personal_site/_thesis/2.3_AMK_Results.html
2022-08-04 19:47:49 +01:00

1109 lines
55 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: The Amorphous Kitaev Model - Results
excerpt: The Amorphous Kitaev model is a chiral spin liquid!
layout: none
image:
---
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<meta name="description" content="The Amorphous Kitaev model is a chiral spin liquid!" />
<title>The Amorphous Kitaev Model - Results</title>
<!-- <style>
html {
line-height: 1.5;
font-family: Georgia, serif;
font-size: 20px;
color: #1a1a1a;
background-color: #fdfdfd;
}
body {
margin: 0 auto;
max-width: 36em;
padding-left: 50px;
padding-right: 50px;
padding-top: 50px;
padding-bottom: 50px;
hyphens: auto;
overflow-wrap: break-word;
text-rendering: optimizeLegibility;
font-kerning: normal;
}
@media (max-width: 600px) {
body {
font-size: 0.9em;
padding: 1em;
}
h1 {
font-size: 1.8em;
}
}
@media print {
body {
background-color: transparent;
color: black;
font-size: 12pt;
}
p, h2, h3 {
orphans: 3;
widows: 3;
}
h2, h3, h4 {
page-break-after: avoid;
}
}
p {
margin: 1em 0;
}
a {
color: #1a1a1a;
}
a:visited {
color: #1a1a1a;
}
img {
max-width: 100%;
}
h1, h2, h3, h4, h5, h6 {
margin-top: 1.4em;
}
h5, h6 {
font-size: 1em;
font-style: italic;
}
h6 {
font-weight: normal;
}
ol, ul {
padding-left: 1.7em;
margin-top: 1em;
}
li > ol, li > ul {
margin-top: 0;
}
blockquote {
margin: 1em 0 1em 1.7em;
padding-left: 1em;
border-left: 2px solid #e6e6e6;
color: #606060;
}
code {
font-family: Menlo, Monaco, 'Lucida Console', Consolas, monospace;
font-size: 85%;
margin: 0;
}
pre {
margin: 1em 0;
overflow: auto;
}
pre code {
padding: 0;
overflow: visible;
overflow-wrap: normal;
}
.sourceCode {
background-color: transparent;
overflow: visible;
}
hr {
background-color: #1a1a1a;
border: none;
height: 1px;
margin: 1em 0;
}
table {
margin: 1em 0;
border-collapse: collapse;
width: 100%;
overflow-x: auto;
display: block;
font-variant-numeric: lining-nums tabular-nums;
}
table caption {
margin-bottom: 0.75em;
}
tbody {
margin-top: 0.5em;
border-top: 1px solid #1a1a1a;
border-bottom: 1px solid #1a1a1a;
}
th {
border-top: 1px solid #1a1a1a;
padding: 0.25em 0.5em 0.25em 0.5em;
}
td {
padding: 0.125em 0.5em 0.25em 0.5em;
}
header {
margin-bottom: 4em;
text-align: center;
}
#TOC li {
list-style: none;
}
#TOC ul {
padding-left: 1.3em;
}
#TOC > ul {
padding-left: 0;
}
#TOC a:not(:hover) {
text-decoration: none;
}
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
div.csl-bib-body { }
div.csl-entry {
clear: both;
}
.hanging div.csl-entry {
margin-left:2em;
text-indent:-2em;
}
div.csl-left-margin {
min-width:2em;
float:left;
}
div.csl-right-inline {
margin-left:2em;
padding-left:1em;
}
div.csl-indent {
margin-left: 2em;
}
</style> -->
<!-- <script
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js"
type="text/javascript"></script>
-->
<!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3.0.1/es5/tex-mml-chtml.js"></script>
-->
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
<!--[if lt IE 9]>
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
<![endif]-->
<link rel="stylesheet" href="/assets/css/styles.css">
<script src="/assets/js/index.js"></script>
</head>
<body>
{% include header.html %}
<main>
<nav id="TOC" role="doc-toc">
<ul>
<li><a href="#results" id="toc-results">Results</a>
<ul>
<li><a href="#the-ground-state-flux-sector"
id="toc-the-ground-state-flux-sector">The Ground State Flux
Sector</a></li>
<li><a href="#spontaneous-chiral-symmetry-breaking"
id="toc-spontaneous-chiral-symmetry-breaking">Spontaneous Chiral
Symmetry Breaking</a></li>
<li><a href="#ground-state-phase-diagram"
id="toc-ground-state-phase-diagram">Ground State Phase Diagram</a>
<ul>
<li><a href="#is-it-abelian-or-non-abelian"
id="toc-is-it-abelian-or-non-abelian">Is it Abelian or
non-Abelian?</a></li>
<li><a href="#chern-number-and-edge-modes"
id="toc-chern-number-and-edge-modes">Chern Number and Edge
Modes</a></li>
</ul></li>
<li><a href="#anderson-transition-to-a-thermal-metal"
id="toc-anderson-transition-to-a-thermal-metal">Anderson Transition to a
Thermal Metal</a></li>
</ul></li>
<li><a href="#conclusion" id="toc-conclusion">Conclusion</a></li>
<li><a href="#discussion" id="toc-discussion">Discussion</a>
<ul>
<li><a href="#failure-of-the-ground-state-conjecture"
id="toc-failure-of-the-ground-state-conjecture">Failure of the ground
state conjecture</a></li>
<li><a href="#full-monte-carlo" id="toc-full-monte-carlo">Full Monte
Carlo</a></li>
</ul></li>
<li><a href="#outlook" id="toc-outlook">Outlook</a>
<ul>
<li><a href="#experimental-realisations-and-signatures"
id="toc-experimental-realisations-and-signatures">Experimental
Realisations and Signatures</a></li>
<li><a href="#generalisations"
id="toc-generalisations">Generalisations</a></li>
</ul></li>
</ul>
</nav>
<h1 id="results">Results</h1>
<h2 id="the-ground-state-flux-sector">The Ground State Flux Sector</h2>
<p>Here I will discuss the numerical evidence that our guess for the
ground state flux sector is correct, it relies on three key numerical
observations arguments:</p>
<p>First we fully eumerate the flux sectors of ~25,000 periodic systems
with a disordered unit cell of up to 16 plaquettes (<span
class="math inline">\(2^{16-1}\)</span> sectors). Going to larger system
sizes in impractical because of the exponential sclaling. However, as
discussed earlier, finite size effects play a large role for small
systems<span class="citation"
data-cites="kitaevAnyonsExactlySolved2006"><sup><a
href="#ref-kitaevAnyonsExactlySolved2006"
role="doc-biblioref">1</a></sup></span>. To get around this we look at
periodic systems with amorphous unit cells. This reduces the finite size
effects but we can use Blochs theorem to diagonalise periodic systems
with only a linear penalty in system area.</p>
<p>Looking at periodic systems comes at the expense of removing
longer-range disorder from our lattices so we bolster this by comparing
the behaviour of periodic lattice with amorphous to unit cells to fully
amorphous lattice as we scale the size of the unit cell. We show that
the energetic effect of introducing perodicity scales away as we go to
larger system sizes.</p>
<p>From these two observations we argue that the results for small
periodic systems generalise to large amorphous systems. We perform this
analysis for both the isotropic point (<span
class="math inline">\(J^\alpha = 1\)</span>), as well as in the toric
code phase (<span class="math inline">\(J^x = J^y = 0.25, J^z =
1\)</span>).</p>
<p>In the isotropic case (<span class="math inline">\(J^\alpha =
1\)</span>), our conjecture correctly predicted the ground state flux
sector for all of the lattices we tested.</p>
<p>For the toric code phase (<span class="math inline">\(J^x, J^y =
0.25, J^z = 1\)</span>) all but around (<span class="math inline">\(\sim
0.5 \%\)</span>) lattices had ground states conforming to our
conjecture. In these cases, the energy difference between the true
ground state and our prediction was on the order of <span
class="math inline">\(10^{-6} J\)</span>. It is unclear whether this is
a finite size effect or something else.</p>
<h2 id="spontaneous-chiral-symmetry-breaking">Spontaneous Chiral
Symmetry Breaking</h2>
<p>The spin Kitaev Hamiltonian is real and therefore has time reveral
symmetry. However, the flux <span class="math inline">\(\phi_p\)</span>
through any plaquette with an odd number of sides has imaginary
eigenvalues <span class="math inline">\(\pm i\)</span>. Further we have
shown that the ground state sector induces a relatively regular pattern
for the imaginary fluxes with only a global two-fold degeneracy.</p>
<p>Thus, states with a fixed flux sector spontaneously break time
reversal symmetry. This was first described by Yao and Kivelson for a
translation invariant Kitaev model with odd sided plaquettes<span
class="citation" data-cites="Yao2011"><sup><a href="#ref-Yao2011"
role="doc-biblioref">2</a></sup></span>.</p>
<p>Thus we have flux sectors that come in degenerate pairs, where time
reversal is equivalent to inverting the flux through every odd
plaquette, a general feature for lattices with odd plaquettes <span
class="citation" data-cites="yaoExactChiralSpin2007 Peri2020"><sup><a
href="#ref-yaoExactChiralSpin2007" role="doc-biblioref">3</a>,<a
href="#ref-Peri2020" role="doc-biblioref">4</a></sup></span>. This
spontaneously broken symmetry avoids the need to explicitly break TRS
with a magnetic field term as is done in the original honeycomb
model.</p>
<h2 id="ground-state-phase-diagram">Ground State Phase Diagram</h2>
<p>As previously discusssed, the standard Honeycomb model has a Abelian,
gapped phase in the anisotropic region and is gapless in the isotropic
region. The introduction of a magnetic field breaks the chiral symmetry,
leading to the isotropic region becoming a gapped, non-Abelian
phase.</p>
<p>Similar to the Kitaev Honeycomb model with a magnetic field, we find
that this model is only gapless along critical lines, see ~<a
href="#fig:phase_diagram">1</a> (Left). Interestingly, the gap closing
exists in only one of the four topological sectors, though this is
certainly a finite size effect as the sectors must become degenerate in
the thermodynamic limit.</p>
<p>In the honeycomb model, the phase boundaries are located on the
straight line <span class="math inline">\(|J^x| = |J^y| + |J^x|\)</span>
and permutations of <span class="math inline">\(x,y,z\)</span>, shown as
dotted line on ~<a href="#fig:phase_diagram">1</a> (Right). We find that
on the amorphous lattice these boundaries exhibit an inward curvature,
similar to honeycomb Kitaev models with flux<span class="citation"
data-cites="Nasu_Thermal_2015"><sup><a href="#ref-Nasu_Thermal_2015"
role="doc-biblioref">5</a></sup></span> or bond<span class="citation"
data-cites="knolle_dynamics_2016"><sup><a
href="#ref-knolle_dynamics_2016" role="doc-biblioref">6</a></sup></span>
disorder.</p>
<div id="fig:phase_diagram" class="fignos">
<figure>
<img
src="/assets/thesis/figure_code/amk_chapter/results/phase_diagram/phase_diagram.svg"
style="width:100.0%"
alt="Figure 1: (Center) We choose an energy scale for the Hamiltonian by setting J_x + J_y + J_z = 1. This intersects a plane with the unit cube spanned by J_\alpha \in [0,1], giving a triangle with corners (1,0,0), (0,1,0), (0,0,1). To compute critical lines efficiently in this space we evaluate the order parameter of interest along rays shooting from the corners. The ray highlighted in red defines the values of J used for the left figure. (Left) The fermion gap as a function of J for an amorphous system with 20 plaquettes, where the x axis is the position on the red line in the central figure from 0 to 1. For finite size systems the four topological sectors are not degenerate and only one of them has a true gap closing. (Right) The Abelian A_\alpha phases of the model and the non-Abelian B phase separated by critical lines where the fermion gap closes. Later we will show that the chern number \nu changes from 0 t0 \pm 1 from the A phases to the B phase." />
<figcaption aria-hidden="true"><span>Figure 1:</span> (Center) We choose
an energy scale for the Hamiltonian by setting <span
class="math inline">\(J_x + J_y + J_z = 1\)</span>. This intersects a
plane with the unit cube spanned by <span class="math inline">\(J_\alpha
\in [0,1]\)</span>, giving a triangle with corners <span
class="math inline">\((1,0,0), (0,1,0), (0,0,1)\)</span>. To compute
critical lines efficiently in this space we evaluate the order parameter
of interest along rays shooting from the corners. The ray highlighted in
red defines the values of J used for the left figure. (Left) The fermion
gap as a function of J for an amorphous system with 20 plaquettes, where
the x axis is the position on the red line in the central figure from 0
to 1. For finite size systems the four topological sectors are not
degenerate and only one of them has a true gap closing. (Right) The
Abelian <span class="math inline">\(A_\alpha\)</span> phases of the
model and the non-Abelian B phase separated by critical lines where the
fermion gap closes. Later we will show that the chern number <span
class="math inline">\(\nu\)</span> changes from <span
class="math inline">\(0\)</span> t0 <span class="math inline">\(\pm
1\)</span> from the A phases to the B phase.</figcaption>
</figure>
</div>
<h3 id="is-it-abelian-or-non-abelian">Is it Abelian or non-Abelian?</h3>
<p>The two phases of the amorphous model are clearly gapped, though see
later for a finite size scaling check on this.</p>
<p>The next question is: do these phases support Abelian or non-Abelian
statistics? To answer that we turn to Chern numbers and markers. As
discussed earlier the Chern number is a quantity intimately linked to
both the topological properties and the anyonic statistics of a model.
The Abelian/non-Abelian character of a model is linked to its Chern
number <strong>citation</strong>. However the Chern number is only
defined for the translation invariant case.</p>
<p>A family of generalisations to amorphous systems exist<span
class="citation"
data-cites="mitchellAmorphousTopologicalInsulators2018"><sup><a
href="#ref-mitchellAmorphousTopologicalInsulators2018"
role="doc-biblioref">7</a></sup></span> called local topological
markers. We use the crosshair marker<span class="citation"
data-cites="peru_preprint"><sup><a href="#ref-peru_preprint"
role="doc-biblioref">8</a></sup></span> here to assess the
Abelian/non-Abelian character of the phases.</p>
<p>Like the honeycomb model, the amorphous model retains an Abelian
gapped phase in the anisotropic region with <span
class="math inline">\(\nu=0\)</span>. This phase is the amorphous
analogue of the abelian toric-code quantum spin liquid<span
class="citation" data-cites="kitaev_fault-tolerant_2003"><sup><a
href="#ref-kitaev_fault-tolerant_2003"
role="doc-biblioref">9</a></sup></span>.</p>
<p>The isotropic region has <span
class="math inline">\(\nu=\pm1\)</span> so is a non-Abelian chiral spin
liquid (CSL) similar to that of the Yao-Kivelson model<span
class="citation" data-cites="yaoExactChiralSpin2007"><sup><a
href="#ref-yaoExactChiralSpin2007"
role="doc-biblioref">3</a></sup></span>. Hereafter we focus our
attention on this phase.</p>
<div id="fig:phase_diagram_chern" class="fignos">
<figure>
<img
src="/assets/thesis/figure_code/amk_chapter/results/phase_diagram_chern/phase_diagram_chern.svg"
style="width:100.0%"
alt="Figure 2: (Center) The crosshair marker8, a local topological marker, evaluated on the Amorphous Kitaev Model. The marker is defined around a point, denoted by the dotted crosshair. Information about the local topological properties of the system are encoded within a region around that point. (Left) Summing these contributions up to some finite radius (dotted line here, dotted circle in the center) gives a generalised version of the Chern number for the system which becomes quantised in the thermodynamic limit. The radius must be chosen large enough to capture information about the local properties of the lattice while not so large as to include contributions from the edge states. The isotropic regime J_\alpha = 1 in red has \nu = \pm 1 implying it supports excitations with non-Abelian statistics, while the anisotropic regime in orange has \nu = \pm 0 implying it has Abelian statistics. (Right) Extending this analysis to the whole J_\alpha phase diagram with fixed r = 0.3 nicely confirms that the isotropic phase is non-Abelian." />
<figcaption aria-hidden="true"><span>Figure 2:</span> (Center) The
crosshair marker<span class="citation"
data-cites="peru_preprint"><sup><a href="#ref-peru_preprint"
role="doc-biblioref">8</a></sup></span>, a local topological marker,
evaluated on the Amorphous Kitaev Model. The marker is defined around a
point, denoted by the dotted crosshair. Information about the local
topological properties of the system are encoded within a region around
that point. (Left) Summing these contributions up to some finite radius
(dotted line here, dotted circle in the center) gives a generalised
version of the Chern number for the system which becomes quantised in
the thermodynamic limit. The radius must be chosen large enough to
capture information about the local properties of the lattice while not
so large as to include contributions from the edge states. The isotropic
regime <span class="math inline">\(J_\alpha = 1\)</span> in red has
<span class="math inline">\(\nu = \pm 1\)</span> implying it supports
excitations with non-Abelian statistics, while the anisotropic regime in
orange has <span class="math inline">\(\nu = \pm 0\)</span> implying it
has Abelian statistics. (Right) Extending this analysis to the whole
<span class="math inline">\(J_\alpha\)</span> phase diagram with fixed
<span class="math inline">\(r = 0.3\)</span> nicely confirms that the
isotropic phase is non-Abelian.</figcaption>
</figure>
</div>
<h3 id="chern-number-and-edge-modes">Chern Number and Edge Modes</h3>
<p>The QSLs separated by these lines are distinguished by a real-space
analogue of the Chern number<span class="citation"
data-cites="bianco_mapping_2011 Hastings_Almost_2010"><sup><a
href="#ref-bianco_mapping_2011" role="doc-biblioref">10</a>,<a
href="#ref-Hastings_Almost_2010"
role="doc-biblioref">11</a></sup></span>. A similar topological number
was discussed by Kitaev on the honeycomb lattice<span class="citation"
data-cites="kitaevAnyonsExactlySolved2006"><sup><a
href="#ref-kitaevAnyonsExactlySolved2006"
role="doc-biblioref">1</a></sup></span> that we shall use here with a
slight modification<span class="citation"
data-cites="peru_preprint mitchellAmorphousTopologicalInsulators2018"><sup><a
href="#ref-mitchellAmorphousTopologicalInsulators2018"
role="doc-biblioref">7</a>,<a href="#ref-peru_preprint"
role="doc-biblioref">8</a></sup></span>. For a choice of flux sector, we
calculate the projector <span class="math inline">\(P\)</span> onto the
negative energy eigenstates of the matrix <span
class="math inline">\(iA\)</span> defined in eqn. <a
href="#eqn:majorana_hamiltonian" data-reference-type="ref"
data-reference="eqn:majorana_hamiltonian">[eqn:majorana_hamiltonian]</a>.
The local Chern number around a point <span
class="math inline">\(\textbf{R}\)</span> in the bulk is given by <span
class="math display">\[\begin{aligned}
\nu (\textbf{R}) = 4\pi \Im \mathrm{Tr}_{\mathrm{Bulk}}
\left (
P\theta_{R_x} P \theta_{R_y} P
\right ),\end{aligned}\]</span> where <span
class="math inline">\(\theta_{R_x}\)</span> is a step function in the
<span class="math inline">\(x\)</span>-direction, with the step located
at <span class="math inline">\(x = R_x\)</span>, <span
class="math inline">\(\theta_{R_y}\)</span> is defined analogously. The
trace is taken over a region around <span
class="math inline">\(\textbf{R}\)</span> in the bulk of the material,
where care must be taken not to include any points close to the edges.
Provided that the point <span class="math inline">\(\textbf{R}\)</span>
is sufficiently far from the edges, this quantity will be very close to
quantised to the Chern number.</p>
<p>The local Chern marker distinguishes between an Abelian phase (A)
with <span class="math inline">\(\nu = 0\)</span>, and a non-Abelian (B)
phase characterized by <span class="math inline">\(\nu = \pm 1\)</span>.
The (A) phase is equivalent to the toric code on an amorphous
system<span class="citation"
data-cites="kitaev_fault-tolerant_2003"><sup><a
href="#ref-kitaev_fault-tolerant_2003"
role="doc-biblioref">9</a></sup></span>.</p>
<p>Since the (A) phase displays the "topological" degeneracy described
above, I think that "topologically trivial" is not a good term to
describe it. Another thing that I think it should be considered here.
The abelian phase is expected to have 2x4 degeneracy, where the factor
of 2 comes from time-reversal. On the other hand, the non-Abelian phase
should display 2x3 degeneracy, as discussed by<span class="citation"
data-cites="yaoExactChiralSpin2007"><sup><a
href="#ref-yaoExactChiralSpin2007"
role="doc-biblioref">3</a></sup></span>. Did you get any evidence of
this?</p>
<p>By contrast, the (B) phase is a <em>chiral spin liquid</em>, the
magnetic analogue of the fractional quantum Hall state. Topologically
protected edge modes are predicted to occur in these states on periodic
boundary conditions following the bulk-boundary correspondence<span
class="citation" data-cites="qi_general_2006"><sup><a
href="#ref-qi_general_2006" role="doc-biblioref">12</a></sup></span>.
The probability density of one such edge mode is given in <a
href="#fig:edge_modes" data-reference-type="ref"
data-reference="fig:edge_modes">1</a> (a), where it is shown to be
exponentially localised to the boundary of the system. The localization
of these modes can be quantified by their inverse participation ratio
(IPR), <span class="math display">\[\mathrm{IPR} = \int
d^2r|\psi(\mathbf{r})|^4 \propto L^{-\tau},\]</span> where <span
class="math inline">\(L\sim\sqrt{N}\)</span> is the characteristic
linear dimension of the amorphous lattices and <span
class="math inline">\(\tau\)</span> dimensional scaling exponent of
IPR.</p>
<p>Finally, the CSL density of states in open boundary conditions
indicates the low-energy modes within the gap of Majorana bands in <a
href="#fig:edge_modes" data-reference-type="ref"
data-reference="fig:edge_modes">1</a> (b).</p>
<p>The phase diagram of the amorphous model in <a
href="#fig:example_lattice" data-reference-type="ref"
data-reference="fig:example_lattice">[fig:example_lattice]</a>(c)
displays a reduced parameter space for the non-Abelian phase when
compared to the honeycomb model. Interestingly, similar inward
deformations of the critical lines were found on the Kitaev honeycomb
model subject to disorder by proliferating flux vortices<span
class="citation" data-cites="Nasu_Thermal_2015"><sup><a
href="#ref-Nasu_Thermal_2015" role="doc-biblioref">5</a></sup></span> or
exchange disorder<span class="citation"
data-cites="knolle_dynamics_2016"><sup><a
href="#ref-knolle_dynamics_2016"
role="doc-biblioref">6</a></sup></span>.</p>
<div id="fig:figure_2_bashed" class="fignos">
<figure>
<img src="/assets/thesis/figure_code/amk_paper/figure_2_bashed.svg"
style="width:57.0%" alt="Figure 3: " />
<figcaption aria-hidden="true"><span>Figure 3:</span> </figcaption>
</figure>
</div>
<h2 id="anderson-transition-to-a-thermal-metal">Anderson Transition to a
Thermal Metal</h2>
<div id="fig:fermion_gap_vs_L" class="fignos">
<figure>
<img
src="/assets/thesis/figure_code/amk_chapter/results/fermion_gap_vs_L/fermion_gap_vs_L.svg"
style="width:114.0%"
alt="Figure 4: Within a flux sector, the fermion gap \Delta_f measures the energy between the fermionic ground state and the first excited state. This graph shows the fermion gap as a function of system size for the ground state flux sector and for a configuration of random fluxes. We see that the disorder induced by an putting the Kitaev model on an amorphous lattice does not close the gap in the ground state. The gap closes in the flux disordered limit is good evidence that the system transitions to a gapless thermal metal state at high temperature. Each point shows an average over 100 lattice realisations. System size L is defined \sqrt{N} where N is the number of plaquettes in the system. Error bars shown are 3 times the standard error of the mean. The lines shown are fits of \tfrac{\Delta_f}{J} = aL ^ b with fit parameters: Ground State: a = 0.138 \pm 0.002, b = -0.0972 \pm 0.004 Random Flux Sector: a = 1.8 \pm 0.2, b = -2.21 \pm 0.03" />
<figcaption aria-hidden="true"><span>Figure 4:</span> Within a flux
sector, the fermion gap <span class="math inline">\(\Delta_f\)</span>
measures the energy between the fermionic ground state and the first
excited state. This graph shows the fermion gap as a function of system
size for the ground state flux sector and for a configuration of random
fluxes. We see that the disorder induced by an putting the Kitaev model
on an amorphous lattice does not close the gap in the ground state. The
gap closes in the flux disordered limit is good evidence that the system
transitions to a gapless thermal metal state at high temperature. Each
point shows an average over 100 lattice realisations. System size <span
class="math inline">\(L\)</span> is defined <span
class="math inline">\(\sqrt{N}\)</span> where N is the number of
plaquettes in the system. Error bars shown are <span
class="math inline">\(3\)</span> times the standard error of the mean.
The lines shown are fits of <span
class="math inline">\(\tfrac{\Delta_f}{J} = aL ^ b\)</span> with fit
parameters: Ground State: <span class="math inline">\(a = 0.138 \pm
0.002, b = -0.0972 \pm 0.004\)</span> Random Flux Sector: <span
class="math inline">\(a = 1.8 \pm 0.2, b = -2.21 \pm
0.03\)</span></figcaption>
</figure>
</div>
<p>a thermal-induced Anderson transition to a thermal metal phase<span
class="citation" data-cites="selfThermallyInducedMetallic2019"><sup><a
href="#ref-selfThermallyInducedMetallic2019"
role="doc-biblioref">13</a></sup></span>.</p>
<p>An Ising non-Abelian anyon is formed by Majorana zero-modes bound to
a topological defect<span class="citation"
data-cites="Beenakker2013"><sup><a href="#ref-Beenakker2013"
role="doc-biblioref">14</a></sup></span>. Interactions between anyons
are modeled by pairwise projectors whose strength absolute value decays
exponentially with the separation between the particles, and whose sign
oscillates in analogy to RKKY exchanges<span class="citation"
data-cites="Laumann2012 Lahtinen_2011 lahtinenTopologicalLiquidNucleation2012"><sup><a
href="#ref-Laumann2012" role="doc-biblioref">15</a><a
href="#ref-lahtinenTopologicalLiquidNucleation2012"
role="doc-biblioref">17</a></sup></span>. Disorder can induce a finite
density of anyons whose hybridization lead to a macroscopically
degenerate state known as <em>thermal metal</em><span class="citation"
data-cites="Laumann2012"><sup><a href="#ref-Laumann2012"
role="doc-biblioref">15</a></sup></span>. One instance of this phase can
be settled on the Kitaev CSL. In this case, the topological defects
correspond to the <span class="math inline">\(W_p \neq +1\)</span>
fluxes, which naturally emerge from thermal fluctuations at nonzero
temperature<span class="citation"
data-cites="selfThermallyInducedMetallic2019"><sup><a
href="#ref-selfThermallyInducedMetallic2019"
role="doc-biblioref">13</a></sup></span>.</p>
<p>We demonstrated that the amorphous CSL undergoes the same form of
Anderson transition by studying its properties as a function of
disorder. Unfortunately, we could not perform a complete study of its
properties as a function of the temperature as it was not feasible to
evaluate an ever-present boundary condition dependent factor<span
class="citation"
data-cites="pedrocchiPhysicalSolutionsKitaev2011 Zschocke_Physical_states2015"><sup><a
href="#ref-pedrocchiPhysicalSolutionsKitaev2011"
role="doc-biblioref">18</a>,<a href="#ref-Zschocke_Physical_states2015"
role="doc-biblioref">19</a></sup></span> for random networks. Instead,
we evaluated the fermionic density of states (DOS) and the IPR as a
function of the vortex density <span class="math inline">\(\rho\)</span>
as a proxy for temperature. This approximation is exact in the limits
<span class="math inline">\(T = 0\)</span> (corresponding to <span
class="math inline">\(\rho = 0\)</span>) and <span
class="math inline">\(T \to \infty\)</span> (corresponding to <span
class="math inline">\(\rho = 0.5\)</span>). At intermediate temperatures
the method neglects to include the influence of defect-defect
correlations.</p>
<p>However, such an approximation is enough to show the onset of
low-energy excitations for <span class="math inline">\(\rho \sim
10^{-2}-10^{-1}\)</span>, as displayed on the top graphic of <a
href="#fig:DOS_Oscillations" data-reference-type="ref"
data-reference="fig:DOS_Oscillations">[fig:DOS_Oscillations]</a>(a). We
characterized these gapless excitations using the dimensional scaling
exponential <span class="math inline">\(\tau\)</span> of the IPR on the
bottom graphic of the same figure. At small <span
class="math inline">\(\rho\)</span>, the states populating the gap
possess <span class="math inline">\(\tau\approx0\)</span>, indicating
that they are localised states pinned to the defects, and the system
remains insulating. At large <span class="math inline">\(\rho\)</span>,
the in-gap states merge with the bulk band and become extensive, closing
the gap, and the system transitions to a metallic phase.</p>
<p>The thermal metal DOS displays a logarithmic divergence at zero
energy and characteristic oscillations at small energies.<span
class="citation"
data-cites="bocquet_disordered_2000 selfThermallyInducedMetallic2019"><sup><a
href="#ref-selfThermallyInducedMetallic2019"
role="doc-biblioref">13</a>,<a href="#ref-bocquet_disordered_2000"
role="doc-biblioref">20</a></sup></span>. These features were indeed
observed by the averaged density of states in the <span
class="math inline">\(\rho = 0.5\)</span> case shown in <a
href="#fig:DOS_Oscillations" data-reference-type="ref"
data-reference="fig:DOS_Oscillations">[fig:DOS_Oscillations]</a>(b) for
amorphous lattice. We emphasize that the CSL studied here emerges
without an applied magnetic field as opposed to the CSL on the honeycomb
lattice studied in Ref.<span class="citation"
data-cites="selfThermallyInducedMetallic2019"><sup><a
href="#ref-selfThermallyInducedMetallic2019"
role="doc-biblioref">13</a></sup></span> I have the impression that <a
href="#fig:DOS_Oscillations" data-reference-type="ref"
data-reference="fig:DOS_Oscillations">[fig:DOS_Oscillations]</a>(b) on
the top is very similar to Fig. 3 of<span class="citation"
data-cites="selfThermallyInducedMetallic2019"><sup><a
href="#ref-selfThermallyInducedMetallic2019"
role="doc-biblioref">13</a></sup></span>. Maybe a more instructive
figure would be the DOS of the amorphous toric code at the infinite
temperature limit. In this case, the lack of non-Abelian anyons would be
reflected by a gap on the DOS, which would contrast nicely to the
thermal metal phase</p>
<div id="fig:figure_3_bashed" class="fignos">
<figure>
<img src="/assets/thesis/figure_code/amk_paper/figure_3_bashed.svg"
style="width:100.0%" alt="Figure 5: " />
<figcaption aria-hidden="true"><span>Figure 5:</span> </figcaption>
</figure>
</div>
<h1 id="conclusion">Conclusion</h1>
<p>We have studied an extension of the Kitaev honeycomb model to
amorphous lattices with coordination number <span
class="math inline">\(z= 3\)</span>. We found that it is able to support
two quantum spin liquid phases that can be distinguished using a
real-space generalisation of the Chern number. The presence of odd-sided
plaquettes on these lattices let to a spontaneous breaking of time
reversal symmetry, leading to the emergence of a chiral spin liquid
phase. Furthermore we found evidence that the amorphous system undergoes
an Anderson transition to a thermal metal phase, driven by the
proliferation of vortices with increasing temperature.</p>
<h1 id="discussion">Discussion</h1>
<h2 id="failure-of-the-ground-state-conjecture">Failure of the ground
state conjecture</h2>
<p>We did find a small number of lattices for the ground state
conjecture did not correctly predict the true ground state flux sector.
I see two possibilities for what could cause this.</p>
<p>Firstly it could be a a finite size effect that is somehow amplfied
by certain rare lattice configurations. It would be interesting to try
to elucidate what lattice features are present when the ground state
conjecture fails.</p>
<p>Alternatively, it might be telling that the ground state conjecture
failed in the toric code phase where the couplings are anisotropic.
Clearly the colouring does not matter much in the isotropic phase.
However an avenue that I did not explore was whether the particular
choice of colouring for a lattice affects the physical properties in the
toris code phase. It is possible that some property of the particular
colouring chosen is what leads to failure of the ground state conjecture
here.</p>
<h2 id="full-monte-carlo">Full Monte Carlo</h2>
<h1 id="outlook">Outlook</h1>
<h2 id="experimental-realisations-and-signatures">Experimental
Realisations and Signatures</h2>
<p>The next step is to search for an experimental realisation in
amorphous Kitaev materials, which can be created from crystalline ones
using several methods<span class="citation"
data-cites="Weaire1976 Petrakovski1981 Kaneyoshi2018"><sup><a
href="#ref-Weaire1976" role="doc-biblioref">21</a><a
href="#ref-Kaneyoshi2018" role="doc-biblioref">23</a></sup></span>.</p>
<p>Following the evidence for an induced chiral spin liquid phase in
crystalline Kitaev materials<span class="citation"
data-cites="Kasahara2018 Yokoi2021 Yamashita2020 Bruin2022"><sup><a
href="#ref-Kasahara2018" role="doc-biblioref">24</a><a
href="#ref-Bruin2022" role="doc-biblioref">27</a></sup></span>, it would
be interesting to investigate if a similar state is produced on its
amorphous counterpart.</p>
<p>Probably one way to make this theory experimentally relevant is to do
experiments on amorphous phases of Kitaev materials. These phases can be
obtained by liquifying the material and cooling it fast. Apparently,
most of crystalline magnets can be transformed into amorphous ones
through this process.</p>
<p>Besides the usual half-quantized signature on thermal Hall
effect<span class="citation"
data-cites="Kasahara2018 Yokoi2021 Yamashita2020 Bruin2022"><sup><a
href="#ref-Kasahara2018" role="doc-biblioref">24</a><a
href="#ref-Bruin2022" role="doc-biblioref">27</a></sup></span>, such a
CSL could be also characterized using local probes such as
spin-polarized scanning-tunneling microscopy<span class="citation"
data-cites="Feldmeier2020 Konig2020 Udagawa2021"><sup><a
href="#ref-Feldmeier2020" role="doc-biblioref">28</a><a
href="#ref-Udagawa2021" role="doc-biblioref">30</a></sup></span>. The
same probes would also be useful to manipulate non-Abelian anyons<span
class="citation" data-cites="Pereira2020"><sup><a
href="#ref-Pereira2020" role="doc-biblioref">31</a></sup></span>,
thereby implementing elementary operations for topological quantum
computation. Finally, the thermal metal phase can be diagnosed using
bulk heat transport measurements<span class="citation"
data-cites="Beenakker2013"><sup><a href="#ref-Beenakker2013"
role="doc-biblioref">14</a></sup></span>.</p>
<h2 id="generalisations">Generalisations</h2>
<p>This work could be generalized in several ways.</p>
<p>Introduction of symmetry allowed perturbations on the model<span
class="citation"
data-cites="Rau2014 Chaloupka2010 Chaloupka2013 Chaloupka2015 Winter2016"><sup><a
href="#ref-Rau2014" role="doc-biblioref">32</a><a
href="#ref-Winter2016" role="doc-biblioref">36</a></sup></span>.</p>
<p>Generalizations to higher-spin models in random networks with
different coordination numbers<span class="citation"
data-cites="Baskaran2008 Yao2009 Nussinov2009 Yao2011 Chua2011 Natori2020 Chulliparambil2020 Chulliparambil2021 Seifert2020 WangHaoranPRB2021 Wu2009"><sup><a
href="#ref-Yao2011" role="doc-biblioref">2</a>,<a
href="#ref-Baskaran2008" role="doc-biblioref">37</a><a
href="#ref-Wu2009" role="doc-biblioref">46</a></sup></span></p>
<div id="refs" class="references csl-bib-body" data-line-spacing="2"
role="doc-bibliography">
<div id="ref-kitaevAnyonsExactlySolved2006" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">1. </div><div
class="csl-right-inline">Kitaev, A. <a
href="https://doi.org/10.1016/j.aop.2005.10.005">Anyons in an exactly
solved model and beyond</a>. <em>Annals of Physics</em>
<strong>321</strong>, 2111 (2006-01-01, 2006).</div>
</div>
<div id="ref-Yao2011" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">2. </div><div class="csl-right-inline">Yao,
H. &amp; Lee, D.-H. <a
href="https://doi.org/10.1103/PhysRevLett.107.087205">Fermionic magnons,
non-abelian spinons, and the spin quantum hall effect from an exactly
solvable spin-1/2 kitaev model with <span>SU</span>(2) symmetry</a>.
<em>Phys. Rev. Lett.</em> <strong>107</strong>, 087205 (2011).</div>
</div>
<div id="ref-yaoExactChiralSpin2007" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">3. </div><div class="csl-right-inline">Yao,
H. &amp; Kivelson, S. A. <a
href="https://doi.org/10.1103/PhysRevLett.99.247203">An exact chiral
spin liquid with non-<span>Abelian</span> anyons</a>. <em>Phys. Rev.
Lett.</em> <strong>99</strong>, 247203 (2007).</div>
</div>
<div id="ref-Peri2020" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">4. </div><div
class="csl-right-inline">Peri, V. <em>et al.</em> <a
href="https://doi.org/10.1103/PhysRevB.101.041114">Non-<span>Abelian</span>
chiral spin liquid on a simple non-<span>Archimedean</span> lattice</a>.
<em>Phys. Rev. B</em> <strong>101</strong>, 041114 (2020).</div>
</div>
<div id="ref-Nasu_Thermal_2015" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">5. </div><div
class="csl-right-inline">Nasu, J., Udagawa, M. &amp; Motome, Y. <a
href="https://doi.org/10.1103/PhysRevB.92.115122">Thermal
fractionalization of quantum spins in a <span>Kitaev</span> model: <span
class="nocase">Temperature-linear</span> specific heat and coherent
transport of <span>Majorana</span> fermions</a>. <em>Phys. Rev. B</em>
<strong>92</strong>, 115122 (2015).</div>
</div>
<div id="ref-knolle_dynamics_2016" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">6. </div><div
class="csl-right-inline">Knolle, J. Dynamics of a quantum spin liquid.
(Max Planck Institute for the Physics of Complex Systems, Dresden,
2016).</div>
</div>
<div id="ref-mitchellAmorphousTopologicalInsulators2018"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">7. </div><div
class="csl-right-inline">Mitchell, N. P., Nash, L. M., Hexner, D.,
Turner, A. M. &amp; Irvine, W. T. M. <a
href="https://doi.org/10.1038/s41567-017-0024-5">Amorphous topological
insulators constructed from random point sets</a>. <em>Nature Phys</em>
<strong>14</strong>, 380385 (2018).</div>
</div>
<div id="ref-peru_preprint" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">8. </div><div
class="csl-right-inline">dOrnellas, P., Barnett, R. &amp; Lee, D. K. K.
Quantised bulk conductivity as a local chern marker. <em>arXiv
preprint</em> (2022) doi:<a
href="https://doi.org/10.48550/ARXIV.2207.01389">10.48550/ARXIV.2207.01389</a>.</div>
</div>
<div id="ref-kitaev_fault-tolerant_2003" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">9. </div><div
class="csl-right-inline">Kitaev, A. Y. <a
href="https://doi.org/10.1016/S0003-4916(02)00018-0">Fault-tolerant
quantum computation by anyons</a>. <em>Annals of Physics</em>
<strong>303</strong>, 230 (2003).</div>
</div>
<div id="ref-bianco_mapping_2011" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">10. </div><div
class="csl-right-inline">Bianco, R. &amp; Resta, R. <a
href="https://doi.org/10.1103/PhysRevB.84.241106">Mapping topological
order in coordinate space</a>. <em>Physical Review B</em>
<strong>84</strong>, 241106 (2011).</div>
</div>
<div id="ref-Hastings_Almost_2010" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">11. </div><div
class="csl-right-inline">Hastings, M. B. &amp; Loring, T. A. <a
href="https://doi.org/10.1063/1.3274817">Almost commuting matrices,
localized <span>Wannier</span> functions, and the quantum
<span>Hall</span> effect</a>. <em>Journal of Mathematical Physics</em>
<strong>51</strong>, 015214 (2010).</div>
</div>
<div id="ref-qi_general_2006" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">12. </div><div class="csl-right-inline">Qi,
X.-L., Wu, Y.-S. &amp; Zhang, S.-C. <a
href="https://doi.org/10.1103/PhysRevB.74.045125">General theorem
relating the bulk topological number to edge states in two-dimensional
insulators</a>. <em>Physical Review B</em> <strong>74</strong>, 045125
(2006).</div>
</div>
<div id="ref-selfThermallyInducedMetallic2019" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">13. </div><div
class="csl-right-inline">Self, C. N., Knolle, J., Iblisdir, S. &amp;
Pachos, J. K. <a
href="https://doi.org/10.1103/PhysRevB.99.045142">Thermally induced
metallic phase in a gapped quantum spin liquid: <span>Monte</span> carlo
study of the kitaev model with parity projection</a>. <em>Phys. Rev.
B</em> <strong>99</strong>, 045142 (2019-01-25, 2019).</div>
</div>
<div id="ref-Beenakker2013" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">14. </div><div
class="csl-right-inline">Beenakker, C. W. J. <a
href="https://doi.org/10.1146/annurev-conmatphys-030212-184337">Search
for majorana fermions in superconductors</a>. <em>Annual Review of
Condensed Matter Physics</em> <strong>4</strong>, 113136 (2013).</div>
</div>
<div id="ref-Laumann2012" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">15. </div><div
class="csl-right-inline">Laumann, C. R., Ludwig, A. W. W., Huse, D. A.
&amp; Trebst, S. <a
href="https://doi.org/10.1103/PhysRevB.85.161301">Disorder-induced
<span>Majorana</span> metal in interacting non-<span>Abelian</span>
anyon systems</a>. <em>Phys. Rev. B</em> <strong>85</strong>, 161301
(2012).</div>
</div>
<div id="ref-Lahtinen_2011" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">16. </div><div
class="csl-right-inline">Lahtinen, V. <a
href="https://doi.org/10.1088/1367-2630/13/7/075009">Interacting
non-<span>Abelian</span> anyons as <span>Majorana</span> fermions in the
honeycomb lattice model</a>. <em>New Journal of Physics</em>
<strong>13</strong>, 075009 (2011).</div>
</div>
<div id="ref-lahtinenTopologicalLiquidNucleation2012" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">17. </div><div
class="csl-right-inline">Lahtinen, V., Ludwig, A. W. W., Pachos, J. K.
&amp; Trebst, S. <a
href="https://doi.org/10.1103/PhysRevB.86.075115">Topological liquid
nucleation induced by vortex-vortex interactions in
<span>Kitaev</span>s honeycomb model</a>. <em>Phys. Rev. B</em>
<strong>86</strong>, 075115 (2012).</div>
</div>
<div id="ref-pedrocchiPhysicalSolutionsKitaev2011" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">18. </div><div
class="csl-right-inline">Pedrocchi, F. L., Chesi, S. &amp; Loss, D. <a
href="https://doi.org/10.1103/PhysRevB.84.165414">Physical solutions of
the <span>Kitaev</span> honeycomb model</a>. <em>Phys. Rev. B</em>
<strong>84</strong>, 165414 (2011).</div>
</div>
<div id="ref-Zschocke_Physical_states2015" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">19. </div><div
class="csl-right-inline">Zschocke, F. &amp; Vojta, M. <a
href="https://doi.org/10.1103/PhysRevB.92.014403">Physical states and
finite-size effects in <span>Kitaev</span>s honeycomb model:
<span>Bond</span> disorder, spin excitations, and <span>NMR</span> line
shape</a>. <em>Phys. Rev. B</em> <strong>92</strong>, 014403
(2015).</div>
</div>
<div id="ref-bocquet_disordered_2000" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">20. </div><div
class="csl-right-inline">Bocquet, M., Serban, D. &amp; Zirnbauer, M. R.
<a href="https://doi.org/10.1016/S0550-3213(00)00208-X">Disordered 2d
quasiparticles in class <span>D</span>: <span>Dirac</span> fermions with
random mass, and dirty superconductors</a>. <em>Nuclear Physics B</em>
<strong>578</strong>, 628680 (2000).</div>
</div>
<div id="ref-Weaire1976" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">21. </div><div
class="csl-right-inline">Weaire, D. &amp; Thorpe, M. F. <a
href="https://doi.org/10.1080/00107517608210851">The structure of
amorphous solids</a>. <em>Contemporary Physics</em> <strong>17</strong>,
173191 (1976).</div>
</div>
<div id="ref-Petrakovski1981" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">22. </div><div
class="csl-right-inline">Petrakovskiı̆, G. A. <a
href="https://doi.org/10.1070/pu1981v024n06abeh004850">Amorphous
magnetic materials</a>. <em>Soviet Physics Uspekhi</em>
<strong>24</strong>, 511525 (1981).</div>
</div>
<div id="ref-Kaneyoshi2018" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">23. </div><div
class="csl-right-inline"><em>Amorphous magnetism</em>. (<span>CRC
Press</span>, 2018).</div>
</div>
<div id="ref-Kasahara2018" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">24. </div><div
class="csl-right-inline">Kasahara, Y., Ohnishi, T., Mizukami, Y., <em>et
al.</em> <a href="https://doi.org/10.1038/s41586-018-0274-0">Majorana
quantization and half-integer thermal quantum <span>Hall</span> effect
in a <span>Kitaev</span> spin liquid</a>. <em>Nature</em>
<strong>559</strong>, 227231 (2018).</div>
</div>
<div id="ref-Yokoi2021" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">25. </div><div
class="csl-right-inline">Yokoi, T., Ma, S., Kasahara, Y., <em>et
al.</em> <a href="https://doi.org/10.1126/science.aay5551">Majorana
quantization and half-integer thermal quantum <span>Hall</span> effect
in a <span>Kitaev</span> spin liquid</a>. <em>Science</em>
<strong>373</strong>, 568572 (2021).</div>
</div>
<div id="ref-Yamashita2020" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">26. </div><div
class="csl-right-inline">Yamashita, M., Gouchi, J., Uwatoko, Y., Kurita,
N. &amp; Tanaka, H. <a
href="https://doi.org/10.1103/PhysRevB.102.220404">Sample dependence of
half-integer quantized thermal <span>Hall</span> effect in the
<span>Kitaev</span> spin-liquid candidate <span><span
class="math inline">\(\alpha\)</span></span>-<span>RuCl</span><span><span
class="math inline">\(_{3}\)</span></span></a>. <em>Phys. Rev. B</em>
<strong>102</strong>, 220404 (2020).</div>
</div>
<div id="ref-Bruin2022" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">27. </div><div
class="csl-right-inline">Bruin, J. A. N. <em>et al.</em> <a
href="https://doi.org/10.1038/s41567-021-01501-y">Majorana quantization
and half-integer thermal quantum <span>Hall</span> effect in a
<span>Kitaev</span> spin liquid</a>. <em>Nature Physics</em>
<strong>18</strong>, 401405 (2022).</div>
</div>
<div id="ref-Feldmeier2020" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">28. </div><div
class="csl-right-inline">Feldmeier, J., Natori, W., Knap, M. &amp;
Knolle, J. <a href="https://doi.org/10.1103/PhysRevB.102.134423">Local
probes for charge-neutral edge states in two-dimensional quantum
magnets</a>. <em>Phys. Rev. B</em> <strong>102</strong>, 134423
(2020).</div>
</div>
<div id="ref-Konig2020" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">29. </div><div
class="csl-right-inline">König, E. J., Randeria, M. T. &amp; Jäck, B. <a
href="https://doi.org/10.1103/PhysRevLett.125.267206">Tunneling
spectroscopy of quantum spin liquids</a>. <em>Phys. Rev. Lett.</em>
<strong>125</strong>, 267206 (2020).</div>
</div>
<div id="ref-Udagawa2021" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">30. </div><div
class="csl-right-inline">Udagawa, M., Takayoshi, S. &amp; Oka, T. <a
href="https://doi.org/10.1103/PhysRevLett.126.127201">Scanning tunneling
microscopy as a single majorana detector of kitaevs chiral spin
liquid</a>. <em>Phys. Rev. Lett.</em> <strong>126</strong>, 127201
(2021).</div>
</div>
<div id="ref-Pereira2020" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">31. </div><div
class="csl-right-inline">Pereira, R. G. &amp; Egger, R. <a
href="https://doi.org/10.1103/PhysRevLett.125.227202">Electrical access
to ising anyons in kitaev spin liquids</a>. <em>Phys. Rev. Lett.</em>
<strong>125</strong>, 227202 (2020).</div>
</div>
<div id="ref-Rau2014" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">32. </div><div
class="csl-right-inline">Rau, J. G., Lee, E. K.-H. &amp; Kee, H.-Y. <a
href="https://doi.org/10.1103/PhysRevLett.112.077204">Generic spin model
for the honeycomb iridates beyond the kitaev limit</a>. <em>Phys. Rev.
Lett.</em> <strong>112</strong>, 077204 (2014).</div>
</div>
<div id="ref-Chaloupka2010" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">33. </div><div
class="csl-right-inline">Chaloupka, J., Jackeli, G. &amp; Khaliullin, G.
Kitaev-<span>Heisenberg</span> model on a honeycomb lattice: Possible
exotic phases in iridium oxides <span>A</span><span><span
class="math inline">\(_{2}\)</span></span><span>IrO</span><span><span
class="math inline">\(_{3}\)</span></span>. <em>Phys. Rev. Lett.</em>
<strong>105</strong>, 027204 (2010).</div>
</div>
<div id="ref-Chaloupka2013" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">34. </div><div
class="csl-right-inline">Chaloupka, J., Jackeli, G. &amp; Khaliullin, G.
<a href="https://doi.org/10.1103/PhysRevLett.110.097204">Zigzag magnetic
order in the iridium oxide <span>Na</span><span><span
class="math inline">\(_{2}\)</span></span><span>IrO</span><span><span
class="math inline">\(_{3}\)</span></span></a>. <em>Phys. Rev.
Lett.</em> <strong>110</strong>, 097204 (2013).</div>
</div>
<div id="ref-Chaloupka2015" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">35. </div><div
class="csl-right-inline">Chaloupka, J. &amp; Khaliullin, G. Hidden
symmetries of the extended <span>Kitaev-Heisenberg</span> model:
<span>Implications</span> for honeycomb lattice iridates
<span>A</span><span><span
class="math inline">\(_{2}\)</span></span><span>IrO</span><span><span
class="math inline">\(_{3}\)</span></span>. <em>Phys. Rev. B</em>
<strong>92</strong>, 024413 (2015).</div>
</div>
<div id="ref-Winter2016" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">36. </div><div
class="csl-right-inline">Winter, S. M., Li, Y., Jeschke, H. O. &amp;
Valentí, R. <a
href="https://doi.org/10.1103/PhysRevB.93.214431">Challenges in design
of <span>Kitaev</span> materials: <span>Magnetic</span> interactions
from competing energy scales</a>. <em>Phys. Rev. B</em>
<strong>93</strong>, 214431 (2016).</div>
</div>
<div id="ref-Baskaran2008" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">37. </div><div
class="csl-right-inline">Baskaran, G., Sen, D. &amp; Shankar, R. <a
href="https://doi.org/10.1103/PhysRevB.78.115116">Spin-<span>S
Kitaev</span> model: <span>Classical</span> ground states, order from
disorder, and exact correlation functions</a>. <em>Phys. Rev. B</em>
<strong>78</strong>, 115116 (2008).</div>
</div>
<div id="ref-Yao2009" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">38. </div><div
class="csl-right-inline">Yao, H., Zhang, S.-C. &amp; Kivelson, S. A. <a
href="https://doi.org/10.1103/PhysRevLett.102.217202">Algebraic spin
liquid in an exactly solvable spin model</a>. <em>Phys. Rev. Lett.</em>
<strong>102</strong>, 217202 (2009).</div>
</div>
<div id="ref-Nussinov2009" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">39. </div><div
class="csl-right-inline">Nussinov, Z. &amp; Ortiz, G. <a
href="https://doi.org/10.1103/PhysRevB.79.214440">Bond algebras and
exact solvability of <span>Hamiltonians</span>: Spin
<span>S</span>=<span><span
class="math inline">\(\frac{1}{2}\)</span></span> multilayer
systems</a>. <em>Physical Review B</em> <strong>79</strong>, 214440
(2009).</div>
</div>
<div id="ref-Chua2011" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">40. </div><div
class="csl-right-inline">Chua, V., Yao, H. &amp; Fiete, G. A. <a
href="https://doi.org/10.1103/PhysRevB.83.180412">Exact chiral spin
liquid with stable spin <span>Fermi</span> surface on the kagome
lattice</a>. <em>Phys. Rev. B</em> <strong>83</strong>, 180412
(2011).</div>
</div>
<div id="ref-Natori2020" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">41. </div><div
class="csl-right-inline">Natori, W. M. H. &amp; Knolle, J. <a
href="https://doi.org/10.1103/PhysRevLett.125.067201">Dynamics of a
two-dimensional quantum spin-orbital liquid: <span>Spectroscopic</span>
signatures of fermionic magnons</a>. <em>Phys. Rev. Lett.</em>
<strong>125</strong>, 067201 (2020).</div>
</div>
<div id="ref-Chulliparambil2020" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">42. </div><div
class="csl-right-inline">Chulliparambil, S., Seifert, U. F. P., Vojta,
M., Janssen, L. &amp; Tu, H.-H. <a
href="https://doi.org/10.1103/PhysRevB.102.201111">Microscopic models
for <span>Kitaev</span>s sixteenfold way of anyon theories</a>.
<em>Phys. Rev. B</em> <strong>102</strong>, 201111 (2020).</div>
</div>
<div id="ref-Chulliparambil2021" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">43. </div><div
class="csl-right-inline">Chulliparambil, S., Janssen, L., Vojta, M., Tu,
H.-H. &amp; Seifert, U. F. P. <a
href="https://doi.org/10.1103/PhysRevB.103.075144">Flux crystals,
<span>Majorana</span> metals, and flat bands in exactly solvable
spin-orbital liquids</a>. <em>Phys. Rev. B</em> <strong>103</strong>,
075144 (2021).</div>
</div>
<div id="ref-Seifert2020" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">44. </div><div
class="csl-right-inline">Seifert, U. F. P. <em>et al.</em> <a
href="https://doi.org/10.1103/PhysRevLett.125.257202">Fractionalized
fermionic quantum criticality in spin-orbital mott insulators</a>.
<em>Phys. Rev. Lett.</em> <strong>125</strong>, 257202 (2020).</div>
</div>
<div id="ref-WangHaoranPRB2021" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">45. </div><div
class="csl-right-inline">Wang, H. &amp; Principi, A. <a
href="https://doi.org/10.1103/PhysRevB.104.214422">Majorana edge and
corner states in square and kagome quantum spin-<span><span
class="math inline">\(^{3}\fracslash_2\)</span></span> liquids</a>.
<em>Phys. Rev. B</em> <strong>104</strong>, 214422 (2021).</div>
</div>
<div id="ref-Wu2009" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">46. </div><div class="csl-right-inline">Wu,
C., Arovas, D. &amp; Hung, H.-H. <span><span
class="math inline">\(\Gamma\)</span></span>-matrix generalization of
the <span>Kitaev</span> model. <em>Physical Review B</em>
<strong>79</strong>, 134427 (2009).</div>
</div>
</div>
</main>
</body>
</html>