</a>
|
||||
<ul>
|
||||
<li><a href="#finite-size-effects" id="toc-finite-size-effects">Finite
|
||||
size effects</a></li>
|
||||
</ul></li>
|
||||
<li><a href="#chiral-symmetry" id="toc-chiral-symmetry">Chiral
|
||||
Symmetry</a></li>
|
||||
</ul></li>
|
||||
<li><a href="#phases-of-the-kitaev-model"
|
||||
id="toc-phases-of-the-kitaev-model">Phases of the Kitaev Model</a></li>
|
||||
<li><a href="#whats-so-great-about-two-dimensions"
|
||||
id="toc-whats-so-great-about-two-dimensions">What’s so great about two
|
||||
dimensions?</a>
|
||||
<ul>
|
||||
<li><a href="#topology-chirality-and-edge-modes"
|
||||
id="toc-topology-chirality-and-edge-modes">Topology, chirality and edge
|
||||
modes</a></li>
|
||||
<li><a href="#anyonic-statistics" id="toc-anyonic-statistics">Anyonic
|
||||
Statistics</a></li>
|
||||
</ul></li>
|
||||
</ul>
|
||||
</nav>
|
||||
<h2 id="properties-of-the-gauge-field">Properties of the Gauge
|
||||
Field</h2>
|
||||
<h2 id="gauge-fields">Gauge Fields</h2>
|
||||
<p>The bond operators <span class="math inline">\(u_{ij}\)</span> are
|
||||
useful because they label a bond sector <span
|
||||
class="math inline">\(\mathcal{\tilde{L}}_u\)</span> in which we can
|
||||
@ -513,9 +515,9 @@ take each set of <span class="math inline">\(\prod_{i \in \{i\}}
|
||||
D_j\)</span> operators and gives us the complement of that set. I said
|
||||
earlier that <span class="math inline">\(C\)</span> is the identity in
|
||||
the physical subspace and we will shortly see why.</p>
|
||||
<p>W use the complement operator to rewrite the projector as a sum over
|
||||
half the subsets <span class="math inline">\(\{\}\)</span> let’s call
|
||||
that <span class="math inline">\(\Lambda\)</span>. The complement
|
||||
<p>We use the complement operator to rewrite the projector as a sum over
|
||||
half the subsets of <span class="math inline">\(\{i\}\)</span> let’s
|
||||
call that <span class="math inline">\(\Lambda\)</span>. The complement
|
||||
operator deals with the other half</p>
|
||||
<p><span class="math display">\[ \mathcal{P} = \left(
|
||||
\frac{1}{2^{2N-1}} \sum_{\Lambda} \prod_{i\in\{i\}} D_i\right)
|
||||
@ -538,7 +540,7 @@ reduces to a determinant of the Q matrix and the fermion parity,
|
||||
see<span class="citation"
|
||||
data-cites="pedrocchiPhysicalSolutionsKitaev2011b"><sup><a
|
||||
href="#ref-pedrocchiPhysicalSolutionsKitaev2011b"
|
||||
role="doc-biblioref">1</a></sup></span> . The only difference from the
|
||||
role="doc-biblioref">1</a></sup></span>. The only difference from the
|
||||
honeycomb case is that we cannot explicitely compute the factors <span
|
||||
class="math inline">\(p_x,p_y,p_z = \pm\;1\)</span> that arise from
|
||||
reordering the b operators such that pairs of vertices linked by the
|
||||
@ -551,19 +553,53 @@ decomposition<span class="citation"
|
||||
data-cites="app:cycle_decomp"><sup><a href="#ref-app:cycle_decomp"
|
||||
role="doc-biblioref"><strong>app:cycle_decomp?</strong></a></sup></span>.</p>
|
||||
<p>We find that <span class="math display">\[\mathcal{P}_0 = 1 +
|
||||
p_x\;p_y\;p_z\; \mathrm{det}(Q^u) \; \hat{\pi} \; \prod_{\{i,j\}}
|
||||
p_x\;p_y\;p_z\; \hat{\pi} \; \mathrm{det}(Q^u) \; \prod_{\{i,j\}}
|
||||
-iu_{ij}\]</span></p>
|
||||
<p>where <span class="math inline">\(p_x\;p_y\;p_z = \pm 1\)</span> are
|
||||
lattice structure factors. <span class="math inline">\(Q^u\)</span> is
|
||||
the determinant of the matrix mentioned earlier that maps <span
|
||||
lattice structure factors. <span class="math inline">\(det(Q^u)\)</span>
|
||||
is the determinant of the matrix mentioned earlier that maps <span
|
||||
class="math inline">\(c_i\)</span> operators to normal mode operators
|
||||
<span class="math inline">\(b'_i, b''_i\)</span>. These
|
||||
depend only on the lattice structure. <span class="math inline">\(\prod
|
||||
-i \; u_{ij}\)</span> depend on the lattice and the particular vortex
|
||||
sector. <span class="math inline">\(\hat{\pi} = \prod{i}^{N} (1 -
|
||||
depend only on the lattice structure.</p>
|
||||
<p><span class="math inline">\(\hat{\pi} = \prod{i}^{N} (1 -
|
||||
2\hat{n}_i)\)</span> is the parity of the particular many body state
|
||||
determined by fermionic occupation numbers <span
|
||||
class="math inline">\(n_i\)</span>.</p>
|
||||
class="math inline">\(n_i\)</span>. As discussed in +<span
|
||||
class="citation"
|
||||
data-cites="pedrocchiPhysicalSolutionsKitaev2011b"><sup><a
|
||||
href="#ref-pedrocchiPhysicalSolutionsKitaev2011b"
|
||||
role="doc-biblioref">1</a></sup></span> is <span
|
||||
class="math inline">\(\hat{\pi}\)</span> is gauge invariant in the sense
|
||||
that <span class="math inline">\([\hat{\pi}, D_i] = 0\)</span>.</p>
|
||||
<p>This implies that <span class="math inline">\(det(Q^u) \prod -i
|
||||
u_{ij}\)</span> is also a guage invariant quantity. In translation
|
||||
invariant models this quantity which can be related to the parity of the
|
||||
number of vortex pairs in the system<span class="citation"
|
||||
data-cites="yaoAlgebraicSpinLiquid2009"><sup><a
|
||||
href="#ref-yaoAlgebraicSpinLiquid2009"
|
||||
role="doc-biblioref">2</a></sup></span>. However it is not so simple to
|
||||
evaluate in the amorphous case.</p>
|
||||
<p>More general arguments<span class="citation"
|
||||
data-cites="chungExplicitMonodromyMoore2007 oshikawaTopologicalDegeneracyNonAbelian2007"><sup><a
|
||||
href="#ref-chungExplicitMonodromyMoore2007"
|
||||
role="doc-biblioref">3</a>,<a
|
||||
href="#ref-oshikawaTopologicalDegeneracyNonAbelian2007"
|
||||
role="doc-biblioref">4</a></sup></span> imply that <span
|
||||
class="math inline">\(det(Q^u) \prod -i u_{ij}\)</span> has an
|
||||
interesting relationship to the topological fluxes. In the non-Abelian
|
||||
phase we expect that it will change sign in exactly on of the four
|
||||
topological sectors. This forces that sector that contain a fermion and
|
||||
hence gives the model a three-fold degerenate ground state. In the
|
||||
Abelian phase this doesn’t happen and we get a fourfold degerate ground
|
||||
state. Whether this analysis generalises to the amorphous case in
|
||||
unclear.</p>
|
||||
<p>An alternate way to view this is to consider the adiabatic insertion
|
||||
of the fluxes <span class="math inline">\(\Phi_{x,y}\)</span> as the
|
||||
operations that undo vortex transport around the lattice. In this
|
||||
picture the three fold degeneracy occurs because transporting a vortex
|
||||
around <strong>both</strong> the major and minor axes of the torus
|
||||
changes its fusion channel such that the two vortices fuse into a
|
||||
fermion excition rather than the vacuum.</p>
|
||||
<p>All these factors take values <span class="math inline">\(\pm
|
||||
1\)</span> so <span class="math inline">\(\mathcal{P}_0\)</span> is 0 or
|
||||
1 for a particular state. Since <span
|
||||
@ -602,32 +638,26 @@ fermions in the system grows.</p>
|
||||
basis we would need to include the full symmetrisation over the gauge
|
||||
fields. However this was not necessary for any of the results that will
|
||||
be presented here.</p>
|
||||
<h2 id="open-boundary-conditions">Open boundary conditions</h2>
|
||||
<p>Care must be taken in the definition of open boundary conditions.
|
||||
Simply removing bonds from the lattice leaves behind unpaired <span
|
||||
class="math inline">\(b^\alpha\)</span> operators that need to be paired
|
||||
in some way to arrive at fermionic modes. In order to fix a pairing we
|
||||
always start from a lattice defined on the torus and generate a lattice
|
||||
with open boundary conditions by defining the bond coupling <span
|
||||
class="math inline">\(J^{\alpha}_{ij} = 0\)</span> for sites joined by
|
||||
bonds <span class="math inline">\((i,j)\)</span> that we want to remove.
|
||||
This creates fermionic zero modes <span
|
||||
class="math inline">\(u_{ij}\)</span> associated with these cut bonds
|
||||
which we set to 1 when calculating the projector.</p>
|
||||
<p>Alternatively, since all the fermionic zero modes are degenerate
|
||||
anyway, an arbitrary pairing of the unpaired <span
|
||||
class="math inline">\(b^\alpha\)</span> operators could be performed.
|
||||
<strong>Is is possible that a lattice constructed and coloured like this
|
||||
would have unequal numbers of <span class="math inline">\(b^x\)</span>
|
||||
<span class="math inline">\(b^y\)</span> and <span
|
||||
class="math inline">\(b^z\)</span> operators?</strong></p>
|
||||
<h2 id="the-ground-state-vortex-sector">The Ground State Vortex
|
||||
Sector</h2>
|
||||
<h2 id="the-ground-state">The Ground State</h2>
|
||||
<p>As we have shown that the Hamiltonian is gauge invariant, only the
|
||||
flux sector and the two topological fluxes affect the spectrum of the
|
||||
Hamiltonian. Thus we can label many body ground state by a combination
|
||||
of flux sector and fermionic occupation numbers.</p>
|
||||
<p>By studying the projector we saw that the fermionic occupation
|
||||
numbers of the ground state will always be either <span
|
||||
class="math inline">\(n_m = 0\)</span> or <span
|
||||
class="math inline">\(n_0 = 1, n_{m>1} = 0\)</span> because the
|
||||
projector really just enforces vortex and fermion parity.</p>
|
||||
<p>I refer to the flux sector that contains the ground state as the
|
||||
ground state flux sector. Recall that we call the excitations of the
|
||||
fluxes away from the ground ground state configuration
|
||||
<strong>vortices</strong>, so that the ground state flux sector is the
|
||||
vortex free sector by definition.</p>
|
||||
<p>On the Honeycomb, Lieb’s theorem implies that the the ground state
|
||||
corresponds to the state where all <span class="math inline">\(u_jk =
|
||||
corresponds to the state where all <span class="math inline">\(u_{jk} =
|
||||
1\)</span> implying that the flux free sector is the ground state
|
||||
sector<span class="citation" data-cites="lieb_flux_1994"><sup><a
|
||||
href="#ref-lieb_flux_1994" role="doc-biblioref">2</a></sup></span>.</p>
|
||||
href="#ref-lieb_flux_1994" role="doc-biblioref">5</a></sup></span>.</p>
|
||||
<p>Lieb’s theorem does not generalise easily to the amorphous case.
|
||||
However we can get some intuition by examining the problem that will
|
||||
lead to a guess for the ground state. We will then provide numerical
|
||||
@ -713,7 +743,7 @@ that form each plaquette and the choice of sign gives a twofold chiral
|
||||
ground state degeneracy.</p>
|
||||
<p>This conjecture is consistent with Lieb’s theorem on regular
|
||||
lattices<span class="citation" data-cites="lieb_flux_1994"><sup><a
|
||||
href="#ref-lieb_flux_1994" role="doc-biblioref">2</a></sup></span> and
|
||||
href="#ref-lieb_flux_1994" role="doc-biblioref">5</a></sup></span> and
|
||||
is supported by numerical evidence. As noted before, any flux that
|
||||
differs from the ground state is an excitation which I call a
|
||||
vortex.</p>
|
||||
@ -723,8 +753,36 @@ effects. In order to rigorously test it we would like to directly
|
||||
enumerate the <span class="math inline">\(2^N\)</span> vortex sectors
|
||||
for a smaller lattice and check that the lowest state found is the
|
||||
vortex sector predicted by ???.</p>
|
||||
<p>To do this we tile an amorphous lattice onto a repeating <span
|
||||
class="math inline">\(NxN\)</span> grid. The use of a fourier series
|
||||
<p>To do this we tile use an amorphous lattice as the unit cell of a
|
||||
periodic <span class="math inline">\(N\times N\)</span> system. Bonds
|
||||
that originally crossed the periodic boundaries now connect adjacent
|
||||
unit cells. Using Bloch’s theorem the problem then essnetially reduces
|
||||
back to the single amorphous unit cell but now the edges that cross the
|
||||
periodic boundaries pick up a phase dependent on the crystal momentum
|
||||
<span class="math inline">\(\vex{q} = (q_x, q_y)\)</span> and the
|
||||
lattice vector of the bond <span class="math inline">\(\vec{x} = (+1, 0,
|
||||
-1, +1, 0, -1)\)</span>. Assigning these lattice vectors to each bond is
|
||||
also a very conveninent way to store and plot toroidal graphs.</p>
|
||||
<p>This can then be solved using Bloch’s theorem. For a given crystal
|
||||
momentum <span class="math inline">\(\textbf{q} \in [0,2\pi)^2\)</span>,
|
||||
we are left with a Bloch Hamiltonian, which is identical to the original
|
||||
Hamiltonian aside from an extra phase on edges that cross the periodic
|
||||
boundaries in the <span class="math inline">\(x\)</span> and <span
|
||||
class="math inline">\(y\)</span> directions, <span
|
||||
class="math display">\[\begin{aligned}
|
||||
M_{jk}(\textbf{q}) = \frac{i}{2} J^{\alpha} u_{jk} e^{i
|
||||
q_{jk}},\end{aligned}\]</span> where <span class="math inline">\(q_{jk}
|
||||
= q_x\)</span> for a bond that crosses the <span
|
||||
class="math inline">\(x\)</span>-periodic boundary in the positive
|
||||
direction, with the analogous definition for <span
|
||||
class="math inline">\(y\)</span>-crossing bonds. We also have <span
|
||||
class="math inline">\(q_{jk} = -q_{kj}\)</span>. Finally <span
|
||||
class="math inline">\(q_{jk} = 0\)</span> if the edge does not cross any
|
||||
boundaries at all – in essence we are imposing twisted boundary
|
||||
conditions on our system. The total energy of the tiled system can be
|
||||
calculated by summing the energy of <span class="math inline">\(M(
|
||||
\textbf{q})\)</span> for every value of <span
|
||||
class="math inline">\(\textbf{q}\)</span>. The use of a fourier series
|
||||
then allows us to compute the diagonalisation with a penalty only linear
|
||||
in the number of tiles used compared to diagonalising a single lattice.
|
||||
With this technique the finite size effects related to the
|
||||
@ -736,16 +794,16 @@ class="math inline">\(\phi_0\)</span> correctly predicts the ground
|
||||
state for hundreds of thousands of lattices with upto 20 plaquettes. For
|
||||
larger lattices we verified that random perturbations around the
|
||||
predicted ground state never yield a lower energy state.</p>
|
||||
<h2 id="chiral-symmetry">Chiral Symmetry</h2>
|
||||
<h3 id="chiral-symmetry">Chiral Symmetry</h3>
|
||||
<p>In the discussion above we see that the ground state has a twofold
|
||||
<strong>chiral</strong> degeneracy that comes about because the global
|
||||
sign of the odd plaquettes does not matter.</p>
|
||||
<p>This happens because by adding odd plaquettes we have broken the time
|
||||
reversal symmetry of the original model<span class="citation"
|
||||
data-cites="Chua2011 yaoExactChiralSpin2007 ChuaPRB2011 Fiete2012 Natori2016 Wu2009 Peri2020 WangHaoranPRB2021"><sup><a
|
||||
href="#ref-Chua2011" role="doc-biblioref">3</a>–<a
|
||||
href="#ref-Chua2011" role="doc-biblioref">6</a>–<a
|
||||
href="#ref-WangHaoranPRB2021"
|
||||
role="doc-biblioref">10</a></sup></span>.</p>
|
||||
role="doc-biblioref">13</a></sup></span>.</p>
|
||||
<p>Similar to the behaviour of the original Kitaev model in response to
|
||||
a magnetic field, we get two degenerate ground states of different
|
||||
handedness. Practicaly speaking, one ground state is related to the
|
||||
@ -753,9 +811,16 @@ other by inverting the imaginary <span
|
||||
class="math inline">\(\phi\)</span> fluxes<span class="citation"
|
||||
data-cites="yaoExactChiralSpin2007"><sup><a
|
||||
href="#ref-yaoExactChiralSpin2007"
|
||||
role="doc-biblioref">4</a></sup></span>.</p>
|
||||
<h2 id="topology-chirality-and-edge-modes">Topology, chirality and edge
|
||||
modes</h2>
|
||||
role="doc-biblioref">7</a></sup></span>.</p>
|
||||
<h2 id="phases-of-the-kitaev-model">Phases of the Kitaev Model</h2>
|
||||
<p>discuss the abelian A phase / toric code phase / anisotropic
|
||||
phase</p>
|
||||
<p>the isotropic gapless phase of the standard model</p>
|
||||
<p>The isotropic gapped phase with the addition of a magnetic field</p>
|
||||
<h2 id="whats-so-great-about-two-dimensions">What’s so great about two
|
||||
dimensions?</h2>
|
||||
<h3 id="topology-chirality-and-edge-modes">Topology, chirality and edge
|
||||
modes</h3>
|
||||
<p>Most thermodynamic and quantum phases studied can be characterised by
|
||||
a local order parameter. That is, a function or operator that only
|
||||
requires knowledge about some fixed sized patch of the system that does
|
||||
@ -772,7 +837,7 @@ breaking.</p>
|
||||
looked at it defined on a graph that is embedded either into the plane
|
||||
or onto the torus. The extension to surfaces like the torus but with
|
||||
more than one handle is relatively easy.</p>
|
||||
<h2 id="anyonic-statistics">Anyonic Statistics</h2>
|
||||
<h3 id="anyonic-statistics">Anyonic Statistics</h3>
|
||||
<p>In dimensions greater than two, the quantum state of a system must
|
||||
pick up a factor of <span class="math inline">\(-1\)</span> or <span
|
||||
class="math inline">\(+1\)</span> if two identical particles are
|
||||
@ -884,23 +949,23 @@ class="math inline">\((+1, +1), (+1, -1), (-1, +1), (-1,
|
||||
<figure>
|
||||
<img src="/assets/thesis/figure_code/amk_chapter/topological_fluxes.png"
|
||||
style="width:57.0%"
|
||||
alt="Figure 8: Wilson loops that wind the major or minor diameters of the torus measure flux winding through the hole of the donut/torus or through the filling. If they made donuts that had both a jam filling and a hole this analogy would be a lot easier to make11." />
|
||||
alt="Figure 8: Wilson loops that wind the major or minor diameters of the torus measure flux winding through the hole of the donut/torus or through the filling. If they made donuts that had both a jam filling and a hole this analogy would be a lot easier to make14." />
|
||||
<figcaption aria-hidden="true"><span>Figure 8:</span> Wilson loops that
|
||||
wind the major or minor diameters of the torus measure flux winding
|
||||
through the hole of the donut/torus or through the filling. If they made
|
||||
donuts that had both a jam filling and a hole this analogy would be a
|
||||
lot easier to make<span class="citation"
|
||||
data-cites="parkerWhyDoesThis"><sup><a href="#ref-parkerWhyDoesThis"
|
||||
role="doc-biblioref">11</a></sup></span>.</figcaption>
|
||||
role="doc-biblioref">14</a></sup></span>.</figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
<p>However in the non-Abelian phase we have to wrangle with
|
||||
monodromy<span class="citation"
|
||||
data-cites="chungExplicitMonodromyMoore2007 oshikawaTopologicalDegeneracyNonAbelian2007"><sup><a
|
||||
href="#ref-chungExplicitMonodromyMoore2007"
|
||||
role="doc-biblioref">12</a>,<a
|
||||
role="doc-biblioref">3</a>,<a
|
||||
href="#ref-oshikawaTopologicalDegeneracyNonAbelian2007"
|
||||
role="doc-biblioref">13</a></sup></span>. Monodromy is behaviour of
|
||||
role="doc-biblioref">4</a></sup></span>. Monodromy is behaviour of
|
||||
objects as they move around a singularity. This manifests here in that
|
||||
the identity of a vortex and cloud of Majoranas can change as we wind
|
||||
them around the torus in such a way that rather than anhilating to the
|
||||
@ -910,7 +975,7 @@ the non-Abelian phase <span class="math inline">\((+1, +1), (+1, -1),
|
||||
(-1, +1)\)</span><span class="citation"
|
||||
data-cites="chungTopologicalQuantumPhase2010"><sup><a
|
||||
href="#ref-chungTopologicalQuantumPhase2010"
|
||||
role="doc-biblioref">14</a></sup></span>. The way that this shows up
|
||||
role="doc-biblioref">15</a></sup></span>. The way that this shows up
|
||||
concretly is that the projector enforces both flux and fermion parity.
|
||||
When we wind a vortex around both non-contractible loops of the torus,
|
||||
it flips the flux parity which forces means we have to introduce a
|
||||
@ -928,10 +993,10 @@ passively fault tolerant and actively stabilised quantum computations
|
||||
[<span class="citation"
|
||||
data-cites="kitaevFaulttolerantQuantumComputation2003"><sup><a
|
||||
href="#ref-kitaevFaulttolerantQuantumComputation2003"
|
||||
role="doc-biblioref">15</a></sup></span>;<span class="citation"
|
||||
role="doc-biblioref">16</a></sup></span>;<span class="citation"
|
||||
data-cites="poulinStabilizerFormalismOperator2005"><sup><a
|
||||
href="#ref-poulinStabilizerFormalismOperator2005"
|
||||
role="doc-biblioref">16</a></sup></span>;
|
||||
role="doc-biblioref">17</a></sup></span>;
|
||||
hastingsDynamicallyGeneratedLogical2021].</p>
|
||||
<div id="refs" class="references csl-bib-body" data-line-spacing="2"
|
||||
role="doc-bibliography">
|
||||
@ -943,8 +1008,34 @@ href="https://doi.org/10.1103/PhysRevB.84.165414">Physical solutions of
|
||||
the <span>Kitaev</span> honeycomb model</a>. <em>Phys. Rev. B</em>
|
||||
<strong>84</strong>, 165414 (2011).</div>
|
||||
</div>
|
||||
<div id="ref-yaoAlgebraicSpinLiquid2009" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">2. </div><div class="csl-right-inline">Yao,
|
||||
H., Zhang, S.-C. & Kivelson, S. A. <a
|
||||
href="https://doi.org/10.1103/PhysRevLett.102.217202">Algebraic
|
||||
<span>Spin Liquid</span> in an <span>Exactly Solvable Spin
|
||||
Model</span></a>. <em>Phys. Rev. Lett.</em> <strong>102</strong>, 217202
|
||||
(2009).</div>
|
||||
</div>
|
||||
<div id="ref-chungExplicitMonodromyMoore2007" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">3. </div><div
|
||||
class="csl-right-inline">Chung, S. B. & Stone, M. <a
|
||||
href="https://doi.org/10.1088/1751-8113/40/19/001">Explicit monodromy of
|
||||
<span>Moore</span> wavefunctions on a torus</a>. <em>J. Phys. A: Math.
|
||||
Theor.</em> <strong>40</strong>, 4923–4947 (2007).</div>
|
||||
</div>
|
||||
<div id="ref-oshikawaTopologicalDegeneracyNonAbelian2007"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">4. </div><div
|
||||
class="csl-right-inline">Oshikawa, M., Kim, Y. B., Shtengel, K., Nayak,
|
||||
C. & Tewari, S. <a
|
||||
href="https://doi.org/10.1016/j.aop.2006.08.001">Topological degeneracy
|
||||
of non-<span>Abelian</span> states for dummies</a>. <em>Annals of
|
||||
Physics</em> <strong>322</strong>, 1477–1498 (2007).</div>
|
||||
</div>
|
||||
<div id="ref-lieb_flux_1994" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">2. </div><div
|
||||
<div class="csl-left-margin">5. </div><div
|
||||
class="csl-right-inline">Lieb, E. H. <a
|
||||
href="https://doi.org/10.1103/PhysRevLett.73.2158">Flux
|
||||
<span>Phase</span> of the <span>Half-Filled Band</span></a>.
|
||||
@ -952,7 +1043,7 @@ href="https://doi.org/10.1103/PhysRevLett.73.2158">Flux
|
||||
(1994).</div>
|
||||
</div>
|
||||
<div id="ref-Chua2011" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">3. </div><div
|
||||
<div class="csl-left-margin">6. </div><div
|
||||
class="csl-right-inline">Chua, V., Yao, H. & Fiete, G. A. <a
|
||||
href="https://doi.org/10.1103/PhysRevB.83.180412">Exact chiral spin
|
||||
liquid with stable spin <span>Fermi</span> surface on the kagome
|
||||
@ -961,21 +1052,21 @@ lattice</a>. <em>Phys. Rev. B</em> <strong>83</strong>, 180412
|
||||
</div>
|
||||
<div id="ref-yaoExactChiralSpin2007" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">4. </div><div class="csl-right-inline">Yao,
|
||||
<div class="csl-left-margin">7. </div><div class="csl-right-inline">Yao,
|
||||
H. & Kivelson, S. A. <a
|
||||
href="https://doi.org/10.1103/PhysRevLett.99.247203">An exact chiral
|
||||
spin liquid with non-<span>Abelian</span> anyons</a>. <em>Phys. Rev.
|
||||
Lett.</em> <strong>99</strong>, 247203 (2007).</div>
|
||||
</div>
|
||||
<div id="ref-ChuaPRB2011" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">5. </div><div
|
||||
<div class="csl-left-margin">8. </div><div
|
||||
class="csl-right-inline">Chua, V. & Fiete, G. A. <a
|
||||
href="https://doi.org/10.1103/PhysRevB.84.195129">Exactly solvable
|
||||
topological chiral spin liquid with random exchange</a>. <em>Phys. Rev.
|
||||
B</em> <strong>84</strong>, 195129 (2011).</div>
|
||||
</div>
|
||||
<div id="ref-Fiete2012" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">6. </div><div
|
||||
<div class="csl-left-margin">9. </div><div
|
||||
class="csl-right-inline">Fiete, G. A. <em>et al.</em> <a
|
||||
href="https://doi.org/10.1016/j.physe.2011.11.011">Topological
|
||||
insulators and quantum spin liquids</a>. <em>Physica E: Low-dimensional
|
||||
@ -983,20 +1074,20 @@ Systems and Nanostructures</em> <strong>44</strong>, 845–859
|
||||
(2012).</div>
|
||||
</div>
|
||||
<div id="ref-Natori2016" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">7. </div><div
|
||||
<div class="csl-left-margin">10. </div><div
|
||||
class="csl-right-inline">Natori, W. M. H., Andrade, E. C., Miranda, E.
|
||||
& Pereira, R. G. Chiral spin-orbital liquids with nodal lines.
|
||||
<em>Phys. Rev. Lett.</em> <strong>117</strong>, 017204 (2016).</div>
|
||||
</div>
|
||||
<div id="ref-Wu2009" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">8. </div><div class="csl-right-inline">Wu,
|
||||
<div class="csl-left-margin">11. </div><div class="csl-right-inline">Wu,
|
||||
C., Arovas, D. & Hung, H.-H. <span><span
|
||||
class="math inline">\(\Gamma\)</span></span>-matrix generalization of
|
||||
the <span>Kitaev</span> model. <em>Physical Review B</em>
|
||||
<strong>79</strong>, 134427 (2009).</div>
|
||||
</div>
|
||||
<div id="ref-Peri2020" class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">9. </div><div
|
||||
<div class="csl-left-margin">12. </div><div
|
||||
class="csl-right-inline">Peri, V. <em>et al.</em> <a
|
||||
href="https://doi.org/10.1103/PhysRevB.101.041114">Non-<span>Abelian</span>
|
||||
chiral spin liquid on a simple non-<span>Archimedean</span> lattice</a>.
|
||||
@ -1004,7 +1095,7 @@ chiral spin liquid on a simple non-<span>Archimedean</span> lattice</a>.
|
||||
</div>
|
||||
<div id="ref-WangHaoranPRB2021" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">10. </div><div
|
||||
<div class="csl-left-margin">13. </div><div
|
||||
class="csl-right-inline">Wang, H. & Principi, A. <a
|
||||
href="https://doi.org/10.1103/PhysRevB.104.214422">Majorana edge and
|
||||
corner states in square and kagome quantum spin-<span><span
|
||||
@ -1013,30 +1104,13 @@ class="math inline">\(^{3}\fracslash_2\)</span></span> liquids</a>.
|
||||
</div>
|
||||
<div id="ref-parkerWhyDoesThis" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">11. </div><div
|
||||
<div class="csl-left-margin">14. </div><div
|
||||
class="csl-right-inline">Parker, M. Why does this balloon have -1
|
||||
holes?</div>
|
||||
</div>
|
||||
<div id="ref-chungExplicitMonodromyMoore2007" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">12. </div><div
|
||||
class="csl-right-inline">Chung, S. B. & Stone, M. <a
|
||||
href="https://doi.org/10.1088/1751-8113/40/19/001">Explicit monodromy of
|
||||
<span>Moore</span> wavefunctions on a torus</a>. <em>J. Phys. A: Math.
|
||||
Theor.</em> <strong>40</strong>, 4923–4947 (2007).</div>
|
||||
</div>
|
||||
<div id="ref-oshikawaTopologicalDegeneracyNonAbelian2007"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">13. </div><div
|
||||
class="csl-right-inline">Oshikawa, M., Kim, Y. B., Shtengel, K., Nayak,
|
||||
C. & Tewari, S. <a
|
||||
href="https://doi.org/10.1016/j.aop.2006.08.001">Topological degeneracy
|
||||
of non-<span>Abelian</span> states for dummies</a>. <em>Annals of
|
||||
Physics</em> <strong>322</strong>, 1477–1498 (2007).</div>
|
||||
</div>
|
||||
<div id="ref-chungTopologicalQuantumPhase2010" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">14. </div><div
|
||||
<div class="csl-left-margin">15. </div><div
|
||||
class="csl-right-inline">Chung, S. B., Yao, H., Hughes, T. L. & Kim,
|
||||
E.-A. <a href="https://doi.org/10.1103/PhysRevB.81.060403">Topological
|
||||
quantum phase transition in an exactly solvable model of a chiral spin
|
||||
@ -1045,7 +1119,7 @@ liquid at finite temperature</a>. <em>Phys. Rev. B</em>
|
||||
</div>
|
||||
<div id="ref-kitaevFaulttolerantQuantumComputation2003"
|
||||
class="csl-entry" role="doc-biblioentry">
|
||||
<div class="csl-left-margin">15. </div><div
|
||||
<div class="csl-left-margin">16. </div><div
|
||||
class="csl-right-inline">Kitaev, A. Yu. <a
|
||||
href="https://doi.org/10.1016/S0003-4916(02)00018-0">Fault-tolerant
|
||||
quantum computation by anyons</a>. <em>Annals of Physics</em>
|
||||
@ -1053,7 +1127,7 @@ quantum computation by anyons</a>. <em>Annals of Physics</em>
|
||||
</div>
|
||||
<div id="ref-poulinStabilizerFormalismOperator2005" class="csl-entry"
|
||||
role="doc-biblioentry">
|
||||
<div class="csl-left-margin">16. </div><div
|
||||
<div class="csl-left-margin">17. </div><div
|
||||
class="csl-right-inline">Poulin, D. <a
|
||||
href="https://doi.org/10.1103/PhysRevLett.95.230504">Stabilizer
|
||||
<span>Formalism</span> for <span>Operator Quantum Error
|
||||
|
@ -209,39 +209,29 @@ image:
|
||||
<ul>
|
||||
<li><a href="#amorphous-systems" id="toc-amorphous-systems">Amorphous
|
||||
Systems</a></li>
|
||||
<li><a href="#chapter-outline" id="toc-chapter-outline">Chapter
|
||||
outline</a></li>
|
||||
</ul></li>
|
||||
<li><a href="#an-in-depth-look-at-the-kitaev-model"
|
||||
id="toc-an-in-depth-look-at-the-kitaev-model">An in-depth look at the
|
||||
Kitaev Model</a>
|
||||
<li><a href="#the-kitaev-model" id="toc-the-kitaev-model">The Kitaev
|
||||
Model</a>
|
||||
<ul>
|
||||
<li><a href="#commutation-relations"
|
||||
id="toc-commutation-relations">Commutation relations</a>
|
||||
<ul>
|
||||
<li><a href="#spins" id="toc-spins">Spins</a></li>
|
||||
<li><a href="#fermions-and-majoranas"
|
||||
id="toc-fermions-and-majoranas">Fermions and Majoranas</a></li>
|
||||
</ul></li>
|
||||
id="toc-commutation-relations">Commutation relations</a></li>
|
||||
<li><a href="#the-hamiltonian" id="toc-the-hamiltonian">The
|
||||
Hamiltonian</a></li>
|
||||
<li><a href="#from-spins-to-majorana-operators"
|
||||
id="toc-from-spins-to-majorana-operators">From Spins to Majorana
|
||||
operators</a>
|
||||
<ul>
|
||||
<li><a href="#for-a-single-spin" id="toc-for-a-single-spin">For a single
|
||||
spin</a></li>
|
||||
<li><a href="#for-multiple-spins" id="toc-for-multiple-spins">For
|
||||
multiple spins</a></li>
|
||||
</ul></li>
|
||||
operators</a></li>
|
||||
<li><a href="#partitioning-the-hilbert-space-into-bond-sectors"
|
||||
id="toc-partitioning-the-hilbert-space-into-bond-sectors">Partitioning
|
||||
the Hilbert Space into Bond sectors</a></li>
|
||||
</ul></li>
|
||||
<li><a href="#the-majorana-hamiltonian"
|
||||
id="toc-the-majorana-hamiltonian">The Majorana Hamiltonian</a></li>
|
||||
id="toc-the-majorana-hamiltonian">The Majorana Hamiltonian</a>
|
||||
<ul>
|
||||
<li><a href="#mapping-back-from-bond-sectors-to-the-physical-subspace"
|
||||
id="toc-mapping-back-from-bond-sectors-to-the-physical-subspace">Mapping
|
||||
back from Bond Sectors to the Physical Subspace</a></li>
|
||||
<li><a href="#open-boundary-conditions"
|
||||
id="toc-open-boundary-conditions">Open boundary conditions</a></li>
|
||||
</ul></li>
|
||||
</ul></li>
|
||||
</ul>
|
||||
</nav>
|
||||
@ -278,10 +268,6 @@ href="#ref-kitaevAnyonsExactlySolved2006"
|
||||
role="doc-biblioref">4</a></sup></span>. Its solubility comes about
|
||||
because the model has extensively many conserved degrees of freedom that
|
||||
mediate the interactions between quantum degrees of freedom.</p>
|
||||
<h2 id="amorphous-systems">Amorphous Systems</h2>
|
||||
<p><strong>Insert discussion of why a generalisation to the amorphous
|
||||
case is intersting</strong></p>
|
||||
<h2 id="chapter-outline">Chapter outline</h2>
|
||||
<p>In this chapter I will discuss the physics of the Kitaev Model on
|
||||
amorphous lattices.</p>
|
||||
<p>I’ll start by discussing the physics of the Kitaev model in much more
|
||||
@ -320,13 +306,15 @@ addtional small Heisenberg term <span class="math display">\[H_{KH} = -
|
||||
\sum_{\langle j,k\rangle_\alpha}
|
||||
J^{\alpha}\sigma_j^{\alpha}\sigma_k^{\alpha} +
|
||||
\sigma_j\sigma_k\]</span></p>
|
||||
<h1 id="an-in-depth-look-at-the-kitaev-model">An in-depth look at the
|
||||
Kitaev Model</h1>
|
||||
<h2 id="commutation-relations">Commutation relations</h2>
|
||||
<h2 id="amorphous-systems">Amorphous Systems</h2>
|
||||
<p><strong>Insert discussion of why a generalisation to the amorphous
|
||||
case is intersting</strong></p>
|
||||
<h2 id="the-kitaev-model">The Kitaev Model</h2>
|
||||
<h3 id="commutation-relations">Commutation relations</h3>
|
||||
<p>Before diving into the Hamiltonian of the Kitaev Model, here is a
|
||||
quick refresher of the key commutation relations of spins, fermions and
|
||||
Majoranas.</p>
|
||||
<h3 id="spins">Spins</h3>
|
||||
<h4 id="spins">Spins</h4>
|
||||
<p>Skip this is you’re super familiar with the algebra of the Pauli
|
||||
martrices. Scalars like <span class="math inline">\(\delta_{ij}\)</span>
|
||||
should be understood to be multiplied by an implicit identity <span
|
||||
@ -359,7 +347,7 @@ class="math display">\[\sigma^\alpha \sigma^\beta \sigma^\gamma = i
|
||||
\epsilon^{\alpha\beta\gamma}\]</span> and <span
|
||||
class="math display">\[[\sigma^\alpha \sigma^\beta, \sigma^\gamma] =
|
||||
0\]</span></p>
|
||||
<h3 id="fermions-and-majoranas">Fermions and Majoranas</h3>
|
||||
<h4 id="fermions-and-majoranas">Fermions and Majoranas</h4>
|
||||
<p>The fermionic creation and anhilation operators are defined by the
|
||||
canonical anticommutation relations <span
|
||||
class="math display">\[\begin{aligned}
|
||||
@ -387,7 +375,7 @@ class="math inline">\(c_i\)</span>. The property that must be preserved
|
||||
however is that the Majoranas still anticommute:</p>
|
||||
<p><span class="math display">\[ \{c_i, c_j\} =
|
||||
2\delta_{ij}\]</span></p>
|
||||
<h2 id="the-hamiltonian">The Hamiltonian</h2>
|
||||
<h3 id="the-hamiltonian">The Hamiltonian</h3>
|
||||
<p>To get down to brass tacks, the Kitaev Honeycomb model is a model of
|
||||
interacting spin<span class="math inline">\(-1/2\)</span>s on the
|
||||
vertices of a honeycomb lattice. Each bond in the lattice is assigned a
|
||||
@ -497,9 +485,9 @@ of a plaqutte operator away from the ground state as
|
||||
Hilbert space into a set of ‘vortex sectors’ labelled by that particular
|
||||
flux configuration <span class="math inline">\(\phi_i = \pm 1,\pm
|
||||
i\)</span>.</p>
|
||||
<h2 id="from-spins-to-majorana-operators">From Spins to Majorana
|
||||
operators</h2>
|
||||
<h3 id="for-a-single-spin">For a single spin</h3>
|
||||
<h3 id="from-spins-to-majorana-operators">From Spins to Majorana
|
||||
operators</h3>
|
||||
<h4 id="for-a-single-spin">For a single spin</h4>
|
||||
<p>Let’s start by considering just one site and its <span
|
||||
class="math inline">\(\sigma^x, \sigma^y\)</span> and <span
|
||||
class="math inline">\(\sigma^z\)</span> operators which live in a two
|
||||
@ -560,7 +548,7 @@ alt="Figure 4: " />
|
||||
<figcaption aria-hidden="true"><span>Figure 4:</span> </figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
<h3 id="for-multiple-spins">For multiple spins</h3>
|
||||
<h4 id="for-multiple-spins">For multiple spins</h4>
|
||||
<p>This construction generalises easily to the case of multiple spins:
|
||||
we get a set of 4 Majoranas <span class="math inline">\(b^x_j,\;
|
||||
b^y_j,\;b^z_j,\; c_j\)</span> and a <span class="math inline">\(D_j =
|
||||
@ -612,8 +600,8 @@ degree of degeneracy.</p>
|
||||
<p>In summary Majorana bond operators <span
|
||||
class="math inline">\(u_{ij}\)</span> are an emergent, classical, <span
|
||||
class="math inline">\(\mathbb{Z_2}\)</span> gauge field!</p>
|
||||
<h2 id="partitioning-the-hilbert-space-into-bond-sectors">Partitioning
|
||||
the Hilbert Space into Bond sectors</h2>
|
||||
<h3 id="partitioning-the-hilbert-space-into-bond-sectors">Partitioning
|
||||
the Hilbert Space into Bond sectors</h3>
|
||||
<p>Similar to the story with the plaquette operators from the spin
|
||||
language, we can break the Hilbert space <span
|
||||
class="math inline">\(\mathcal{L}\)</span> up into sectors labelled by
|
||||
@ -713,8 +701,8 @@ can take half the absolute value of the whole set to recover <span
|
||||
class="math inline">\(\sum_m \epsilon_m\)</span> easily.</p>
|
||||
<p><strong>The Majorana Hamiltonian is quadratic within a Bond
|
||||
Sector.</strong></p>
|
||||
<h2 id="mapping-back-from-bond-sectors-to-the-physical-subspace">Mapping
|
||||
back from Bond Sectors to the Physical Subspace</h2>
|
||||
<h3 id="mapping-back-from-bond-sectors-to-the-physical-subspace">Mapping
|
||||
back from Bond Sectors to the Physical Subspace</h3>
|
||||
<p>At this point, given a particular bond configuration <span
|
||||
class="math inline">\(u_{ij} = \pm 1\)</span> we are able to construct a
|
||||
quadratic Hamiltonian <span class="math inline">\(\tilde{H}_u\)</span>
|
||||
@ -771,6 +759,25 @@ class="math inline">\(u_{ij}\)</span>, these will turn out to just be
|
||||
the plaquette operators.</p>
|
||||
<p><strong>The Bond Sectors overlap with the physical subspace but are
|
||||
not contained within it.</strong></p>
|
||||
<h3 id="open-boundary-conditions">Open boundary conditions</h3>
|
||||
<p>Care must be taken in the definition of open boundary conditions.
|
||||
Simply removing bonds from the lattice leaves behind unpaired <span
|
||||
class="math inline">\(b^\alpha\)</span> operators that need to be paired
|
||||
in some way to arrive at fermionic modes. In order to fix a pairing we
|
||||
always start from a lattice defined on the torus and generate a lattice
|
||||
with open boundary conditions by defining the bond coupling <span
|
||||
class="math inline">\(J^{\alpha}_{ij} = 0\)</span> for sites joined by
|
||||
bonds <span class="math inline">\((i,j)\)</span> that we want to remove.
|
||||
This creates fermionic zero modes <span
|
||||
class="math inline">\(u_{ij}\)</span> associated with these cut bonds
|
||||
which we set to 1 when calculating the projector.</p>
|
||||
<p>Alternatively, since all the fermionic zero modes are degenerate
|
||||
anyway, an arbitrary pairing of the unpaired <span
|
||||
class="math inline">\(b^\alpha\)</span> operators could be performed.
|
||||
<strong>Is is possible that a lattice constructed and coloured like this
|
||||
would have unequal numbers of <span class="math inline">\(b^x\)</span>
|
||||
<span class="math inline">\(b^y\)</span> and <span
|
||||
class="math inline">\(b^z\)</span> operators?</strong></p>
|
||||
<div id="refs" class="references csl-bib-body" data-line-spacing="2"
|
||||
role="doc-bibliography">
|
||||
<div id="ref-banerjeeProximateKitaevQuantum2016" class="csl-entry"
|
||||
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -8,37 +8,49 @@
|
||||
<li><a href="./1.1_FK_Intro.html#introduction">Introduction</a></li>
|
||||
<ul>
|
||||
<li><a href="./1.1_FK_Intro.html#localisation">Localisation</a></li>
|
||||
<li><a href="./1.1_FK_Intro.html#falikov-kimball-and-hubbard-models">Falikov Kimball and Hubbard models</a></li>
|
||||
<li><a href="./1.1_FK_Intro.html#localisation">Localisation</a></li>
|
||||
<li><a href="./1.1_FK_Intro.html#numerical-methods">Numerical Methods</a></li>
|
||||
<li><a href="./1.1_FK_Intro.html#markov-chain-monte-carlo-in-practice}">Markov Chain Monte-Carlo in Practice}</a></li>
|
||||
</ul></ul>
|
||||
<li>Chapter 2: The Amorphous Kitaev Model</li>
|
||||
<ul>
|
||||
<li><a href="./2.1_AMK_Intro.html#introduction">Introduction</a></li>
|
||||
<ul>
|
||||
<li><a href="./2.1_AMK_Intro.html#amorphous-systems">Amorphous Systems</a></li>
|
||||
<li><a href="./2.1_AMK_Intro.html#chapter-outline">Chapter outline</a></li>
|
||||
</ul>
|
||||
<li><a href="./2.1_AMK_Intro.html#an-in-depth-look-at-the-kitaev-model">An in-depth look at the Kitaev Model</a></li>
|
||||
<ul>
|
||||
<li><a href="./2.1_AMK_Intro.html#commutation-relations">Commutation relations</a></li>
|
||||
<li><a href="./2.1.2_AMK_Intro.html#properties-of-the-gauge-field">Properties of the Gauge Field</a></li>
|
||||
<li><a href="./2.1_AMK_Intro.html#the-kitaev-model">The Kitaev Model</a></li>
|
||||
<li><a href="./2.1_AMK_Intro.html#the-majorana-hamiltonian">The Majorana Hamiltonian</a></li>
|
||||
<li><a href="./2.1.2_AMK_Intro.html#gauge-fields">Gauge Fields</a></li>
|
||||
<li><a href="./2.1.2_AMK_Intro.html#the-projector">The Projector</a></li>
|
||||
<li><a href="./2.1.2_AMK_Intro.html#the-ground-state">The Ground State</a></li>
|
||||
<li><a href="./2.1.2_AMK_Intro.html#phases-of-the-kitaev-model">Phases of the Kitaev Model</a></li>
|
||||
<li><a href="./2.1.2_AMK_Intro.html#what's-so-great-about-two-dimensions?">What's so great about two dimensions?</a></li>
|
||||
</ul>
|
||||
<li><a href="./2.2_AMK_Methods.html#methods">Methods</a></li>
|
||||
<ul>
|
||||
<li><a href="./2.2_AMK_Methods.html#voronisation">Voronisation</a></li>
|
||||
<li><a href="./2.2_AMK_Methods.html#graph-representation">Graph Representation</a></li>
|
||||
<li><a href="./2.2_AMK_Methods.html#coloring-the-bonds">Coloring the Bonds</a></li>
|
||||
<li><a href="./2.2_AMK_Methods.html#mapping-between-flux-sectors-and-bond-sectors">Mapping between flux sectors and bond sectors</a></li>
|
||||
<li><a href="./2.2_AMK_Methods.html#chern-markers">Chern Markers</a></li>
|
||||
</ul>
|
||||
<li><a href="./2.3_AMK_Results.html#results">Results</a></li>
|
||||
<ul>
|
||||
<li><a href="./2.3_AMK_Results.html#the-ground-state">The Ground State</a></li>
|
||||
<li><a href="./2.3_AMK_Results.html#the-ground-state-flux-sector">The Ground State Flux Sector</a></li>
|
||||
<li><a href="./2.3_AMK_Results.html#spontaneous-chiral-symmetry-breaking">Spontaneous Chiral Symmetry Breaking</a></li>
|
||||
<li><a href="./2.3_AMK_Results.html#ground-state-phase-diagram">Ground State Phase Diagram</a></li>
|
||||
<li><a href="./2.3_AMK_Results.html#the-flux-gap">The Flux Gap</a></li>
|
||||
<li><a href="./2.3_AMK_Results.html#anderson-transition-to-a-thermal-metal">Anderson Transition to a Thermal Metal</a></li>
|
||||
</ul>
|
||||
<li><a href="./2.3_AMK_Results.html#conclusion">Conclusion</a></li>
|
||||
<li><a href="./2.3_AMK_Results.html#discussion">Discussion</a></li>
|
||||
<ul>
|
||||
<li><a href="./2.3_AMK_Results.html#discussion">Discussion</a></li>
|
||||
<li><a href="./2.3_AMK_Results.html#future-work">Future Work</a></li>
|
||||
<li><a href="./2.3_AMK_Results.html#fluxes-and-the-ground-state">Fluxes and the Ground State</a></li>
|
||||
<li><a href="./2.3_AMK_Results.html#zero-temperature-phase-diagram">Zero Temperature Phase Diagram</a></li>
|
||||
<li><a href="./2.3_AMK_Results.html#failure-of-the-ground-state-conjecture">Failure of the ground state conjecture</a></li>
|
||||
<li><a href="./2.3_AMK_Results.html#full-monte-carlo">Full Monte Carlo</a></li>
|
||||
</ul>
|
||||
<li><a href="./2.3_AMK_Results.html#outlook">Outlook</a></li>
|
||||
<ul>
|
||||
<li><a href="./2.3_AMK_Results.html#experimental-realisations-and-signatures">Experimental Realisations and Signatures</a></li>
|
||||
<li><a href="./2.3_AMK_Results.html#generalisations">Generalisations</a></li>
|
||||
</ul></ul>
|
||||
<li>Conclusion</li>
|
||||
<ul><ul>
|
||||
|
File diff suppressed because it is too large
Load Diff
After Width: | Height: | Size: 54 KiB |
File diff suppressed because it is too large
Load Diff
After Width: | Height: | Size: 804 KiB |
@ -7,4 +7,6 @@ permalink: /thesis/
|
||||
This is my work-in-progress thesis. It will be available as a traditional PDF too but I wanted to make it available as nicely rendered website too!
|
||||
|
||||
<h2>Contents</h2>
|
||||
{% include_relative _thesis/toc.html %}
|
||||
<nav>
|
||||
{% include_relative _thesis/toc.html %}
|
||||
</nav>
|
Loading…
x
Reference in New Issue
Block a user