This commit is contained in:
Tom Hodson 2022-08-27 10:23:45 +02:00
parent 9000efddb9
commit 941b83e767
22 changed files with 972 additions and 1656 deletions

View File

@ -1,6 +1,6 @@
---
title: 1_Intro
excerpt:
title: Introduction
excerpt: Why do we do Condensed Matter theory at all?
layout: none
image:
@ -11,7 +11,8 @@ image:
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>1_Intro</title>
<meta name="description" content="Why do we do Condensed Matter theory at all?" />
<title>Introduction</title>
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
@ -34,7 +35,6 @@ Body Systems</a></li>
Insulators</a></li>
<li><a href="#quantum-spin-liquids"
id="toc-quantum-spin-liquids">Quantum Spin Liquids</a></li>
<li><a href="#outline" id="toc-outline">Outline</a></li>
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
</ul>
</nav>
@ -55,7 +55,6 @@ Body Systems</a></li>
Insulators</a></li>
<li><a href="#quantum-spin-liquids"
id="toc-quantum-spin-liquids">Quantum Spin Liquids</a></li>
<li><a href="#outline" id="toc-outline">Outline</a></li>
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
</ul>
</nav>
@ -355,43 +354,61 @@ href="#ref-antipovCriticalExponentsStrongly2014"
role="doc-biblioref">38</a><a
href="#ref-herrmannNonequilibriumDynamicalCluster2016"
role="doc-biblioref">41</a>]</span>.</p>
<p>In Chapter 3 I will introduce a generalized FK model in one
dimension. With the addition of long-range interactions in the
background field, the model shows a similarly rich phase diagram. I use
an exact Markov chain Monte Carlo method to map the phase diagram and
compute the energy-resolved localization properties of the fermions. I
then compare the behaviour of this transitionally invariant model to an
Anderson model of uncorrelated binary disorder about a background charge
density wave field which confirms that the fermionic sector only fully
localizes for very large system sizes.</p>
<p>In Chapter 3 I will introduce a generalized Falikov-Kimball model in
one dimension I call the Long-Range Falikov-Kimball model. With the
addition of long-range interactions in the background field, the model
shows a similarly rich phase diagram its higher dimensional cousins. I
use an exact Markov chain Monte Carlo method to map the phase diagram
and compute the energy-resolved localization properties of the fermions.
I then compare the behaviour of this transitionally invariant model to
an Anderson model of uncorrelated binary disorder about a background
charge density wave field which confirms that the fermionic sector only
fully localizes for very large system sizes.</p>
</section>
<section id="quantum-spin-liquids" class="level1">
<h1>Quantum Spin Liquids</h1>
<p>To turn to the other key topic of this thesis, we have discussed the
question of the magnetic ordering of local moments in the Mott
insulating state. The local moments may form an AFM ground state.
Alternatively they may fail to order even at zero temperature <span
class="citation"
data-cites="law1TTaS2QuantumSpin2017 ribakGaplessExcitationsGround2017"> [<a
href="#ref-law1TTaS2QuantumSpin2017" role="doc-biblioref">28</a>,<a
href="#ref-ribakGaplessExcitationsGround2017"
role="doc-biblioref">29</a>]</span>, giving rise to what is known as a
quantum spin liquid (QSL) state.</p>
<p>Landau-Ginzburg-Wilson theory characterises phases of matter as
<p>To turn to the other key topic of this thesis, we have already
discussed the AFM ordering of local moments in the Mott insulating
state. Landau-Ginzburg-Wilson theory characterises phases of matter as
inextricably linked to the emergence of long range order via a
spontaneously broken symmetry. The fractional quantum Hall (FQH) state,
discovered in the 1980s is an explicit example of an electronic system
that falls outside of the Landau-Ginzburg-Wilson paradigm. FQH systems
exhibit fractionalised excitations linked to their ground state having
long range entanglement and non-trivial topological properties <span
class="citation" data-cites="broholmQuantumSpinLiquids2020"> [<a
href="#ref-broholmQuantumSpinLiquids2020"
role="doc-biblioref">42</a>]</span>. Quantum spin liquids are the
analogous phase of matter for spin systems. Remarkably the existence of
QSLs was first suggested by Anderson in 1973 <span class="citation"
data-cites="andersonResonatingValenceBonds1973"> [<a
spontaneously broken symmetry. So within this paradigm we would not
expect any interesting phases of matter not associated with AFM or other
long-range order. However, Anderson first proposed in 1973 <span
class="citation" data-cites="andersonResonatingValenceBonds1973"> [<a
href="#ref-andersonResonatingValenceBonds1973"
role="doc-biblioref">43</a>]</span>.</p>
role="doc-biblioref">42</a>]</span> that if long range order is
suppressed by some mechanism, it might lead to a liquid-like state even
at zero temperature, the Quantum Spin Liquid (QSL).</p>
<p>This QSL state would exist at zero or very low temperatures, so we
would expect quantum effects to be very strong, which will turn out to
have far reaching consequences. It was the discovery of a different
phase, however that really kickstarted interest in the topic. The
fractional quantum Hall (FQH) state, discovered in the 1980s is an
explicit example of an interacting electron system that falls outside of
the Landau-Ginzburg-Wilson paradigm. It shares many phenomenological
properties with the QSL state. They both exhibit fractionalised
excitations, braiding statistics and non-trivial topological
properties <span class="citation"
data-cites="broholmQuantumSpinLiquids2020"> [<a
href="#ref-broholmQuantumSpinLiquids2020"
role="doc-biblioref">43</a>]</span>. The many-body ground state of such
systems acts as a complex and highly entangled vacuum. This vacuum can
support quasiparticle excitations with properties unbound from that of
the Dirac fermions of the standard model.</p>
<p>How do we actually make a QSL? Frustration is one mechanism that we
can use to suppress magnetic order in spin models <span class="citation"
data-cites="TrebstPhysRep2022"> [<a href="#ref-TrebstPhysRep2022"
role="doc-biblioref">44</a>]</span>. Frustration can be geometric,
triangular lattices for instance cannot support AFM order. It can also
come about as a result of spin-orbit coupling or other physics. There
are also other routes to QSLs besides frustrated spin systems that we
will not discuss here <span class="citation"
data-cites="balentsNodalLiquidTheory1998 balentsDualOrderParameter1999 linExactSymmetryWeaklyinteracting1998"> [<a
href="#ref-balentsNodalLiquidTheory1998" role="doc-biblioref">45</a><a
href="#ref-linExactSymmetryWeaklyinteracting1998"
role="doc-biblioref">47</a>]</span>.</p>
<!-- Experimentally, Mott insulating systems without magnetic order have been proposed as QSL systems\ [@law1TTaS2QuantumSpin2017; @ribakGaplessExcitationsGround2017]. -->
<!-- Other exampels: Quantum spin liquids are the analogous phase of matter for spin systems. Spin ice support deconfined magnetic monopoles. -->
<div id="fig:correlation_spin_orbit_PT" class="fignos">
<figure>
<img src="/assets/thesis/intro_chapter/correlation_spin_orbit_PT.png"
@ -403,97 +420,176 @@ href="#ref-TrebstPhysRep2022"
role="doc-biblioref">44</a>]</span>.</figcaption>
</figure>
</div>
<p>The main route to QSLs, though there are others <span
class="citation"
data-cites="balentsNodalLiquidTheory1998 balentsDualOrderParameter1999 linExactSymmetryWeaklyinteracting1998"> [<a
href="#ref-balentsNodalLiquidTheory1998" role="doc-biblioref">45</a><a
href="#ref-linExactSymmetryWeaklyinteracting1998"
role="doc-biblioref">47</a>]</span>, is via frustration of spin models
that would otherwise order have AFM order. This frustration can come
geometrically, triangular lattices for instance cannot support AFM
order. It can also come about as a result of spin-orbit coupling.</p>
<p>Electron spin naturally couples to magnetic fields. Spin-orbit
coupling is a relativistic effect, that very roughly corresponds to the
fact that in the frame of reference of a moving electron, the electric
field of nearby nuclei look like magnetic field to which the electron
spin couples. In certain transition metal based compounds, such as those
based on Iridium and Rutheniun, crystal field effects, strong spin-orbit
coupling and narrow bandwidths lead to effective spin-<span
<p>Spin-orbit coupling is a relativistic effect, that very roughly
corresponds to the fact that in the frame of reference of a moving
electron, the electric field of nearby nuclei look like magnetic fields
to which the electron spin couples. This effectively couples the spatial
and spin parts of the electron wavefunction, meaning that the lattice
structure can influence the form of the spin-spin interactions leading
to spatial anisotropy. This anisotropy will be how we frustrate the Mott
insulators <span class="citation"
data-cites="jackeliMottInsulatorsStrong2009 khaliullinOrbitalOrderFluctuations2005"> [<a
href="#ref-jackeliMottInsulatorsStrong2009"
role="doc-biblioref">48</a>,<a
href="#ref-khaliullinOrbitalOrderFluctuations2005"
role="doc-biblioref">49</a>]</span>. As we saw with the Hubbard model,
interaction effects are only strong or weak in comparison to the
bandwidth or hopping integral <span class="math inline">\(t\)</span> so
what we need to see strong frustration is a material with strong
spin-orbit coupling <span class="math inline">\(\lambda\)</span>
relative to its bandwidth <span class="math inline">\(t\)</span>.</p>
<p>In certain transition metal based compounds, such as those based on
Iridium and Ruthenium, the lattice structure, strong spin-orbit coupling
and narrow bandwidths lead to effective spin-<span
class="math inline">\(\tfrac{1}{2}\)</span> Mott insulating states with
strongly anisotropic spin-spin couplings known as Kitaev Materials <span
class="citation"
strongly anisotropic spin-spin couplings. These transition metal
compounds, known Kitaev Materials, draw their name from the celebrated
Kitaev Honeycomb Model which is expected to model their low temperature
behaviour <span class="citation"
data-cites="Jackeli2009 HerrmannsAnRev2018 Winter2017 TrebstPhysRep2022 Takagi2019"> [<a
href="#ref-TrebstPhysRep2022" role="doc-biblioref">44</a>,<a
href="#ref-Jackeli2009" role="doc-biblioref">48</a><a
href="#ref-Takagi2019" role="doc-biblioref">51</a>]</span>. Kitaev
materials draw their name from the celebrated Kitaev Honeycomb Model as
it is believed they will realise the QSL state via the mechanisms of the
Kitaev Model.</p>
href="#ref-Jackeli2009" role="doc-biblioref">50</a><a
href="#ref-Takagi2019" role="doc-biblioref">53</a>]</span>.</p>
<p>At this point we can sketch out a phase diagram like that of fig. <a
href="#fig:correlation_spin_orbit_PT">3</a>. When both electron-electron
interactions <span class="math inline">\(U\)</span> and spin-orbit
couplings <span class="math inline">\(\lambda\)</span> are small
relative to the bandwidth <span class="math inline">\(t\)</span> we
recover standard band theory of band insulators and metals. In the upper
left we have the simple Mott insulating state as described by the
Hubbard model. In the lower right, strong spin-orbit coupling gives rise
to Topological insulators (TIs) characterised by symmetry protected edge
modes and non-zero Chern number. Kitaev materials occur in the region
where strong electron-electron interaction and spin-orbit coupling
interact. See <span class="citation"
data-cites="witczak-krempaCorrelatedQuantumPhenomena2014"> [<a
href="#ref-witczak-krempaCorrelatedQuantumPhenomena2014"
role="doc-biblioref">54</a>]</span> for a much more expansive version of
this diagram.</p>
<p>The Kitaev Honeycomb model <span class="citation"
data-cites="kitaevAnyonsExactlySolved2006"> [<a
href="#ref-kitaevAnyonsExactlySolved2006"
role="doc-biblioref">52</a>]</span> was the first concrete model with a
QSL ground state. It is defined on the honeycomb lattice and provides an
exactly solvable model whose ground state is a QSL characterized by a
static <span class="math inline">\(\mathbb Z_2\)</span> gauge field and
Majorana fermion excitations. It can be reduced to a free fermion
problem via a mapping to Majorana fermions which yields an extensive
number of static <span class="math inline">\(\mathbb Z_2\)</span> fluxes
tied to an emergent gauge field. The model is remarkable not only for
its QSL ground state, it supports a rich phase diagram hosting gapless,
Abelian and non-Abelian phases <span class="citation"
role="doc-biblioref">55</a>]</span> was the first concrete spin model
with a QSL ground state. It is defined on the two dimensional honeycomb
lattice and provides an exactly solvable model that can be reduced to a
free fermion problem via a mapping to Majorana fermions. This yields an
extensive number of static <span class="math inline">\(\mathbb
Z_2\)</span> fluxes tied to an emergent gauge field. The model is
remarkable not only for its QSL ground state but also for its
fractionalised excitations with non-trivial braiding statistics. It has
a rich phase diagram hosting gapless, Abelian and non-Abelian
phases <span class="citation"
data-cites="knolleDynamicsFractionalizationQuantum2015"> [<a
href="#ref-knolleDynamicsFractionalizationQuantum2015"
role="doc-biblioref">53</a>]</span> and a finite temperature phase
role="doc-biblioref">56</a>]</span> and a finite temperature phase
transition to a thermal metal state <span class="citation"
data-cites="selfThermallyInducedMetallic2019"> [<a
href="#ref-selfThermallyInducedMetallic2019"
role="doc-biblioref">54</a>]</span>. It been proposed that its
role="doc-biblioref">57</a>]</span>. It been proposed that its
non-Abelian excitations could be used to support robust topological
quantum computing [<span class="citation"
data-cites="kitaev_fault-tolerant_2003"> [<a
href="#ref-kitaev_fault-tolerant_2003"
role="doc-biblioref">55</a>]</span>; <span class="citation"
data-cites="freedmanTopologicalQuantumComputation2003"> [<a
href="#ref-freedmanTopologicalQuantumComputation2003"
role="doc-biblioref">56</a>]</span>;
nayakNonAbelianAnyonsTopological2008].</p>
<p>It is by now understood that the Kitaev model on any tri-coordinated
<span class="math inline">\(z=3\)</span> graph has conserved plaquette
operators and local symmetries <span class="citation"
data-cites="Baskaran2007 Baskaran2008"> [<a href="#ref-Baskaran2007"
role="doc-biblioref">57</a>,<a href="#ref-Baskaran2008"
role="doc-biblioref">58</a>]</span> which allow a mapping onto effective
free Majorana fermion problems in a background of static <span
class="math inline">\(\mathbb Z_2\)</span> fluxes <span class="citation"
data-cites="Nussinov2009 OBrienPRB2016 yaoExactChiralSpin2007 hermanns2015weyl"> [<a
href="#ref-Nussinov2009" role="doc-biblioref">59</a><a
href="#ref-hermanns2015weyl" role="doc-biblioref">62</a>]</span>.
However, depending on lattice symmetries, finding the ground state flux
sector and understanding the QSL properties can still be
quantum computing <span class="citation"
data-cites="kitaev_fault-tolerant_2003 freedmanTopologicalQuantumComputation2003 nayakNonAbelianAnyonsTopological2008"> [<a
href="#ref-kitaev_fault-tolerant_2003" role="doc-biblioref">58</a><a
href="#ref-nayakNonAbelianAnyonsTopological2008"
role="doc-biblioref">60</a>]</span>.</p>
<p>As Kitaev points out in his original paper, the model remains
solvable on any tri-coordinated <span class="math inline">\(z=3\)</span>
graph which can be 3-edge-coloured. Indeed many generalisations of the
model to  <span class="citation"
data-cites="Baskaran2007 Baskaran2008 Nussinov2009 OBrienPRB2016 hermanns2015weyl"> [<a
href="#ref-Baskaran2007" role="doc-biblioref">61</a><a
href="#ref-hermanns2015weyl" role="doc-biblioref">65</a>]</span>.
Notably, the Yao-Kivelson model <span class="citation"
data-cites="yaoExactChiralSpin2007"> [<a
href="#ref-yaoExactChiralSpin2007" role="doc-biblioref">66</a>]</span>
introduces triangular plaquettes to the honeycomb lattice leading to
spontaneous chiral symmetry breaking. These extensions all retain
translation symmetry, likely because edge-colouring and finding the
ground state become much harder without it. Finding the ground state
flux sector and understanding the QSL properties can still be
challenging <span class="citation"
data-cites="eschmann2019thermodynamics Peri2020"> [<a
href="#ref-eschmann2019thermodynamics" role="doc-biblioref">63</a>,<a
href="#ref-Peri2020" role="doc-biblioref">64</a>]</span>.</p>
<p><strong>paragraph about amorphous lattices</strong></p>
<p>In Chapter 4 I will introduce a soluble chiral amorphous quantum spin
liquid by extending the Kitaev honeycomb model to random lattices with
fixed coordination number three. The model retains its exact solubility
but the presence of plaquettes with an odd number of sides leads to a
spontaneous breaking of time reversal symmetry. I unearth a rich phase
diagram displaying Abelian as well as a non-Abelian quantum spin liquid
phases with a remarkably simple ground state flux pattern. Furthermore,
I show that the system undergoes a finite-temperature phase transition
to a conducting thermal metal state and discuss possible experimental
realisations.</p>
</section>
<section id="outline" class="level1">
<h1>Outline</h1>
href="#ref-eschmann2019thermodynamics" role="doc-biblioref">67</a>,<a
href="#ref-Peri2020" role="doc-biblioref">68</a>]</span>. Undeterred,
this gap lead us to wonder what might happen if we remove translation
symmetry from the Kitaev Model. This might would be a model of a
tri-coordinated, highly bond anisotropic but otherwise amorphous
material.</p>
<p>Amorphous materials do no have long-range lattice regularities but
covalent compounds can induce short-range regularities in the lattice
structure such as fixed coordination number <span
class="math inline">\(z\)</span>. The best examples being amorphous
Silicon and Germanium with <span class="math inline">\(z=4\)</span>
which are used to make thin-film solar cells <span class="citation"
data-cites="Weaire1971 betteridge1973possible"> [<a
href="#ref-Weaire1971" role="doc-biblioref">69</a>,<a
href="#ref-betteridge1973possible" role="doc-biblioref">70</a>]</span>.
Recently is has been shown that topological insulating (TI) phases can
exist in amorphous systems. Amorphous TIs are characterized by similar
protected edge states to their translation invariant cousins and
generalised topological bulk invariants <span class="citation"
data-cites="mitchellAmorphousTopologicalInsulators2018 agarwala2019topological marsalTopologicalWeaireThorpeModels2020 costa2019toward agarwala2020higher spring2021amorphous corbae2019evidence"> [<a
href="#ref-mitchellAmorphousTopologicalInsulators2018"
role="doc-biblioref">71</a><a href="#ref-corbae2019evidence"
role="doc-biblioref">77</a>]</span>. However, research on amorphous
electronic systems has been mostly focused on non-interacting systems
with a few exceptions, for example, to account for the observation of
superconductivity <span class="citation"
data-cites="buckel1954einfluss mcmillan1981electron meisel1981eliashberg bergmann1976amorphous mannaNoncrystallineTopologicalSuperconductors2022"> [<a
href="#ref-buckel1954einfluss" role="doc-biblioref">78</a><a
href="#ref-mannaNoncrystallineTopologicalSuperconductors2022"
role="doc-biblioref">82</a>]</span> in amorphous materials or very
recently to understand the effect of strong electron repulsion in
TIs <span class="citation" data-cites="kim2022fractionalization"> [<a
href="#ref-kim2022fractionalization"
role="doc-biblioref">83</a>]</span>.</p>
<p>Amorphous <em>magnetic</em> systems has been investigated since the
1960s, mostly through the adaptation of theoretical tools developed for
disordered systems <span class="citation"
data-cites="aharony1975critical Petrakovski1981 kaneyoshi1992introduction Kaneyoshi2018"> [<a
href="#ref-aharony1975critical" role="doc-biblioref">84</a><a
href="#ref-Kaneyoshi2018" role="doc-biblioref">87</a>]</span> and with
numerical methods <span class="citation"
data-cites="fahnle1984monte plascak2000ising"> [<a
href="#ref-fahnle1984monte" role="doc-biblioref">88</a>,<a
href="#ref-plascak2000ising" role="doc-biblioref">89</a>]</span>.
Research on classical Heisenberg and Ising models has been shown to
account for observed behaviour of ferromagnetism, disordered
antiferromagnetism and widely observed spin glass behaviour <span
class="citation" data-cites="coey1978amorphous"> [<a
href="#ref-coey1978amorphous" role="doc-biblioref">90</a>]</span>.
However, the role of spin-anisotropic interactions and quantum effects
in amorphous magnets has not been addressed. It is an open question
whether frustrated magnetic interactions on amorphous lattices can give
rise genuine quantum phases, i.e. to long-range entangled quantum spin
liquids (QSL) <span class="citation"
data-cites="Anderson1973 Knolle2019 Savary2016 Lacroix2011"> [<a
href="#ref-Anderson1973" role="doc-biblioref">91</a><a
href="#ref-Lacroix2011" role="doc-biblioref">94</a>]</span>.</p>
<p>In Chapter 4 I will introduce the Amorphous Kitaev model, a
generalisation of the Kitaev honeycomb model to random lattices with
fixed coordination number three. We will show that this model is a
soluble chiral amorphous quantum spin liquid. The model retains its
exact solubility but, as with the Yao-Kivelson model <span
class="citation" data-cites="yaoExactChiralSpin2007"> [<a
href="#ref-yaoExactChiralSpin2007" role="doc-biblioref">66</a>]</span>,
the presence of plaquettes with an odd number of sides leads to a
spontaneous breaking of time reversal symmetry. We will confirm prior
observations that the form of the ground state can be written in terms
of the number of sides of elementary plaquettes of the model <span
class="citation"
data-cites="OBrienPRB2016 eschmannThermodynamicClassificationThreedimensional2020"> [<a
href="#ref-OBrienPRB2016" role="doc-biblioref">64</a>,<a
href="#ref-eschmannThermodynamicClassificationThreedimensional2020"
role="doc-biblioref">95</a>]</span>. We unearth a rich phase diagram
displaying Abelian as well as a non-Abelian chiral spin liquid phases.
Furthermore, I show that the system undergoes a finite-temperature phase
transition to a conducting thermal metal state and discuss possible
experimental realisations.</p>
<p>The next chapter, Chapter 2, will introduce some necessary background
to the Falikov-Kimball Model, the Kitaev Honeycomb Model, disorder and
localisation.</p>
<p>In Chapter 3 I introduce the Long Range Falikov-Kimball Model in
greater detail. I will present results that. Chapter 4 focusses on the
localisation. Then Chapter 3 introduces and studies the Long Range
Falikov-Kimball Model in one dimension while Chapter 4 focusses on the
Amorphous Kitaev Model.</p>
</section>
<section id="bibliography" class="level1 unnumbered">
@ -820,22 +916,22 @@ href="https://doi.org/10.1103/PhysRevB.94.245114">Nonequilibrium
Dynamical Cluster Approximation Study of the Falicov-Kimball
Model</a></em>, Phys. Rev. B <strong>94</strong>, 245114 (2016).</div>
</div>
<div id="ref-broholmQuantumSpinLiquids2020" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[42] </div><div class="csl-right-inline">C.
Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, M. R. Norman, and T.
Senthil, <em><a href="https://doi.org/10.1126/science.aay0668">Quantum
Spin Liquids</a></em>, Science <strong>367</strong>, eaay0668
(2020).</div>
</div>
<div id="ref-andersonResonatingValenceBonds1973" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[43] </div><div class="csl-right-inline">P.
<div class="csl-left-margin">[42] </div><div class="csl-right-inline">P.
W. Anderson, <em><a
href="https://doi.org/10.1016/0025-5408(73)90167-0">Resonating Valence
Bonds: A New Kind of Insulator?</a></em>, Materials Research Bulletin
<strong>8</strong>, 153 (1973).</div>
</div>
<div id="ref-broholmQuantumSpinLiquids2020" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[43] </div><div class="csl-right-inline">C.
Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, M. R. Norman, and T.
Senthil, <em><a href="https://doi.org/10.1126/science.aay0668">Quantum
Spin Liquids</a></em>, Science <strong>367</strong>, eaay0668
(2020).</div>
</div>
<div id="ref-TrebstPhysRep2022" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[44] </div><div class="csl-right-inline">S.
@ -868,17 +964,33 @@ class="csl-right-inline">H.-H. Lin, L. Balents, and M. P. A. Fisher,
Symmetry in the Weakly-Interacting Two-Leg Ladder</a></em>, Phys. Rev. B
<strong>58</strong>, 1794 (1998).</div>
</div>
<div id="ref-Jackeli2009" class="csl-entry" role="doc-biblioentry">
<div id="ref-jackeliMottInsulatorsStrong2009" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[48] </div><div class="csl-right-inline">G.
Jackeli and G. Khaliullin, <em><a
href="https://doi.org/10.1103/PhysRevLett.102.017205">Mott Insulators in
the Strong Spin-Orbit Coupling Limit: From Heisenberg to a Quantum
Compass and Kitaev Models</a></em>, Phys. Rev. Lett.
<strong>102</strong>, 017205 (2009).</div>
</div>
<div id="ref-khaliullinOrbitalOrderFluctuations2005" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[49] </div><div class="csl-right-inline">G.
Khaliullin, <em><a href="https://doi.org/10.1143/PTPS.160.155">Orbital
Order and Fluctuations in Mott Insulators</a></em>, Progress of
Theoretical Physics Supplement <strong>160</strong>, 155 (2005).</div>
</div>
<div id="ref-Jackeli2009" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[50] </div><div class="csl-right-inline">G.
Jackeli and G. Khaliullin, <em><a
href="https://doi.org/10.1103/PhysRevLett.102.017205">Mott Insulators in
the Strong Spin-Orbit Coupling Limit: From Heisenberg to a Quantum
Compass and Kitaev Models</a></em>, Physical Review Letters
<strong>102</strong>, 017205 (2009).</div>
</div>
<div id="ref-HerrmannsAnRev2018" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[49] </div><div class="csl-right-inline">M.
<div class="csl-left-margin">[51] </div><div class="csl-right-inline">M.
Hermanns, I. Kimchi, and J. Knolle, <em><a
href="https://doi.org/10.1146/annurev-conmatphys-033117-053934">Physics
of the Kitaev Model: Fractionalization, Dynamic Correlations, and
@ -886,28 +998,36 @@ Material Connections</a></em>, Annual Review of Condensed Matter Physics
<strong>9</strong>, 17 (2018).</div>
</div>
<div id="ref-Winter2017" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[50] </div><div class="csl-right-inline">S.
<div class="csl-left-margin">[52] </div><div class="csl-right-inline">S.
M. Winter, A. A. Tsirlin, M. Daghofer, J. van den Brink, Y. Singh, P.
Gegenwart, and R. Valentí, <em>Models and Materials for Generalized
Kitaev Magnetism</em>, Journal of Physics: Condensed Matter
<strong>29</strong>, 493002 (2017).</div>
</div>
<div id="ref-Takagi2019" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[51] </div><div class="csl-right-inline">H.
<div class="csl-left-margin">[53] </div><div class="csl-right-inline">H.
Takagi, T. Takayama, G. Jackeli, G. Khaliullin, and S. E. Nagler,
<em>Concept and Realization of Kitaev Quantum Spin Liquids</em>, Nature
Reviews Physics <strong>1</strong>, 264 (2019).</div>
</div>
<div id="ref-witczak-krempaCorrelatedQuantumPhenomena2014"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[54] </div><div class="csl-right-inline">W.
Witczak-Krempa, G. Chen, Y. B. Kim, and L. Balents, <em><a
href="https://doi.org/10.1146/annurev-conmatphys-020911-125138">Correlated
Quantum Phenomena in the Strong Spin-Orbit Regime</a></em>, Annual
Review of Condensed Matter Physics <strong>5</strong>, 57 (2014).</div>
</div>
<div id="ref-kitaevAnyonsExactlySolved2006" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[52] </div><div class="csl-right-inline">A.
<div class="csl-left-margin">[55] </div><div class="csl-right-inline">A.
Kitaev, <em><a href="https://doi.org/10.1016/j.aop.2005.10.005">Anyons
in an Exactly Solved Model and Beyond</a></em>, Annals of Physics
<strong>321</strong>, 2 (2006).</div>
</div>
<div id="ref-knolleDynamicsFractionalizationQuantum2015"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[53] </div><div class="csl-right-inline">J.
<div class="csl-left-margin">[56] </div><div class="csl-right-inline">J.
Knolle, D. L. Kovrizhin, J. T. Chalker, and R. Moessner, <em><a
href="https://doi.org/10.1103/PhysRevB.92.115127">Dynamics of
Fractionalization in Quantum Spin Liquids</a></em>, Phys. Rev. B
@ -915,7 +1035,7 @@ Fractionalization in Quantum Spin Liquids</a></em>, Phys. Rev. B
</div>
<div id="ref-selfThermallyInducedMetallic2019" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[54] </div><div class="csl-right-inline">C.
<div class="csl-left-margin">[57] </div><div class="csl-right-inline">C.
N. Self, J. Knolle, S. Iblisdir, and J. K. Pachos, <em><a
href="https://doi.org/10.1103/PhysRevB.99.045142">Thermally Induced
Metallic Phase in a Gapped Quantum Spin Liquid - a Monte Carlo Study of
@ -924,7 +1044,7 @@ the Kitaev Model with Parity Projection</a></em>, Phys. Rev. B
</div>
<div id="ref-kitaev_fault-tolerant_2003" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[55] </div><div class="csl-right-inline">A.
<div class="csl-left-margin">[58] </div><div class="csl-right-inline">A.
Yu. Kitaev, <em><a
href="https://doi.org/10.1016/S0003-4916(02)00018-0">Fault-Tolerant
Quantum Computation by Anyons</a></em>, Annals of Physics
@ -932,70 +1052,259 @@ Quantum Computation by Anyons</a></em>, Annals of Physics
</div>
<div id="ref-freedmanTopologicalQuantumComputation2003"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[56] </div><div class="csl-right-inline">M.
<div class="csl-left-margin">[59] </div><div class="csl-right-inline">M.
Freedman, A. Kitaev, M. Larsen, and Z. Wang, <em><a
href="https://doi.org/10.1090/S0273-0979-02-00964-3">Topological Quantum
Computation</a></em>, Bull. Amer. Math. Soc. <strong>40</strong>, 31
(2003).</div>
</div>
<div id="ref-nayakNonAbelianAnyonsTopological2008" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[60] </div><div class="csl-right-inline">C.
Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, <em><a
href="https://doi.org/10.1103/RevModPhys.80.1083">Non-Abelian Anyons and
Topological Quantum Computation</a></em>, Rev. Mod. Phys.
<strong>80</strong>, 1083 (2008).</div>
</div>
<div id="ref-Baskaran2007" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[57] </div><div class="csl-right-inline">G.
<div class="csl-left-margin">[61] </div><div class="csl-right-inline">G.
Baskaran, S. Mandal, and R. Shankar, <em><a
href="https://doi.org/10.1103/PhysRevLett.98.247201">Exact Results for
Spin Dynamics and Fractionalization in the Kitaev Model</a></em>, Phys.
Rev. Lett. <strong>98</strong>, 247201 (2007).</div>
</div>
<div id="ref-Baskaran2008" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[58] </div><div class="csl-right-inline">G.
<div class="csl-left-margin">[62] </div><div class="csl-right-inline">G.
Baskaran, D. Sen, and R. Shankar, <em><a
href="https://doi.org/10.1103/PhysRevB.78.115116">Spin-S Kitaev Model:
href="https://doi.org/10.1103/PhysRevB.78.115116">Spin- S Kitaev Model:
Classical Ground States, Order from Disorder, and Exact Correlation
Functions</a></em>, Phys. Rev. B <strong>78</strong>, 115116
(2008).</div>
</div>
<div id="ref-Nussinov2009" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[59] </div><div class="csl-right-inline">Z.
<div class="csl-left-margin">[63] </div><div class="csl-right-inline">Z.
Nussinov and G. Ortiz, <em><a
href="https://doi.org/10.1103/PhysRevB.79.214440">Bond Algebras and
Exact Solvability of Hamiltonians: Spin S=½ Multilayer Systems</a></em>,
Physical Review B <strong>79</strong>, 214440 (2009).</div>
</div>
<div id="ref-OBrienPRB2016" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[60] </div><div class="csl-right-inline">K.
<div class="csl-left-margin">[64] </div><div class="csl-right-inline">K.
OBrien, M. Hermanns, and S. Trebst, <em><a
href="https://doi.org/10.1103/PhysRevB.93.085101">Classification of
Gapless Z₂ Spin Liquids in Three-Dimensional Kitaev Models</a></em>,
Phys. Rev. B <strong>93</strong>, 085101 (2016).</div>
</div>
<div id="ref-hermanns2015weyl" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[65] </div><div class="csl-right-inline">M.
Hermanns, K. OBrien, and S. Trebst, <em>Weyl Spin Liquids</em>,
Physical Review Letters <strong>114</strong>, 157202 (2015).</div>
</div>
<div id="ref-yaoExactChiralSpin2007" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[61] </div><div class="csl-right-inline">H.
<div class="csl-left-margin">[66] </div><div class="csl-right-inline">H.
Yao and S. A. Kivelson, <em><a
href="https://doi.org/10.1103/PhysRevLett.99.247203">An Exact Chiral
Spin Liquid with Non-Abelian Anyons</a></em>, Phys. Rev. Lett.
<strong>99</strong>, 247203 (2007).</div>
</div>
<div id="ref-hermanns2015weyl" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[62] </div><div class="csl-right-inline">M.
Hermanns, K. OBrien, and S. Trebst, <em>Weyl Spin Liquids</em>,
Physical Review Letters <strong>114</strong>, 157202 (2015).</div>
</div>
<div id="ref-eschmann2019thermodynamics" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[63] </div><div class="csl-right-inline">T.
<div class="csl-left-margin">[67] </div><div class="csl-right-inline">T.
Eschmann, P. A. Mishchenko, T. A. Bojesen, Y. Kato, M. Hermanns, Y.
Motome, and S. Trebst, <em>Thermodynamics of a Gauge-Frustrated Kitaev
Spin Liquid</em>, Physical Review Research <strong>1</strong>, 032011(R)
(2019).</div>
</div>
<div id="ref-Peri2020" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[64] </div><div class="csl-right-inline">V.
<div class="csl-left-margin">[68] </div><div class="csl-right-inline">V.
Peri, S. Ok, S. S. Tsirkin, T. Neupert, G. Baskaran, M. Greiter, R.
Moessner, and R. Thomale, <em><a
href="https://doi.org/10.1103/PhysRevB.101.041114">Non-Abelian Chiral
Spin Liquid on a Simple Non-Archimedean Lattice</a></em>, Phys. Rev. B
<strong>101</strong>, 041114 (2020).</div>
</div>
<div id="ref-Weaire1971" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[69] </div><div class="csl-right-inline">D.
Weaire and M. F. Thorpe, <em><a
href="https://doi.org/10.1103/PhysRevB.4.2508">Electronic Properties of
an Amorphous Solid. I. A Simple Tight-Binding Theory</a></em>, Phys.
Rev. B <strong>4</strong>, 2508 (1971).</div>
</div>
<div id="ref-betteridge1973possible" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[70] </div><div class="csl-right-inline">G.
Betteridge, <em>A Possible Model of Amorphous Silicon and
Germanium</em>, Journal of Physics C: Solid State Physics
<strong>6</strong>, L427 (1973).</div>
</div>
<div id="ref-mitchellAmorphousTopologicalInsulators2018"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[71] </div><div class="csl-right-inline">N.
P. Mitchell, L. M. Nash, D. Hexner, A. M. Turner, and W. T. M. Irvine,
<em><a href="https://doi.org/10.1038/s41567-017-0024-5">Amorphous
topological insulators constructed from random point sets</a></em>,
Nature Phys <strong>14</strong>, 380 (2018).</div>
</div>
<div id="ref-agarwala2019topological" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[72] </div><div class="csl-right-inline">A.
Agarwala, <em>Topological Insulators in Amorphous Systems</em>, in
<em>Excursions in Ill-Condensed Quantum Matter</em> (Springer, 2019),
pp. 6179.</div>
</div>
<div id="ref-marsalTopologicalWeaireThorpeModels2020" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[73] </div><div class="csl-right-inline">Q.
Marsal, D. Varjas, and A. G. Grushin, <em><a
href="https://doi.org/10.1073/pnas.2007384117">Topological Weaire-Thorpe
Models of Amorphous Matter</a></em>, Proc. Natl. Acad. Sci. U.S.A.
<strong>117</strong>, 30260 (2020).</div>
</div>
<div id="ref-costa2019toward" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[74] </div><div class="csl-right-inline">M.
Costa, G. R. Schleder, M. Buongiorno Nardelli, C. Lewenkopf, and A.
Fazzio, <em>Toward Realistic Amorphous Topological Insulators</em>, Nano
Letters <strong>19</strong>, 8941 (2019).</div>
</div>
<div id="ref-agarwala2020higher" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[75] </div><div class="csl-right-inline">A.
Agarwala, V. Juričić, and B. Roy, <em>Higher-Order Topological
Insulators in Amorphous Solids</em>, Physical Review Research
<strong>2</strong>, 012067 (2020).</div>
</div>
<div id="ref-spring2021amorphous" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[76] </div><div class="csl-right-inline">H.
Spring, A. Akhmerov, and D. Varjas, <em>Amorphous Topological Phases
Protected by Continuous Rotation Symmetry</em>, SciPost Physics
<strong>11</strong>, 022 (2021).</div>
</div>
<div id="ref-corbae2019evidence" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[77] </div><div class="csl-right-inline">P.
Corbae et al., <em>Evidence for Topological Surface States in Amorphous
Bi _ {2} Se _ {3}</em>, arXiv Preprint arXiv:1910.13412 (2019).</div>
</div>
<div id="ref-buckel1954einfluss" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[78] </div><div class="csl-right-inline">W.
Buckel and R. Hilsch, <em>Einfluß Der Kondensation Bei Tiefen
Temperaturen Auf Den Elektrischen Widerstand Und Die Supraleitung Für
Verschiedene Metalle</em>, Zeitschrift Für Physik <strong>138</strong>,
109 (1954).</div>
</div>
<div id="ref-mcmillan1981electron" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[79] </div><div class="csl-right-inline">W.
McMillan and J. Mochel, <em>Electron Tunneling Experiments on Amorphous
Ge 1- x Au x</em>, Physical Review Letters <strong>46</strong>, 556
(1981).</div>
</div>
<div id="ref-meisel1981eliashberg" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[80] </div><div class="csl-right-inline">L.
V. Meisel and P. J. Cote, <em><a
href="https://doi.org/10.1103/PhysRevB.23.5834">Eliashberg Function in
Amorphous Metals</a></em>, Phys. Rev. B <strong>23</strong>, 5834
(1981).</div>
</div>
<div id="ref-bergmann1976amorphous" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[81] </div><div class="csl-right-inline">G.
Bergmann, <em>Amorphous Metals and Their Superconductivity</em>, Physics
Reports <strong>27</strong>, 159 (1976).</div>
</div>
<div id="ref-mannaNoncrystallineTopologicalSuperconductors2022"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[82] </div><div class="csl-right-inline">S.
Manna, S. K. Das, and B. Roy, <em><a
href="http://arxiv.org/abs/2207.02203">Noncrystalline Topological
Superconductors</a></em>, arXiv:2207.02203.</div>
</div>
<div id="ref-kim2022fractionalization" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[83] </div><div class="csl-right-inline">S.
Kim, A. Agarwala, and D. Chowdhury, <em>Fractionalization and Topology
in Amorphous Electronic Solids</em>, arXiv Preprint arXiv:2205.11523
(2022).</div>
</div>
<div id="ref-aharony1975critical" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[84] </div><div class="csl-right-inline">A.
Aharony, <em>Critical Behavior of Amorphous Magnets</em>, Physical
Review B <strong>12</strong>, 1038 (1975).</div>
</div>
<div id="ref-Petrakovski1981" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[85] </div><div class="csl-right-inline">G.
A. Petrakovskii, <em><a
href="https://doi.org/10.1070/pu1981v024n06abeh004850">Amorphous
Magnetic Materials</a></em>, Soviet Physics Uspekhi <strong>24</strong>,
511 (1981).</div>
</div>
<div id="ref-kaneyoshi1992introduction" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[86] </div><div class="csl-right-inline">T.
Kaneyoshi, <em>Introduction to Amorphous Magnets</em> (World Scientific
Publishing Company, 1992).</div>
</div>
<div id="ref-Kaneyoshi2018" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[87] </div><div class="csl-right-inline">T.
Kaneyoshi, editor, <em>Amorphous Magnetism</em> (CRC Press, Boca Raton,
2018).</div>
</div>
<div id="ref-fahnle1984monte" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[88] </div><div class="csl-right-inline">M.
Fähnle, <em>Monte Carlo Study of Phase Transitions in Bond-and
Site-Disordered Ising and Classical Heisenberg Ferromagnets</em>,
Journal of Magnetism and Magnetic Materials <strong>45</strong>, 279
(1984).</div>
</div>
<div id="ref-plascak2000ising" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[89] </div><div class="csl-right-inline">J.
Plascak, L. E. Zamora, and G. P. Alcazar, <em>Ising Model for Disordered
Ferromagnetic Fe- Al Alloys</em>, Physical Review B <strong>61</strong>,
3188 (2000).</div>
</div>
<div id="ref-coey1978amorphous" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[90] </div><div class="csl-right-inline">J.
Coey, <em>Amorphous Magnetic Order</em>, Journal of Applied Physics
<strong>49</strong>, 1646 (1978).</div>
</div>
<div id="ref-Anderson1973" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[91] </div><div class="csl-right-inline">P.
W. Anderson, <em>Resonating Valence Bonds: A New Kind of
Insulator?</em>, Mater. Res. Bull. <strong>8</strong>, 153 (1973).</div>
</div>
<div id="ref-Knolle2019" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[92] </div><div class="csl-right-inline">J.
Knolle and R. Moessner, <em><a
href="https://doi.org/10.1146/annurev-conmatphys-031218-013401">A Field
Guide to Spin Liquids</a></em>, Annual Review of Condensed Matter
Physics <strong>10</strong>, 451 (2019).</div>
</div>
<div id="ref-Savary2016" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[93] </div><div class="csl-right-inline">L.
Savary and L. Balents, <em>Quantum Spin Liquids: A Review</em>, Reports
on Progress in Physics <strong>80</strong>, 016502 (2017).</div>
</div>
<div id="ref-Lacroix2011" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[94] </div><div class="csl-right-inline">C.
Lacroix, P. Mendels, and F. Mila, editors, <em>Introduction to
Frustrated Magnetism</em>, Vol. 164 (Springer-Verlag, Berlin Heidelberg,
2011).</div>
</div>
<div id="ref-eschmannThermodynamicClassificationThreedimensional2020"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[95] </div><div class="csl-right-inline">T.
Eschmann, P. A. Mishchenko, K. OBrien, T. A. Bojesen, Y. Kato, M.
Hermanns, Y. Motome, and S. Trebst, <em><a
href="https://doi.org/10.1103/PhysRevB.102.075125">Thermodynamic
Classification of Three-Dimensional Kitaev Spin Liquids</a></em>, Phys.
Rev. B <strong>102</strong>, 075125 (2020).</div>
</div>
</div>
</section>

View File

@ -1,5 +1,5 @@
---
title: 2.1_FK_Model
title: Background - The Falikov Kimball Model
excerpt:
layout: none
image:
@ -11,7 +11,7 @@ image:
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>2.1_FK_Model</title>
<title>Background - The Falikov Kimball Model</title>
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
@ -87,13 +87,15 @@ H_{\mathrm{FK}} = &amp; \;U \sum_{i} (d^\dagger_{i}d_{i} -
\tfrac{1}{2})\;(c^\dagger_{i}c_{i} - \tfrac{1}{2}) -\;t \sum_{\langle
i,j\rangle} c^\dagger_{i}c_{j}.\\
\end{aligned}\]</span></p>
<p>The connection to the Hubbard model is that we have relabel the up
and down spin electron states and removed the hopping term for one
species, the equivalent of taking the limit of infinite mass ratio <span
class="citation" data-cites="devriesSimplifiedHubbardModel1993"> [<a
<p>Here we will only discuss the hypercubic lattices, i.e the chain, the
square lattice, the cubic lattice and so on. The connection to the
Hubbard model is that we have relabel the up and down spin electron
states and removed the hopping term for one species, the equivalent of
taking the limit of infinite mass ratio <span class="citation"
data-cites="devriesSimplifiedHubbardModel1993"> [<a
href="#ref-devriesSimplifiedHubbardModel1993"
role="doc-biblioref">5</a>]</span>.</p>
<p>Like other exactly solvable models <span class="citation"
<p>Like other exactly solvable models <span class="citation"
data-cites="smithDisorderFreeLocalization2017"> [<a
href="#ref-smithDisorderFreeLocalization2017"
role="doc-biblioref">6</a>]</span> and the Kitaev Model, the FK model
@ -108,15 +110,17 @@ model exactly solvable, in contrast to the Hubbard model.</p>
<p>Due to Pauli exclusion, maximum filling occurs when each lattice site
is fully occupied, <span class="math inline">\(\langle n_c + n_d \rangle
= 2\)</span>. Here we will focus on the half filled case <span
class="math inline">\(\langle n_c + n_d \rangle = 1\)</span>. Doping the
model away from the half-filled point leads to rich physics including
superconductivity <span class="citation"
data-cites="jedrzejewskiFalicovKimballModels2001"> [<a
class="math inline">\(\langle n_c + n_d \rangle = 1\)</span>. The ground
state phenomenology as the model is doped away from the half-filled
state can be rich <span class="citation"
data-cites="jedrzejewskiFalicovKimballModels2001 gruberGroundStatesSpinless1990"> [<a
href="#ref-jedrzejewskiFalicovKimballModels2001"
role="doc-biblioref">7</a>]</span>.</p>
role="doc-biblioref">7</a>,<a href="#ref-gruberGroundStatesSpinless1990"
role="doc-biblioref">8</a>]</span> but from this point we will only
consider the half-filled point.</p>
<p>At half-filling and on bipartite lattices, FK the model is
particle-hole symmetric. That is, the Hamiltonian anticommutes with the
particle hole operator <span
particle-hole (PH) symmetric. That is, the Hamiltonian anticommutes with
the particle hole operator <span
class="math inline">\(\mathcal{P}H\mathcal{P}^{-1} = -H\)</span>. As a
consequence the energy spectrum is symmetric about <span
class="math inline">\(E = 0\)</span> and this is the Fermi energy. The
@ -127,9 +131,11 @@ class="math inline">\(\epsilon_i = +1\)</span> for the A sublattice and
<span class="math inline">\(-1\)</span> for the even sublattice <span
class="citation" data-cites="gruberFalicovKimballModel2005"> [<a
href="#ref-gruberFalicovKimballModel2005"
role="doc-biblioref">8</a>]</span>. The absence of a hopping term for
role="doc-biblioref">9</a>]</span>. The absence of a hopping term for
the heavy electrons means they do not need the factor of <span
class="math inline">\(\epsilon_i\)</span>.</p>
class="math inline">\(\epsilon_i\)</span>. See appendix <a
href="../6_Appendices/A.1_Particle_Hole_Symmetry.html#particle-hole-symmetry">A.1</a>
for a full derivation of the PH symmetry.</p>
<div id="fig:simple_DOS" class="fignos">
<figure>
<img src="/assets/thesis/background_chapter/simple_DOS.svg"
@ -147,23 +153,21 @@ wave background with 2% binary disorder.</figcaption>
</figure>
</div>
<p>We will later add a long range interaction between the localised
electrons so we will replace the immobile fermions with a classical
Ising field <span class="math inline">\(S_i = 1 - 2d^\dagger_id_i =
\pm\tfrac{1}{2}\)</span>.</p>
electrons at which point we will replace the immobile fermions with a
classical Ising field <span class="math inline">\(S_i = 1 -
2d^\dagger_id_i = \pm\tfrac{1}{2}\)</span> which I will refer to as the
spins.</p>
<p><span class="math display">\[\begin{aligned}
H_{\mathrm{FK}} = &amp; \;U \sum_{i} S_i\;(c^\dagger_{i}c_{i} -
\tfrac{1}{2}) -\;t \sum_{\langle i,j\rangle} c^\dagger_{i}c_{j}.\\
\end{aligned}\]</span></p>
<p>The FK model can be solved exaclty with dynamic mean field theory in
<p>The FK model can be solved exactly with dynamic mean field theory in
the infinite dimensional <span class="citation"
data-cites="antipovCriticalExponentsStrongly2014 ribicNonlocalCorrelationsSpectral2016 freericksExactDynamicalMeanfield2003 herrmannNonequilibriumDynamicalCluster2016"> [<a
href="#ref-antipovCriticalExponentsStrongly2014"
role="doc-biblioref">9</a><a
role="doc-biblioref">10</a><a
href="#ref-herrmannNonequilibriumDynamicalCluster2016"
role="doc-biblioref">12</a>]</span>.</p>
<ul>
<li>displays disorder free localisation</li>
</ul>
role="doc-biblioref">13</a>]</span>.</p>
</section>
<section id="phase-diagrams" class="level2">
<h2>Phase Diagrams</h2>
@ -172,161 +176,245 @@ role="doc-biblioref">12</a>]</span>.</p>
<img src="/assets/thesis/background_chapter/fk_phase_diagram.svg"
data-short-caption="Fermi-Hubbard and Falikov-Kimball Temperatue-Interaction Phase Diagrams"
style="width:100.0%"
alt="Figure 2: Schematic Phase diagrams of the Fermi-Hubbard (left) and Falikov-Kimball model (right) showing temperature (T) and repulsive interaction strength (U). Hubbard model diagram adapted from  [13], Falikov-Kimball model from  [14,15]" />
alt="Figure 2: Schematic Phase diagram of the Falikov-Kimball model in dimensions greater than two. At low temperature the classical fermions (spins) settle into an ordered charge density wave state (antiferromagnetic state). The schematic diagram for the Hubbard model is the same. Reproduced from  [10,14]" />
<figcaption aria-hidden="true"><span>Figure 2:</span> Schematic Phase
diagrams of the Fermi-Hubbard (left) and Falikov-Kimball model (right)
showing temperature (T) and repulsive interaction strength (U). Hubbard
model diagram adapted from <span class="citation"
data-cites="micnasSuperconductivityNarrowbandSystems1990"> [<a
href="#ref-micnasSuperconductivityNarrowbandSystems1990"
role="doc-biblioref">13</a>]</span>, Falikov-Kimball model from <span
diagram of the Falikov-Kimball model in dimensions greater than two. At
low temperature the classical fermions (spins) settle into an ordered
charge density wave state (antiferromagnetic state). The schematic
diagram for the Hubbard model is the same. Reproduced from <span
class="citation"
data-cites="antipovInteractionTunedAndersonMott2016 antipovCriticalExponentsStrongly2014a"> [<a
data-cites="antipovInteractionTunedAndersonMott2016 antipovCriticalExponentsStrongly2014"> [<a
href="#ref-antipovCriticalExponentsStrongly2014"
role="doc-biblioref">10</a>,<a
href="#ref-antipovInteractionTunedAndersonMott2016"
role="doc-biblioref">14</a>,<a
href="#ref-antipovCriticalExponentsStrongly2014a"
role="doc-biblioref">15</a>]</span></figcaption>
role="doc-biblioref">14</a>]</span></figcaption>
</figure>
</div>
<ul>
<li>rich phase diagram in 2d Despite its simplicity, the FK model has a
rich phase diagram in <span class="math inline">\(D \geq 2\)</span>
dimensions. For example, it shows an interaction-induced gap opening
even at high temperatures, similar to the corresponding Hubbard
Model <span class="citation"
data-cites="brandtThermodynamicsCorrelationFunctions1989"> [<a
href="#ref-brandtThermodynamicsCorrelationFunctions1989"
role="doc-biblioref">16</a>]</span>.</li>
</ul>
<p>At half filling and in dimensions greater than one, the FK model
exhibits a phase transition at some <span
class="math inline">\(U\)</span> dependent critical temperature <span
class="math inline">\(T_c(U)\)</span> to a low temperature charge
density wave state in which the spins order antiferromagnetically. This
corresponds to the heavy electrons occupying one of the two sublattices
A and B <span class="citation"
<p>In dimensions greater than one, the FK model exhibits a phase
transition at some <span class="math inline">\(U\)</span> dependent
critical temperature <span class="math inline">\(T_c(U)\)</span> to a
low temperature ordered phase <span class="citation"
data-cites="maskaThermodynamicsTwodimensionalFalicovKimball2006"> [<a
href="#ref-maskaThermodynamicsTwodimensionalFalicovKimball2006"
role="doc-biblioref">17</a>]</span>. In the disordered region above
<span class="math inline">\(T_c(U)\)</span> there is a transition
between an Anderson insulator phase at weak interaction and a Mott
insulator phase in the strongly interacting regime <span
class="citation" data-cites="andersonAbsenceDiffusionCertain1958"> [<a
role="doc-biblioref">15</a>]</span>. In terms of the immobile electrons
this corresponds to them occupying only one of the two sublattices A and
B this is known as a charge density wave (CDW) phase. In terms of spins
this is an AFM phase.</p>
<p>In the disordered region above <span
class="math inline">\(T_c(U)\)</span> there are two insulating phases.
For weak interactions <span class="math inline">\(U &lt;&lt; t\)</span>,
thermal fluctuations in the spins act as an effective disorder potential
for the fermions, causing them to localise and giving rise to an
Anderson insulating state <span class="citation"
data-cites="andersonAbsenceDiffusionCertain1958"> [<a
href="#ref-andersonAbsenceDiffusionCertain1958"
role="doc-biblioref">18</a>]</span>.</p>
<ul>
<li>superconductivity when doped</li>
</ul>
<p>In 1D, the ground state phenomenology as the model is doped away from
the half-filled state can be rich <span class="citation"
data-cites="gruberGroundStatesSpinless1990"> [<a
href="#ref-gruberGroundStatesSpinless1990"
role="doc-biblioref">19</a>]</span> but the system is disordered for all
<span class="math inline">\(T &gt; 0\)</span> <span class="citation"
data-cites="kennedyItinerantElectronModel1986"> [<a
href="#ref-kennedyItinerantElectronModel1986"
role="doc-biblioref">20</a>]</span>.</p>
<p>In the one dimensional FK model there is no ordered CDW phase <span
role="doc-biblioref">16</a>]</span> which we will discuss more in
section <a
href="../2_Background/2.3_Disorder.html#bg-disorder-and-localisation">2.3</a>.
For strong interactions <span class="math inline">\(U &gt;&gt;
t\)</span>, the spins are not ordered but nevertheless their interaction
with the electrons opens a gap, leading a Mott insulator analogous to
that of the Hubbard model <span class="citation"
data-cites="brandtThermodynamicsCorrelationFunctions1989"> [<a
href="#ref-brandtThermodynamicsCorrelationFunctions1989"
role="doc-biblioref">17</a>]</span>.</p>
<p>By contrast, in the one dimensional FK model there is no
finite-temperature phase transition (FTPT) to an ordered CDW phase <span
class="citation" data-cites="liebAbsenceMottTransition1968"> [<a
href="#ref-liebAbsenceMottTransition1968"
role="doc-biblioref">21</a>]</span>. The supression of phase transition
is a common phenomena in one dimensional systems. It can be understood
via Peierls argument <span class="citation"
data-cites="peierlsIsingModelFerromagnetism1936 kennedyItinerantElectronModel1986"> [<a
href="#ref-kennedyItinerantElectronModel1986"
role="doc-biblioref">20</a>,<a
role="doc-biblioref">18</a>]</span>. Indeed dimensionality is crucial
for the physics of both localisation and FTPTs. In one dimension,
disorder generally dominates: even the weakest disorder exponentially
localises <em>all</em> single particle eigenstates. Only longer-range
correlations of the disorder potential can potentially induce
localisation-delocalisation transitions in one dimension <span
class="citation"
data-cites="aubryAnalyticityBreakingAnderson1980 dassarmaLocalizationMobilityEdges1990 dunlapAbsenceLocalizationRandomdimer1990"> [<a
href="#ref-aubryAnalyticityBreakingAnderson1980"
role="doc-biblioref">19</a><a
href="#ref-dunlapAbsenceLocalizationRandomdimer1990"
role="doc-biblioref">21</a>]</span>. Thermodynamically, short-range
interactions cannot overcome thermal defects in one dimension which
prevents ordered phases at non-zero temperature <span class="citation"
data-cites="goldshteinPurePointSpectrum1977 abrahamsScalingTheoryLocalization1979 kramerLocalizationTheoryExperiment1993"> [<a
href="#ref-goldshteinPurePointSpectrum1977"
role="doc-biblioref">22</a><a
href="#ref-kramerLocalizationTheoryExperiment1993"
role="doc-biblioref">24</a>]</span>.</p>
<p>However, the absence of an FTPT in the short ranged FK chain is far
from obvious because the Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction mediated by the fermions <span class="citation"
data-cites="kasuyaTheoryMetallicFerro1956 rudermanIndirectExchangeCoupling1954 vanvleckNoteInteractionsSpins1962 yosidaMagneticPropertiesCuMn1957"> [<a
href="#ref-kasuyaTheoryMetallicFerro1956" role="doc-biblioref">25</a><a
href="#ref-yosidaMagneticPropertiesCuMn1957"
role="doc-biblioref">28</a>]</span> decays as <span
class="math inline">\(r^{-1}\)</span> in one dimension <span
class="citation" data-cites="rusinCalculationRKKYRange2017"> [<a
href="#ref-rusinCalculationRKKYRange2017"
role="doc-biblioref">29</a>]</span>. This could in principle induce the
necessary long-range interactions for the classical Ising background to
order at low temperatures <span class="citation"
data-cites="thoulessLongRangeOrderOneDimensional1969 peierlsIsingModelFerromagnetism1936"> [<a
href="#ref-thoulessLongRangeOrderOneDimensional1969"
role="doc-biblioref">30</a>,<a
href="#ref-peierlsIsingModelFerromagnetism1936"
role="doc-biblioref">22</a>]</span> to be a consequence of the low
role="doc-biblioref">31</a>]</span>. However, Kennedy and Lieb
established rigorously that at half-filling a CDW phase only exists at
<span class="math inline">\(T = 0\)</span> for the one dimensional FK
model <span class="citation"
data-cites="kennedyItinerantElectronModel1986"> [<a
href="#ref-kennedyItinerantElectronModel1986"
role="doc-biblioref">32</a>]</span>.</p>
<p>Based on this primacy of dimensionality, we will go digging into the
one dimensional case. In chapter <a
href="../3_Long_Range_Falikov_Kimball/3.1_LRFK_Model.html#fk-model">3</a>
we will construct a generalised one-dimensional FK model with long-range
interactions which induces the otherwise forbidden CDW phase at non-zero
temperature. To do this we will draw on theory of the Long Range Ising
Model which is the subject of the next section.</p>
</section>
<section id="long-ranged-ising-model" class="level2">
<h2>Long Ranged Ising model</h2>
<p>The suppression of phase transitions is a common phenomena in one
dimensional systems and the Ising model serves as a great illustration
of this. In terms of classical spins <span class="math inline">\(S_i =
\pm \frac{1}{2}\)</span> the standard Ising model reads</p>
<p><span class="math display">\[H_{\mathrm{I}} = \sum_{\langle ij
\rangle} S_i S_j\]</span></p>
<p>Like the FK model, the Ising model shows an FTPT to an ordered state
only in two dimensions and above. This can be understood via Peierls
argument <span class="citation"
data-cites="peierlsIsingModelFerromagnetism1936 kennedyItinerantElectronModel1986"> [<a
href="#ref-peierlsIsingModelFerromagnetism1936"
role="doc-biblioref">31</a>,<a
href="#ref-kennedyItinerantElectronModel1986"
role="doc-biblioref">32</a>]</span> to be a consequence of the low
energy penalty for domain walls in one dimensional systems.</p>
<p>Following Peierls argument, consider the difference in free energy
<span class="math inline">\(\Delta F = \Delta E - T\Delta S\)</span>
between an ordered state and a state with single domain wall in a
discrete order parameter. Short range interactions produce a constant
energy penalty for such a domain wall that does not scale with system
size. In contrast, the number of such single domain wall states scales
linearly so the entropy is <span class="math inline">\(\propto \ln
L\)</span>. Thus the entropic contribution dominates (eventually) in the
thermodynamic limit and no finite temperature order is possible. In two
dimensions and above, the energy penalty of a domain wall scales like
<span class="math inline">\(L^{d-1}\)</span> so they can support ordered
phases.</p>
</section>
<section id="long-ranged-ising-model" class="level2">
<h2>Long Ranged Ising model</h2>
<p>Our extension to the FK model could now be though of as spinless
fermions coupled to a long range Ising (LRI) model. The LRI model has
been extensively studied and its behaviour may be bear relation to the
behaviour of our modified FK model.</p>
discrete order parameter. If this value is negative it implies that the
ordered state is unstable with respect to domain wall defects, and they
will thus proliferate, destroying the ordered phase. If we consider the
scaling of the two terms with system size <span
class="math inline">\(L\)</span> we see that short range interactions
produce a constant energy penalty <span class="math inline">\(\Delta
E\)</span> for a domain wall. In contrast, the number of such single
domain wall states scales linearly with system size so the entropy is
<span class="math inline">\(\propto \ln L\)</span>. Thus the entropic
contribution dominates (eventually) in the thermodynamic limit and no
finite temperature order is possible. In two dimensions and above, the
energy penalty of a domain wall scales like <span
class="math inline">\(L^{d-1}\)</span> which is why they can support
ordered phases. This argument does not quite apply to the FK model
because of the aforementioned RKKY interaction. Instead this argument
will give us insight into how to recover an ordered phase in the one
dimensional FK model.</p>
<p>In contrast the long range Ising (LRI) model <span
class="math inline">\(H_{\mathrm{LRI}}\)</span> can have an FTPT in one
dimension.</p>
<p><span class="math display">\[H_{\mathrm{LRI}} = \sum_{ij} J(|i-j|)
\tau_i \tau_j = J \sum_{i\neq j} |i - j|^{-\alpha} \tau_i
\tau_j\]</span></p>
S_i S_j = J \sum_{i\neq j} |i - j|^{-\alpha} S_i S_j\]</span></p>
<p>Renormalisation group analyses show that the LRI model has an ordered
phase in 1D for $1 &lt; &lt; 2 $ <span class="citation"
phase in 1D for <span class="math inline">\(1 &lt; \alpha &lt;
2\)</span>  <span class="citation"
data-cites="dysonExistencePhasetransitionOnedimensional1969"> [<a
href="#ref-dysonExistencePhasetransitionOnedimensional1969"
role="doc-biblioref">23</a>]</span>. Peierls argument can be
role="doc-biblioref">33</a>]</span>. Peierls argument can be
extended <span class="citation"
data-cites="thoulessLongRangeOrderOneDimensional1969"> [<a
href="#ref-thoulessLongRangeOrderOneDimensional1969"
role="doc-biblioref">24</a>]</span> to long range interactions to
role="doc-biblioref">30</a>]</span> to long range interactions to
provide intuition for why this is the case. Again considering the energy
difference between the ordered state <span
class="math inline">\(\ket{\ldots\uparrow\uparrow\uparrow\uparrow\ldots}\)</span>
class="math inline">\(|\ldots\uparrow\uparrow\uparrow\uparrow\ldots\rangle\)</span>
and a domain wall state <span
class="math inline">\(\ket{\ldots\uparrow\uparrow\downarrow\downarrow\ldots}\)</span>.
class="math inline">\(|\ldots\uparrow\uparrow\downarrow\downarrow\ldots\rangle\)</span>.
In the case of the LRI model, careful counting shows that this energy
penalty is: <span class="math display">\[\Delta E \propto
penalty is <span class="math display">\[\Delta E \propto
\sum_{n=1}^{\infty} n J(n)\]</span></p>
<p>because each interaction between spins separated across the domain by
a bond length <span class="math inline">\(n\)</span> can be drawn
between <span class="math inline">\(n\)</span> equivalent pairs of
sites. Ruelle proved rigorously for a very general class of 1D systems,
that if <span class="math inline">\(\Delta E\)</span> or its many-body
generalisation converges in the thermodynamic limit then the free energy
is analytic <span class="citation"
sites. The behaviour then depends crucially on the sum scales with
system size. Ruelle proved rigorously for a very general class of 1D
systems, that if <span class="math inline">\(\Delta E\)</span> or its
many-body generalisation converges to a constant in the thermodynamic
limit then the free energy is analytic <span class="citation"
data-cites="ruelleStatisticalMechanicsOnedimensional1968"> [<a
href="#ref-ruelleStatisticalMechanicsOnedimensional1968"
role="doc-biblioref">25</a>]</span>. This rules out a finite order phase
role="doc-biblioref">34</a>]</span>. This rules out a finite order phase
transition, though not one of the Kosterlitz-Thouless type. Dyson also
proves this though with a slightly different condition on <span
class="math inline">\(J(n)\)</span> <span class="citation"
data-cites="dysonExistencePhasetransitionOnedimensional1969"> [<a
href="#ref-dysonExistencePhasetransitionOnedimensional1969"
role="doc-biblioref">23</a>]</span>.</p>
role="doc-biblioref">33</a>]</span>.</p>
<p>With a power law form for <span class="math inline">\(J(n)\)</span>,
there are three cases to consider:</p>
<ol type="1">
<li>$ = 0$ For infinite range interactions the Ising model is exactly
solveable and mean field theory is exact <span class="citation"
there are a few cases to consider:</p>
<p>For <span class="math inline">\(\alpha = 0\)</span> i.e infinite
range interactions, the Ising model is exactly solvable and mean field
theory is exact <span class="citation"
data-cites="lipkinValidityManybodyApproximation1965"> [<a
href="#ref-lipkinValidityManybodyApproximation1965"
role="doc-biblioref">26</a>]</span>.</li>
<li>$ $ For slowly decaying interactions <span
class="math inline">\(\sum_n J(n)\)</span> does not converge so the
Hamiltonian is non-extensive, a case which wont be further considered
here.</li>
<li>$ 1 &lt; &lt; 2 $ A phase transition to an ordered state at a finite
temperature.</li>
<li>$ = 2 $ The energy of domain walls diverges logarithmically, and
this turns out to be a Kostelitz-Thouless transition <span
class="citation"
role="doc-biblioref">35</a>]</span>. This limit is the same as the
infinite dimensional limit.</p>
<p>For <span class="math inline">\(\alpha \leq 1\)</span> we have very
slowly decaying interactions. <span class="math inline">\(\Delta
E\)</span> does not converge as a function of system size so the
Hamiltonian is non-extensive, a topic not without some considerable
controversy <span class="citation"
data-cites="grossNonextensiveHamiltonianSystems2002 lutskoQuestioningValidityNonextensive2011 wangCommentNonextensiveHamiltonian2003"> [<a
href="#ref-grossNonextensiveHamiltonianSystems2002"
role="doc-biblioref">36</a><a
href="#ref-wangCommentNonextensiveHamiltonian2003"
role="doc-biblioref">38</a>]</span> that we will not consider further
here.</p>
<p>For <span class="math inline">\(1 &lt; \alpha &lt; 2\)</span>, we get
a phase transition to an ordered state at a finite temperature, this is
what we want!</p>
<p>For <span class="math inline">\(\alpha = 2\)</span>, the energy of
domain walls diverges logarithmically, and this turns out to be a
Kostelitz-Thouless transition <span class="citation"
data-cites="thoulessLongRangeOrderOneDimensional1969"> [<a
href="#ref-thoulessLongRangeOrderOneDimensional1969"
role="doc-biblioref">24</a>]</span>.</li>
<li>$ 2 &lt; $ For quickly decaying interactions, domain walls have a
role="doc-biblioref">30</a>]</span>.</p>
<p>Finally, for <span class="math inline">\(2 &lt; \alpha\)</span> we
have very quickly decaying interactions and domain walls again have a
finite energy penalty, hence Peirels argument holds and there is no
phase transition.</li>
</ol>
phase transition.</p>
<p>One final complexity is that for <span
class="math inline">\(\tfrac{3}{2} &lt; \alpha &lt; 2\)</span>
renormalisation group methods show that the critical point has
non-universal critical exponents that depend on <span
class="math inline">\(\alpha\)</span>  <span class="citation"
data-cites="fisherCriticalExponentsLongRange1972"> [<a
href="#ref-fisherCriticalExponentsLongRange1972"
role="doc-biblioref">39</a>]</span>. To avoid this potential confounding
factors we will park ourselves at <span class="math inline">\(\alpha =
1.25\)</span> when we apply these ideas to the FK model.</p>
<p>Were we to extend this to arbitrary dimension <span
class="math inline">\(d\)</span> we would find that thermodynamics
properties generally both <span class="math inline">\(d\)</span> and
<span class="math inline">\(\alpha\)</span>, long range interactions can
modify the effective dimension of thermodynamic systems <span
class="citation"
data-cites="angeliniRelationsShortrangeLongrange2014"> [<a
href="#ref-angeliniRelationsShortrangeLongrange2014"
role="doc-biblioref">40</a>]</span>.</p>
<div id="fig:alpha_diagram" class="fignos">
<figure>
<img src="/assets/thesis/background_chapter/alpha_diagram.svg"
data-short-caption="Long Range Ising Model Behaviour"
style="width:100.0%" alt="Figure 3: " />
<figcaption aria-hidden="true"><span>Figure 3:</span> </figcaption>
style="width:100.0%"
alt="Figure 3: The thermodynamic behaviour of the long range Ising model H_{\mathrm{LRI}} = J \sum_{i\neq j} |i - j|^{-\alpha} S_i S_j as the exponent of the interaction \alpha is varied." />
<figcaption aria-hidden="true"><span>Figure 3:</span> The thermodynamic
behaviour of the long range Ising model <span
class="math inline">\(H_{\mathrm{LRI}} = J \sum_{i\neq j} |i -
j|^{-\alpha} S_i S_j\)</span> as the exponent of the interaction <span
class="math inline">\(\alpha\)</span> is varied.</figcaption>
</figure>
</div>
<div class="sourceCode" id="cb1"><pre
class="sourceCode python"><code class="sourceCode python"></code></pre></div>
</section>
</section>
<section id="bibliography" class="level1 unnumbered">
@ -388,16 +476,24 @@ href="http://adsabs.harvard.edu/abs/2001AcPPB..32.3243J">Falicov--Kimball
Models of Collective Phenomena in Solids (A Concise Guide)</a></em>,
Acta Physica Polonica B <strong>32</strong>, 3243 (2001).</div>
</div>
<div id="ref-gruberFalicovKimballModel2005" class="csl-entry"
<div id="ref-gruberGroundStatesSpinless1990" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[8] </div><div class="csl-right-inline">C.
Gruber, J. Iwanski, J. Jedrzejewski, and P. Lemberger, <em><a
href="https://doi.org/10.1103/PhysRevB.41.2198">Ground States of the
Spinless Falicov-Kimball Model</a></em>, Phys. Rev. B
<strong>41</strong>, 2198 (1990).</div>
</div>
<div id="ref-gruberFalicovKimballModel2005" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[9] </div><div class="csl-right-inline">C.
Gruber and D. Ueltschi, <em><a
href="http://arxiv.org/abs/math-ph/0502041">The Falicov-Kimball
Model</a></em>, arXiv:math-Ph/0502041 (2005).</div>
</div>
<div id="ref-antipovCriticalExponentsStrongly2014" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[9] </div><div class="csl-right-inline">A.
<div class="csl-left-margin">[10] </div><div class="csl-right-inline">A.
E. Antipov, E. Gull, and S. Kirchner, <em><a
href="https://doi.org/10.1103/PhysRevLett.112.226401">Critical Exponents
of Strongly Correlated Fermion Systems from Diagrammatic Multiscale
@ -406,7 +502,7 @@ Methods</a></em>, Phys. Rev. Lett. <strong>112</strong>, 226401
</div>
<div id="ref-ribicNonlocalCorrelationsSpectral2016" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[10] </div><div class="csl-right-inline">T.
<div class="csl-left-margin">[11] </div><div class="csl-right-inline">T.
Ribic, G. Rohringer, and K. Held, <em><a
href="https://doi.org/10.1103/PhysRevB.93.195105">Nonlocal Correlations
and Spectral Properties of the Falicov-Kimball Model</a></em>, Phys.
@ -414,7 +510,7 @@ Rev. B <strong>93</strong>, 195105 (2016).</div>
</div>
<div id="ref-freericksExactDynamicalMeanfield2003" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[11] </div><div class="csl-right-inline">J.
<div class="csl-left-margin">[12] </div><div class="csl-right-inline">J.
K. Freericks and V. Zlatić, <em><a
href="https://doi.org/10.1103/RevModPhys.75.1333">Exact Dynamical
Mean-Field Theory of the Falicov-Kimball Model</a></em>, Rev. Mod. Phys.
@ -422,21 +518,12 @@ Mean-Field Theory of the Falicov-Kimball Model</a></em>, Rev. Mod. Phys.
</div>
<div id="ref-herrmannNonequilibriumDynamicalCluster2016"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[12] </div><div class="csl-right-inline">A.
<div class="csl-left-margin">[13] </div><div class="csl-right-inline">A.
J. Herrmann, N. Tsuji, M. Eckstein, and P. Werner, <em><a
href="https://doi.org/10.1103/PhysRevB.94.245114">Nonequilibrium
Dynamical Cluster Approximation Study of the Falicov-Kimball
Model</a></em>, Phys. Rev. B <strong>94</strong>, 245114 (2016).</div>
</div>
<div id="ref-micnasSuperconductivityNarrowbandSystems1990"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[13] </div><div class="csl-right-inline">R.
Micnas, J. Ranninger, and S. Robaszkiewicz, <em><a
href="https://doi.org/10.1103/RevModPhys.62.113">Superconductivity in
Narrow-Band Systems with Local Nonretarded Attractive
Interactions</a></em>, Rev. Mod. Phys. <strong>62</strong>, 113
(1990).</div>
</div>
<div id="ref-antipovInteractionTunedAndersonMott2016" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[14] </div><div class="csl-right-inline">A.
@ -445,26 +532,9 @@ href="https://doi.org/10.1103/PhysRevLett.117.146601">Interaction-Tuned
Anderson Versus Mott Localization</a></em>, Phys. Rev. Lett.
<strong>117</strong>, 146601 (2016).</div>
</div>
<div id="ref-antipovCriticalExponentsStrongly2014a" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[15] </div><div class="csl-right-inline">A.
E. Antipov, E. Gull, and S. Kirchner, <em><a
href="https://doi.org/10.1103/PhysRevLett.112.226401">Critical Exponents
of Strongly Correlated Fermion Systems from Diagrammatic Multiscale
Methods</a></em>, Phys. Rev. Lett. <strong>112</strong>, 226401
(2014).</div>
</div>
<div id="ref-brandtThermodynamicsCorrelationFunctions1989"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[16] </div><div class="csl-right-inline">U.
Brandt and C. Mielsch, <em><a
href="https://doi.org/10.1007/BF01321824">Thermodynamics and Correlation
Functions of the Falicov-Kimball Model in Large Dimensions</a></em>, Z.
Physik B - Condensed Matter <strong>75</strong>, 365 (1989).</div>
</div>
<div id="ref-maskaThermodynamicsTwodimensionalFalicovKimball2006"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[17] </div><div class="csl-right-inline">M.
<div class="csl-left-margin">[15] </div><div class="csl-right-inline">M.
M. Maśka and K. Czajka, <em><a
href="https://doi.org/10.1103/PhysRevB.74.035109">Thermodynamics of the
Two-Dimensional Falicov-Kimball Model: A Classical Monte Carlo
@ -472,64 +542,152 @@ Study</a></em>, Phys. Rev. B <strong>74</strong>, 035109 (2006).</div>
</div>
<div id="ref-andersonAbsenceDiffusionCertain1958" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[18] </div><div class="csl-right-inline">P.
<div class="csl-left-margin">[16] </div><div class="csl-right-inline">P.
W. Anderson, <em><a
href="https://doi.org/10.1103/PhysRev.109.1492">Absence of Diffusion in
Certain Random Lattices</a></em>, Phys. Rev. <strong>109</strong>, 1492
(1958).</div>
</div>
<div id="ref-gruberGroundStatesSpinless1990" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[19] </div><div class="csl-right-inline">C.
Gruber, J. Iwanski, J. Jedrzejewski, and P. Lemberger, <em><a
href="https://doi.org/10.1103/PhysRevB.41.2198">Ground States of the
Spinless Falicov-Kimball Model</a></em>, Phys. Rev. B
<strong>41</strong>, 2198 (1990).</div>
</div>
<div id="ref-kennedyItinerantElectronModel1986" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[20] </div><div class="csl-right-inline">T.
Kennedy and E. H. Lieb, <em><a
href="https://doi.org/10.1016/0378-4371(86)90188-3">An Itinerant
Electron Model with Crystalline or Magnetic Long Range Order</a></em>,
Physica A: Statistical Mechanics and Its Applications
<strong>138</strong>, 320 (1986).</div>
<div id="ref-brandtThermodynamicsCorrelationFunctions1989"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[17] </div><div class="csl-right-inline">U.
Brandt and C. Mielsch, <em><a
href="https://doi.org/10.1007/BF01321824">Thermodynamics and Correlation
Functions of the Falicov-Kimball Model in Large Dimensions</a></em>, Z.
Physik B - Condensed Matter <strong>75</strong>, 365 (1989).</div>
</div>
<div id="ref-liebAbsenceMottTransition1968" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[21] </div><div class="csl-right-inline">E.
<div class="csl-left-margin">[18] </div><div class="csl-right-inline">E.
H. Lieb and F. Y. Wu, <em><a
href="https://doi.org/10.1103/PhysRevLett.20.1445">Absence of Mott
Transition in an Exact Solution of the Short-Range, One-Band Model in
One Dimension</a></em>, Phys. Rev. Lett. <strong>20</strong>, 1445
(1968).</div>
</div>
<div id="ref-peierlsIsingModelFerromagnetism1936" class="csl-entry"
<div id="ref-aubryAnalyticityBreakingAnderson1980" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[22] </div><div class="csl-right-inline">R.
Peierls, <em><a href="https://doi.org/10.1017/S0305004100019174">On
Isings Model of Ferromagnetism</a></em>, Mathematical Proceedings of
the Cambridge Philosophical Society <strong>32</strong>, 477
(1936).</div>
<div class="csl-left-margin">[19] </div><div class="csl-right-inline">S.
Aubry and G. André, <em>Analyticity Breaking and Anderson Localization
in Incommensurate Lattices</em>, Proceedings, VIII International
Colloquium on Group-Theoretical Methods in Physics <strong>3</strong>,
18 (1980).</div>
</div>
<div id="ref-dysonExistencePhasetransitionOnedimensional1969"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[23] </div><div class="csl-right-inline">F.
J. Dyson, <em><a href="https://doi.org/10.1007/BF01645907">Existence of
a Phase-Transition in a One-Dimensional Ising Ferromagnet</a></em>,
Commun.Math. Phys. <strong>12</strong>, 91 (1969).</div>
<div id="ref-dassarmaLocalizationMobilityEdges1990" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[20] </div><div class="csl-right-inline">S.
Das Sarma, S. He, and X. C. Xie, <em><a
href="https://doi.org/10.1103/PhysRevB.41.5544">Localization, Mobility
Edges, and Metal-Insulator Transition in a Class of One-Dimensional
Slowly Varying Deterministic Potentials</a></em>, Phys. Rev. B
<strong>41</strong>, 5544 (1990).</div>
</div>
<div id="ref-dunlapAbsenceLocalizationRandomdimer1990" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[21] </div><div class="csl-right-inline">D.
H. Dunlap, H.-L. Wu, and P. W. Phillips, <em><a
href="https://doi.org/10.1103/PhysRevLett.65.88">Absence of Localization
in a Random-Dimer Model</a></em>, Phys. Rev. Lett. <strong>65</strong>,
88 (1990).</div>
</div>
<div id="ref-goldshteinPurePointSpectrum1977" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[22] </div><div class="csl-right-inline">I.
Ya. Goldshtein, S. A. Molchanov, and L. A. Pastur, <em><a
href="https://doi.org/10.1007/BF01135526">A Pure Point Spectrum of the
Stochastic One-Dimensional Schrödinger Operator</a></em>, Funct Anal Its
Appl <strong>11</strong>, 1 (1977).</div>
</div>
<div id="ref-abrahamsScalingTheoryLocalization1979" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[23] </div><div class="csl-right-inline">E.
Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan,
<em><a href="https://doi.org/10.1103/PhysRevLett.42.673">Scaling Theory
of Localization: Absence of Quantum Diffusion in Two
Dimensions</a></em>, Phys. Rev. Lett. <strong>42</strong>, 673
(1979).</div>
</div>
<div id="ref-kramerLocalizationTheoryExperiment1993" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[24] </div><div class="csl-right-inline">B.
Kramer and A. MacKinnon, <em><a
href="https://doi.org/10.1088/0034-4885/56/12/001">Localization: Theory
and Experiment</a></em>, Rep. Prog. Phys. <strong>56</strong>, 1469
(1993).</div>
</div>
<div id="ref-kasuyaTheoryMetallicFerro1956" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[25] </div><div class="csl-right-inline">T.
Kasuya, <em><a href="https://doi.org/10.1143/PTP.16.45">A Theory of
Metallic Ferro- and Antiferromagnetism on Zeners Model</a></em>, Prog
Theor Phys <strong>16</strong>, 45 (1956).</div>
</div>
<div id="ref-rudermanIndirectExchangeCoupling1954" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[26] </div><div class="csl-right-inline">M.
A. Ruderman and C. Kittel, <em><a
href="https://doi.org/10.1103/PhysRev.96.99">Indirect Exchange Coupling
of Nuclear Magnetic Moments by Conduction Electrons</a></em>, Phys. Rev.
<strong>96</strong>, 99 (1954).</div>
</div>
<div id="ref-vanvleckNoteInteractionsSpins1962" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[27] </div><div class="csl-right-inline">J.
H. Van Vleck, <em><a
href="https://doi.org/10.1103/RevModPhys.34.681">Note on the
Interactions Between the Spins of Magnetic Ions or Nuclei in
Metals</a></em>, Rev. Mod. Phys. <strong>34</strong>, 681 (1962).</div>
</div>
<div id="ref-yosidaMagneticPropertiesCuMn1957" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[28] </div><div class="csl-right-inline">K.
Yosida, <em><a href="https://doi.org/10.1103/PhysRev.106.893">Magnetic
Properties of Cu-Mn Alloys</a></em>, Phys. Rev. <strong>106</strong>,
893 (1957).</div>
</div>
<div id="ref-rusinCalculationRKKYRange2017" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[29] </div><div class="csl-right-inline">T.
M. Rusin and W. Zawadzki, <em><a
href="https://doi.org/10.1016/j.jmmm.2017.06.007">On Calculation of RKKY
Range Function in One Dimension</a></em>, Journal of Magnetism and
Magnetic Materials <strong>441</strong>, 387 (2017).</div>
</div>
<div id="ref-thoulessLongRangeOrderOneDimensional1969" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[24] </div><div class="csl-right-inline">D.
<div class="csl-left-margin">[30] </div><div class="csl-right-inline">D.
J. Thouless, <em><a
href="https://doi.org/10.1103/PhysRev.187.732">Long-Range Order in
One-Dimensional Ising Systems</a></em>, Phys. Rev. <strong>187</strong>,
732 (1969).</div>
</div>
<div id="ref-peierlsIsingModelFerromagnetism1936" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[31] </div><div class="csl-right-inline">R.
Peierls, <em><a href="https://doi.org/10.1017/S0305004100019174">On
Isings Model of Ferromagnetism</a></em>, Mathematical Proceedings of
the Cambridge Philosophical Society <strong>32</strong>, 477
(1936).</div>
</div>
<div id="ref-kennedyItinerantElectronModel1986" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[32] </div><div class="csl-right-inline">T.
Kennedy and E. H. Lieb, <em><a
href="https://doi.org/10.1016/0378-4371(86)90188-3">An Itinerant
Electron Model with Crystalline or Magnetic Long Range Order</a></em>,
Physica A: Statistical Mechanics and Its Applications
<strong>138</strong>, 320 (1986).</div>
</div>
<div id="ref-dysonExistencePhasetransitionOnedimensional1969"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[33] </div><div class="csl-right-inline">F.
J. Dyson, <em><a href="https://doi.org/10.1007/BF01645907">Existence of
a Phase-Transition in a One-Dimensional Ising Ferromagnet</a></em>,
Commun.Math. Phys. <strong>12</strong>, 91 (1969).</div>
</div>
<div id="ref-ruelleStatisticalMechanicsOnedimensional1968"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[25] </div><div class="csl-right-inline">D.
<div class="csl-left-margin">[34] </div><div class="csl-right-inline">D.
Ruelle, <em><a
href="https://mathscinet.ams.org/mathscinet-getitem?mr=0234697">Statistical
Mechanics of a One-Dimensional Lattice Gas</a></em>, Comm. Math. Phys.
@ -537,13 +695,56 @@ Mechanics of a One-Dimensional Lattice Gas</a></em>, Comm. Math. Phys.
</div>
<div id="ref-lipkinValidityManybodyApproximation1965" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[26] </div><div class="csl-right-inline">H.
<div class="csl-left-margin">[35] </div><div class="csl-right-inline">H.
J. Lipkin, N. Meshkov, and A. J. Glick, <em><a
href="https://doi.org/10.1016/0029-5582(65)90862-X">Validity of
Many-Body Approximation Methods for a Solvable Model. (I). Exact
Solutions and Perturbation Theory</a></em>, Nuclear Physics
<strong>62</strong>, 188 (1965).</div>
</div>
<div id="ref-grossNonextensiveHamiltonianSystems2002" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[36] </div><div class="csl-right-inline">D.
H. E. Gross, <em><a
href="https://doi.org/10.1016/S0378-4371(01)00646-X">Non-Extensive
Hamiltonian Systems Follow Boltzmanns Principle Not Tsallis Statistics.
-- Phase Transitions, Second Law of Thermodynamics</a></em>, Physica A:
Statistical Mechanics and Its Applications <strong>305</strong>, 99
(2002).</div>
</div>
<div id="ref-lutskoQuestioningValidityNonextensive2011"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[37] </div><div class="csl-right-inline">J.
F. Lutsko and J. P. Boon, <em><a
href="https://doi.org/10.1209/0295-5075/95/20006">Questioning the
Validity of Non-Extensive Thermodynamics for Classical Hamiltonian
Systems</a></em>, EPL <strong>95</strong>, 20006 (2011).</div>
</div>
<div id="ref-wangCommentNonextensiveHamiltonian2003" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[38] </div><div class="csl-right-inline">Q.
A. Wang, <em><a
href="https://hal.archives-ouvertes.fr/hal-00009462">Comment on
<span>“Nonextensive Hamiltonian Systems Follow Boltzmanns Principle Not
Tsallis Statistics-Phase Transition, Second Law of
Thermodynamics”</span> by Gross</a></em>, (2003).</div>
</div>
<div id="ref-fisherCriticalExponentsLongRange1972" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[39] </div><div class="csl-right-inline">M.
E. Fisher, S. Ma, and B. G. Nickel, <em><a
href="https://doi.org/10.1103/PhysRevLett.29.917">Critical Exponents for
Long-Range Interactions</a></em>, Phys. Rev. Lett. <strong>29</strong>,
917 (1972).</div>
</div>
<div id="ref-angeliniRelationsShortrangeLongrange2014" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[40] </div><div class="csl-right-inline">M.
C. Angelini, G. Parisi, and F. Ricci-Tersenghi, <em><a
href="https://doi.org/10.1103/PhysRevE.89.062120">Relations Between
Short-Range and Long-Range Ising Models</a></em>, Phys. Rev. E
<strong>89</strong>, 062120 (2014).</div>
</div>
</div>
</section>

View File

@ -1,5 +1,5 @@
---
title: 2.2_HKM_Model
title: Background - The Kitaev Honeycomb Model
excerpt:
layout: none
image:
@ -11,7 +11,7 @@ image:
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>2.2_HKM_Model</title>
<title>Background - The Kitaev Honeycomb Model</title>
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
@ -30,7 +30,7 @@ image:
<li><a href="#the-kitaev-honeycomb-model"
id="toc-the-kitaev-honeycomb-model">The Kitaev Honeycomb Model</a>
<ul>
<li><a href="#the-model" id="toc-the-model">The Model</a></li>
<li><a href="#bg-hkm-model" id="toc-bg-hkm-model">The Model</a></li>
<li><a href="#a-mapping-to-majorana-fermions"
id="toc-a-mapping-to-majorana-fermions">A mapping to Majorana
Fermions</a></li>
@ -57,7 +57,7 @@ Diagram</a></li>
<li><a href="#the-kitaev-honeycomb-model"
id="toc-the-kitaev-honeycomb-model">The Kitaev Honeycomb Model</a>
<ul>
<li><a href="#the-model" id="toc-the-model">The Model</a></li>
<li><a href="#bg-hkm-model" id="toc-bg-hkm-model">The Model</a></li>
<li><a href="#a-mapping-to-majorana-fermions"
id="toc-a-mapping-to-majorana-fermions">A mapping to Majorana
Fermions</a></li>
@ -88,7 +88,7 @@ with long range entanglement (not simple paramagnet)</p>
<li>experimental probes include inelastic neutron scattering, Raman
scattering</li>
</ul>
<section id="the-model" class="level2">
<section id="bg-hkm-model" class="level2">
<h2>The Model</h2>
<div id="fig:intro_figure_by_hand" class="fignos">
<figure>

View File

@ -1,5 +1,5 @@
---
title: 2.3_Disorder
title: Background - Disorder &amp; Localisation
excerpt:
layout: none
image:
@ -11,7 +11,7 @@ image:
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>2.3_Disorder</title>
<title>Background - Disorder &amp; Localisation</title>
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
@ -27,8 +27,8 @@ image:
<br>
<nav aria-label="Table of Contents" class="page-table-of-contents">
<ul>
<li><a href="#disorder-and-localisation"
id="toc-disorder-and-localisation">Disorder and Localisation</a>
<li><a href="#bg-disorder-and-localisation"
id="toc-bg-disorder-and-localisation">Disorder and Localisation</a>
<ul>
<li><a href="#localisation-anderson-many-body-and-disorder-free"
id="toc-localisation-anderson-many-body-and-disorder-free">Localisation:
@ -52,8 +52,8 @@ id="toc-amorphous-magnetism">Amorphous Magnetism</a></li>
<!-- Table of Contents -->
<!-- <nav id="TOC" role="doc-toc">
<ul>
<li><a href="#disorder-and-localisation"
id="toc-disorder-and-localisation">Disorder and Localisation</a>
<li><a href="#bg-disorder-and-localisation"
id="toc-bg-disorder-and-localisation">Disorder and Localisation</a>
<ul>
<li><a href="#localisation-anderson-many-body-and-disorder-free"
id="toc-localisation-anderson-many-body-and-disorder-free">Localisation:
@ -70,7 +70,7 @@ id="toc-amorphous-magnetism">Amorphous Magnetism</a></li>
-->
<!-- Main Page Body -->
<section id="disorder-and-localisation" class="level1">
<section id="bg-disorder-and-localisation" class="level1">
<h1>Disorder and Localisation</h1>
<section id="localisation-anderson-many-body-and-disorder-free"
class="level2">

View File

@ -27,7 +27,7 @@ image:
<br>
<nav aria-label="Table of Contents" class="page-table-of-contents">
<ul>
<li><a href="#sec:FK-Model" id="toc-sec:FK-Model">The Model</a></li>
<li><a href="#fk-model" id="toc-fk-model">The Model</a></li>
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
</ul>
</nav>
@ -41,7 +41,7 @@ image:
<!-- Table of Contents -->
<!-- <nav id="TOC" role="doc-toc">
<ul>
<li><a href="#sec:FK-Model" id="toc-sec:FK-Model">The Model</a></li>
<li><a href="#fk-model" id="toc-fk-model">The Model</a></li>
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
</ul>
</nav>
@ -72,13 +72,13 @@ analysis presented here.</p>
present its phase diagram. Second, we present the methods used to solve
it numerically. Last, we investigate the models localisation properties
and conclude.</p>
<section id="sec:FK-Model" class="level1">
<section id="fk-model" class="level1">
<h1>The Model</h1>
<p>Dimensionality is crucial for the physics of both localisation and
FTPTs. In 1D, disorder generally dominates, even the weakest disorder
exponentially localises <em>all</em> single particle eigenstates. Only
longer-range correlations of the disorder potential can potentially
induce delocalization <span class="citation"
induce delocalisation <span class="citation"
data-cites="aubryAnalyticityBreakingAnderson1980 dassarmaLocalizationMobilityEdges1990 dunlapAbsenceLocalizationRandomdimer1990"> [<a
href="#ref-aubryAnalyticityBreakingAnderson1980"
role="doc-biblioref">3</a><a

View File

@ -1,5 +1,5 @@
---
title: 3.2_LRFK_Methods
title: The Long Range Falikov-Kimball Model - Methods
excerpt:
layout: none
image:
@ -11,7 +11,7 @@ image:
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>3.2_LRFK_Methods</title>
<title>The Long Range Falikov-Kimball Model - Methods</title>
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
@ -27,7 +27,7 @@ image:
<br>
<nav aria-label="Table of Contents" class="page-table-of-contents">
<ul>
<li><a href="#sec:FK-Methods" id="toc-sec:FK-Methods">Methods</a>
<li><a href="#fk-methods" id="toc-fk-methods">Methods</a>
<ul>
<li><a href="#markov-chain-monte-carlo"
id="toc-markov-chain-monte-carlo">Markov Chain Monte Carlo</a></li>
@ -116,7 +116,7 @@ Trick</a></li>
<!-- Table of Contents -->
<!-- <nav id="TOC" role="doc-toc">
<ul>
<li><a href="#sec:FK-Methods" id="toc-sec:FK-Methods">Methods</a>
<li><a href="#fk-methods" id="toc-fk-methods">Methods</a>
<ul>
<li><a href="#markov-chain-monte-carlo"
id="toc-markov-chain-monte-carlo">Markov Chain Monte Carlo</a></li>
@ -198,7 +198,7 @@ Trick</a></li>
-->
<!-- Main Page Body -->
<section id="sec:FK-Methods" class="level1">
<section id="fk-methods" class="level1">
<h1>Methods</h1>
<section id="markov-chain-monte-carlo" class="level2">
<h2>Markov Chain Monte Carlo</h2>

View File

@ -1,5 +1,5 @@
---
title: 3.3_LRFK_Results
title: The Long Range Falikov-Kimball Model - Results
excerpt:
layout: none
image:
@ -11,7 +11,7 @@ image:
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>3.3_LRFK_Results</title>
<title>The Long Range Falikov-Kimball Model - Results</title>
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
@ -27,16 +27,15 @@ image:
<br>
<nav aria-label="Table of Contents" class="page-table-of-contents">
<ul>
<li><a href="#sec:FK-results" id="toc-sec:FK-results">Results</a>
<li><a href="#fk-results" id="toc-fk-results">Results</a>
<ul>
<li><a href="#phase-diagram" id="toc-phase-diagram">Phase
Diagram</a></li>
<li><a href="#lrfk-results-phase-diagram"
id="toc-lrfk-results-phase-diagram">Phase Diagram</a></li>
<li><a href="#localisation-properties"
id="toc-localisation-properties">Localisation Properties</a></li>
</ul></li>
<li><a href="#discussion-and-conclusion-secamk-conclusion"
id="toc-discussion-and-conclusion-secamk-conclusion">Discussion and
Conclusion {sec:AMK-Conclusion}</a></li>
<li><a href="#fk-conclusion" id="toc-fk-conclusion">Discussion and
Conclusion</a></li>
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
</ul>
</nav>
@ -50,23 +49,22 @@ Conclusion {sec:AMK-Conclusion}</a></li>
<!-- Table of Contents -->
<!-- <nav id="TOC" role="doc-toc">
<ul>
<li><a href="#sec:FK-results" id="toc-sec:FK-results">Results</a>
<li><a href="#fk-results" id="toc-fk-results">Results</a>
<ul>
<li><a href="#phase-diagram" id="toc-phase-diagram">Phase
Diagram</a></li>
<li><a href="#lrfk-results-phase-diagram"
id="toc-lrfk-results-phase-diagram">Phase Diagram</a></li>
<li><a href="#localisation-properties"
id="toc-localisation-properties">Localisation Properties</a></li>
</ul></li>
<li><a href="#discussion-and-conclusion-secamk-conclusion"
id="toc-discussion-and-conclusion-secamk-conclusion">Discussion and
Conclusion {sec:AMK-Conclusion}</a></li>
<li><a href="#fk-conclusion" id="toc-fk-conclusion">Discussion and
Conclusion</a></li>
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
</ul>
</nav>
-->
<!-- Main Page Body -->
<section id="sec:FK-results" class="level1">
<section id="fk-results" class="level1">
<h1>Results</h1>
<div id="fig:phase_diagram" class="fignos">
<figure>
@ -115,7 +113,7 @@ alt="Figure 2: Hello I am the figure caption!" />
figure caption!</figcaption>
</figure>
</div>
<section id="phase-diagram" class="level2">
<section id="lrfk-results-phase-diagram" class="level2">
<h2>Phase Diagram</h2>
<p>Figs. [<a href="#fig:phase_diagram" data-reference-type="ref"
data-reference="fig:phase_diagram">1</a>a] and [<a
@ -402,9 +400,8 @@ model is that we can explore very large system sizes for a complete
understanding.</p>
</section>
</section>
<section id="discussion-and-conclusion-secamk-conclusion"
class="level1">
<h1>Discussion and Conclusion {sec:AMK-Conclusion}</h1>
<section id="fk-conclusion" class="level1">
<h1>Discussion and Conclusion</h1>
<p>The FK model is one of the simplest non-trivial models of interacting
fermions. We studied its thermodynamic and localisation properties
brought down in dimensionality to 1D by adding a novel long-ranged

View File

@ -1048,21 +1048,21 @@ ground states in the non-Abelian phase <span class="math inline">\((+1,
data-cites="chungTopologicalQuantumPhase2010 yaoAlgebraicSpinLiquid2009"> [<a
href="#ref-yaoAlgebraicSpinLiquid2009" role="doc-biblioref">2</a>,<a
href="#ref-chungTopologicalQuantumPhase2010"
role="doc-biblioref">15</a>]</span>. Concretely, this is because the
projector enforces both flux and fermion parity. When we wind a vortex
around both non-contractible loops of the torus, it flips the flux
parity. Therefore, we have to introduce a fermionic excitation to make
the state physical. Hence, the process does not give a fourth ground
state.</p>
role="doc-biblioref"><strong>chungTopologicalQuantumPhase2010?</strong></a>]</span>.
Concretely, this is because the projector enforces both flux and fermion
parity. When we wind a vortex around both non-contractible loops of the
torus, it flips the flux parity. Therefore, we have to introduce a
fermionic excitation to make the state physical. Hence, the process does
not give a fourth ground state.</p>
<p>Recently, the topology has notably gained interest because of
proposals to use this ground state degeneracy to implement both
passively fault tolerant and actively stabilised quantum
computations <span class="citation"
data-cites="kitaevFaulttolerantQuantumComputation2003 poulinStabilizerFormalismOperator2005 hastingsDynamicallyGeneratedLogical2021"> [<a
href="#ref-poulinStabilizerFormalismOperator2005"
role="doc-biblioref">16</a>,<a
role="doc-biblioref">15</a>,<a
href="#ref-hastingsDynamicallyGeneratedLogical2021"
role="doc-biblioref">17</a>,<a
role="doc-biblioref">16</a>,<a
href="#ref-kitaevFaulttolerantQuantumComputation2003"
role="doc-biblioref"><strong>kitaevFaulttolerantQuantumComputation2003?</strong></a>]</span>.</p>
</section>
@ -1173,18 +1173,9 @@ class="csl-right-inline"><em><a
href="https://www.youtube.com/watch?v=ymF1bp-qrjU">Why Does This Balloon
Have -1 Holes?</a></em> (n.d.).</div>
</div>
<div id="ref-chungTopologicalQuantumPhase2010" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[15] </div><div class="csl-right-inline">S.
B. Chung, H. Yao, T. L. Hughes, and E.-A. Kim, <em><a
href="https://doi.org/10.1103/PhysRevB.81.060403">Topological Quantum
Phase Transition in an Exactly Solvable Model of a Chiral Spin Liquid at
Finite Temperature</a></em>, Phys. Rev. B <strong>81</strong>, 060403
(2010).</div>
</div>
<div id="ref-poulinStabilizerFormalismOperator2005" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[16] </div><div class="csl-right-inline">D.
<div class="csl-left-margin">[15] </div><div class="csl-right-inline">D.
Poulin, <em><a
href="https://doi.org/10.1103/PhysRevLett.95.230504">Stabilizer
Formalism for Operator Quantum Error Correction</a></em>, Phys. Rev.
@ -1192,7 +1183,7 @@ Lett. <strong>95</strong>, 230504 (2005).</div>
</div>
<div id="ref-hastingsDynamicallyGeneratedLogical2021" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[17] </div><div class="csl-right-inline">M.
<div class="csl-left-margin">[16] </div><div class="csl-right-inline">M.
B. Hastings and J. Haah, <em><a
href="https://doi.org/10.22331/q-2021-10-19-564">Dynamically Generated
Logical Qubits</a></em>, Quantum <strong>5</strong>, 564 (2021).</div>

View File

@ -28,7 +28,7 @@ image:
<br>
<nav aria-label="Table of Contents" class="page-table-of-contents">
<ul>
<li><a href="#sec:AMK-Model" id="toc-sec:AMK-Model">The Model</a>
<li><a href="#amk-Model" id="toc-amk-Model">The Model</a>
<ul>
<li><a href="#amorphous-systems" id="toc-amorphous-systems">Amorphous
Systems</a></li>
@ -70,7 +70,7 @@ id="toc-open-boundary-conditions">Open boundary conditions</a></li>
<!-- Table of Contents -->
<!-- <nav id="TOC" role="doc-toc">
<ul>
<li><a href="#sec:AMK-Model" id="toc-sec:AMK-Model">The Model</a>
<li><a href="#amk-Model" id="toc-amk-Model">The Model</a>
<ul>
<li><a href="#amorphous-systems" id="toc-amorphous-systems">Amorphous
Systems</a></li>
@ -107,24 +107,32 @@ id="toc-open-boundary-conditions">Open boundary conditions</a></li>
<!-- Main Page Body -->
<p><strong>Contributions</strong></p>
<p>The material in this chapter expands on work presented in</p>
<p><strong>Insert citation of amorphous Kitaev paper here</strong></p>
<p>which was a joint project of the first three authors with advice and
<p> <span class="citation"
data-cites="cassellaExactChiralAmorphous2022"> [<a
href="#ref-cassellaExactChiralAmorphous2022"
role="doc-biblioref">1</a>]</span> Cassella, G., DOrnellas, P., Hodson,
T., Natori, W. M., &amp; Knolle, J. (2022). An exact chiral amorphous
spin liquid. <em>arXiv preprint arXiv:2208.08246.</em></p>
<p>the code is available at <span class="citation"
data-cites="hodsonKoalaKitaevAmorphous2022"> [<a
href="#ref-hodsonKoalaKitaevAmorphous2022"
role="doc-biblioref">2</a>]</span>.</p>
<p>This was a joint project of Gino, Peru and myself with advice and
guidance from Willian and Johannes. The project grew out of an interest
Gino, Peru and I had in studying amorphous systems, coupled with
the three of us had in studying amorphous systems, coupled with
Johannes expertise on the Kitaev model. The idea to use voronoi
partitions came from <span class="citation"
data-cites="marsalTopologicalWeaireThorpe2020"> [<a
href="#ref-marsalTopologicalWeaireThorpe2020"
role="doc-biblioref">1</a>]</span> and Gino did the implementation of
role="doc-biblioref">3</a>]</span> and Gino did the implementation of
this. The idea and implementation of the edge colouring using SAT
solvers, the mapping from flux sector to bond sector using A* search
were both entirely my work. Peru came up with the ground state
conjecture and implemented the local markers. Gino and I did much of the
rest of the programming for Koala while pair programming and
whiteboarding, this included the phase diagram, edge mode and finite
temperature analyses as well as the derivation of the projector in the
amorphous case.</p>
<section id="sec:AMK-Model" class="level1">
were both entirely my work. Peru found the ground state and implemented
the local markers. Gino and I did much of the rest of the programming
for Koala while pair programming and whiteboarding, this included the
phase diagram, edge mode and finite temperature analyses as well as the
derivation of the projector in the amorphous case.</p>
<section id="amk-Model" class="level1">
<h1>The Model</h1>
<div id="fig:intro_figure_by_hand" class="fignos">
<figure>
@ -160,7 +168,7 @@ structure to behave according to the Kitaev Honeycomb model with small
corrections <span class="citation"
data-cites="banerjeeProximateKitaevQuantum2016 trebstKitaevMaterials2022"> [<a
href="#ref-banerjeeProximateKitaevQuantum2016"
role="doc-biblioref">2</a>,<a href="#ref-trebstKitaevMaterials2022"
role="doc-biblioref">4</a>,<a href="#ref-trebstKitaevMaterials2022"
role="doc-biblioref"><strong>trebstKitaevMaterials2022?</strong></a>]</span>.</p>
<p><strong>expand later: Why do we need spin orbit coupling and what
will the corrections be?</strong></p>
@ -172,14 +180,14 @@ because, among other reasons, they can be braided through spacetime to
achieve noise tolerant quantum computations <span class="citation"
data-cites="freedmanTopologicalQuantumComputation2003"> [<a
href="#ref-freedmanTopologicalQuantumComputation2003"
role="doc-biblioref">3</a>]</span>.</p>
role="doc-biblioref">5</a>]</span>.</p>
<p>Third, and perhaps most importantly, this model is a rare many body
interacting quantum system that can be treated analytically. It is
exactly solvable. We can explicitly write down its many body ground
states in terms of single particle states <span class="citation"
data-cites="kitaevAnyonsExactlySolved2006"> [<a
href="#ref-kitaevAnyonsExactlySolved2006"
role="doc-biblioref">4</a>]</span>. The solubility of the Kitaev
role="doc-biblioref">6</a>]</span>. The solubility of the Kitaev
Honeycomb Model, like the Falikov-Kimball model of chapter 1, comes
about because the model has extensively many conserved degrees of
freedom. These conserved quantities can be factored out as classical
@ -197,7 +205,7 @@ transformation to a Majorana hamiltonian. This discussion shows that,
for the the model to be solvable, it needs only be defined on a
trivalent, tri-edge-colourable lattice <span class="citation"
data-cites="Nussinov2009"> [<a href="#ref-Nussinov2009"
role="doc-biblioref">5</a>]</span>.</p>
role="doc-biblioref">7</a>]</span>.</p>
<p>The methods section discusses how to generate such lattices and
colour them. It also explain how to map back and forth between
configurations of the gauge field and configurations of the gauge
@ -395,7 +403,7 @@ class="math inline">\(\alpha\)</span>-bond with exchange coupling <span
class="math inline">\(J^\alpha\)</span> <span class="citation"
data-cites="kitaevAnyonsExactlySolved2006"> [<a
href="#ref-kitaevAnyonsExactlySolved2006"
role="doc-biblioref">4</a>]</span>. For notational brevity, it is useful
role="doc-biblioref">6</a>]</span>. For notational brevity, it is useful
to introduce the bond operators <span class="math inline">\(K_{ij} =
\sigma_j^{\alpha}\sigma_k^{\alpha}\)</span> where <span
class="math inline">\(\alpha\)</span> is a function of <span
@ -635,7 +643,7 @@ have paired along bonds to become a classical gauge field <span
class="math inline">\(u_{ij}\)</span>. What follows is relatively
standard theory for quadratic Majorana Hamiltonians <span
class="citation" data-cites="BlaizotRipka1986"> [<a
href="#ref-BlaizotRipka1986" role="doc-biblioref">6</a>]</span>.</p>
href="#ref-BlaizotRipka1986" role="doc-biblioref">8</a>]</span>.</p>
<p>Because of the antisymmetry of the matrix with entries <span
class="math inline">\(J^{\alpha} u_{ij}\)</span>, the eigenvalues of the
Hamiltonian <span class="math inline">\(\tilde{H}_u\)</span> come in
@ -762,9 +770,23 @@ class="math inline">\(b^\alpha\)</span> operators could be performed.
<section id="bibliography" class="level1 unnumbered">
<h1 class="unnumbered">Bibliography</h1>
<div id="refs" class="references csl-bib-body" role="doc-bibliography">
<div id="ref-cassellaExactChiralAmorphous2022" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[1] </div><div class="csl-right-inline">G.
Cassella, P. DOrnellas, T. Hodson, W. M. H. Natori, and J. Knolle,
<em><a href="https://doi.org/10.48550/arXiv.2208.08246">An Exact Chiral
Amorphous Spin Liquid</a></em>, arXiv:2208.08246.</div>
</div>
<div id="ref-hodsonKoalaKitaevAmorphous2022" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[2] </div><div class="csl-right-inline">T.
Hodson, P. DOrnellas, and G. Cassella, <em><a
href="https://doi.org/10.5281/zenodo.6303275">Koala: Kitaev on Amorphous
Lattices</a></em>, (2022).</div>
</div>
<div id="ref-marsalTopologicalWeaireThorpe2020" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[1] </div><div class="csl-right-inline">Q.
<div class="csl-left-margin">[3] </div><div class="csl-right-inline">Q.
Marsal, D. Varjas, and A. G. Grushin, <em><a
href="https://doi.org/10.1073/pnas.2007384117">Topological WeaireThorpe
Models of Amorphous Matter</a></em>, Proceedings of the National Academy
@ -772,7 +794,7 @@ of Sciences <strong>117</strong>, 30260 (2020).</div>
</div>
<div id="ref-banerjeeProximateKitaevQuantum2016" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[2] </div><div class="csl-right-inline">A.
<div class="csl-left-margin">[4] </div><div class="csl-right-inline">A.
Banerjee et al., <em><a
href="https://doi.org/10.1038/nmat4604">Proximate Kitaev Quantum Spin
Liquid Behaviour in {\Alpha}-RuCl$_3$</a></em>, Nature Mater
@ -780,7 +802,7 @@ Liquid Behaviour in {\Alpha}-RuCl$_3$</a></em>, Nature Mater
</div>
<div id="ref-freedmanTopologicalQuantumComputation2003"
class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[3] </div><div class="csl-right-inline">M.
<div class="csl-left-margin">[5] </div><div class="csl-right-inline">M.
Freedman, A. Kitaev, M. Larsen, and Z. Wang, <em><a
href="https://doi.org/10.1090/S0273-0979-02-00964-3">Topological Quantum
Computation</a></em>, Bull. Amer. Math. Soc. <strong>40</strong>, 31
@ -788,20 +810,20 @@ Computation</a></em>, Bull. Amer. Math. Soc. <strong>40</strong>, 31
</div>
<div id="ref-kitaevAnyonsExactlySolved2006" class="csl-entry"
role="doc-biblioentry">
<div class="csl-left-margin">[4] </div><div class="csl-right-inline">A.
<div class="csl-left-margin">[6] </div><div class="csl-right-inline">A.
Kitaev, <em><a href="https://doi.org/10.1016/j.aop.2005.10.005">Anyons
in an Exactly Solved Model and Beyond</a></em>, Annals of Physics
<strong>321</strong>, 2 (2006).</div>
</div>
<div id="ref-Nussinov2009" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[5] </div><div class="csl-right-inline">Z.
<div class="csl-left-margin">[7] </div><div class="csl-right-inline">Z.
Nussinov and G. Ortiz, <em><a
href="https://doi.org/10.1103/PhysRevB.79.214440">Bond Algebras and
Exact Solvability of Hamiltonians: Spin S=½ Multilayer Systems</a></em>,
Physical Review B <strong>79</strong>, 214440 (2009).</div>
</div>
<div id="ref-BlaizotRipka1986" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[6] </div><div
<div class="csl-left-margin">[8] </div><div
class="csl-right-inline">J.-P. Blaizot and G. Ripka, <em>Quantum Theory
of Finite Systems</em> (The MIT Press, 1986).</div>
</div>

View File

@ -28,7 +28,7 @@ image:
<br>
<nav aria-label="Table of Contents" class="page-table-of-contents">
<ul>
<li><a href="#sec:AMK-Methods" id="toc-sec:AMK-Methods">Methods</a>
<li><a href="#amk-methods" id="toc-amk-methods">Methods</a>
<ul>
<li><a href="#voronisation" id="toc-voronisation">Voronisation</a></li>
<li><a href="#graph-representation" id="toc-graph-representation">Graph
@ -65,7 +65,7 @@ Markers</a></li>
<!-- Table of Contents -->
<!-- <nav id="TOC" role="doc-toc">
<ul>
<li><a href="#sec:AMK-Methods" id="toc-sec:AMK-Methods">Methods</a>
<li><a href="#amk-methods" id="toc-amk-methods">Methods</a>
<ul>
<li><a href="#voronisation" id="toc-voronisation">Voronisation</a></li>
<li><a href="#graph-representation" id="toc-graph-representation">Graph
@ -97,7 +97,7 @@ Markers</a></li>
<!-- Main Page Body -->
<div class="sourceCode" id="cb1"><pre
class="sourceCode python"><code class="sourceCode python"></code></pre></div>
<section id="sec:AMK-Methods" class="level1">
<section id="amk-methods" class="level1">
<h1>Methods</h1>
<p>The practical implementation of what is described in this section is
available as a Python package called Koala (Kitaev On Amorphous

View File

@ -28,7 +28,7 @@ image:
<br>
<nav aria-label="Table of Contents" class="page-table-of-contents">
<ul>
<li><a href="#sec:AMK-Results" id="toc-sec:AMK-Results">Results</a>
<li><a href="#amk-results" id="toc-amk-results">Results</a>
<ul>
<li><a href="#the-ground-state-flux-sector"
id="toc-the-ground-state-flux-sector">The Ground State Flux
@ -52,8 +52,9 @@ Thermal Metal</a></li>
and Conclusion</a>
<ul>
<li><a href="#conclusion" id="toc-conclusion">Conclusion</a></li>
<li><a href="#discussion" id="toc-discussion">Discussion</a></li>
<li><a href="#outlook" id="toc-outlook">Outlook</a></li>
<li><a href="#amk-discussion"
id="toc-amk-discussion">Discussion</a></li>
<li><a href="#amk-outlook" id="toc-amk-outlook">Outlook</a></li>
</ul></li>
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
</ul>
@ -68,7 +69,7 @@ and Conclusion</a>
<!-- Table of Contents -->
<!-- <nav id="TOC" role="doc-toc">
<ul>
<li><a href="#sec:AMK-Results" id="toc-sec:AMK-Results">Results</a>
<li><a href="#amk-results" id="toc-amk-results">Results</a>
<ul>
<li><a href="#the-ground-state-flux-sector"
id="toc-the-ground-state-flux-sector">The Ground State Flux
@ -92,8 +93,9 @@ Thermal Metal</a></li>
and Conclusion</a>
<ul>
<li><a href="#conclusion" id="toc-conclusion">Conclusion</a></li>
<li><a href="#discussion" id="toc-discussion">Discussion</a></li>
<li><a href="#outlook" id="toc-outlook">Outlook</a></li>
<li><a href="#amk-discussion"
id="toc-amk-discussion">Discussion</a></li>
<li><a href="#amk-outlook" id="toc-amk-outlook">Outlook</a></li>
</ul></li>
<li><a href="#bibliography" id="toc-bibliography">Bibliography</a></li>
</ul>
@ -101,7 +103,7 @@ and Conclusion</a>
-->
<!-- Main Page Body -->
<section id="sec:AMK-Results" class="level1">
<section id="amk-results" class="level1">
<h1>Results</h1>
<section id="the-ground-state-flux-sector" class="level2">
<h2>The Ground State Flux Sector</h2>
@ -562,7 +564,7 @@ spin liquid phase.</p>
Anderson transition to a thermal metal phase, driven by the
proliferation of vortices with increasing temperature.</p>
</section>
<section id="discussion" class="level2">
<section id="amk-discussion" class="level2">
<h2>Discussion</h2>
<p><strong>Limits of the ground state conjecture</strong></p>
<p>We found a small number of lattices for which the ground state
@ -581,7 +583,7 @@ code A phase. It is possible that some property of the particular
colouring chosen is what leads to failure of the ground state conjecture
here.</p>
</section>
<section id="outlook" class="level2">
<section id="amk-outlook" class="level2">
<h2>Outlook</h2>
<p>This exactly solvable chiral QSL provides a first example of a
topological quantum many-body phase in amorphous magnets, which raises a
@ -946,7 +948,7 @@ Its Application to the Cuprous Oxides</a></em>, Rev. Mod. Phys.
<div id="ref-Baskaran2008" class="csl-entry" role="doc-biblioentry">
<div class="csl-left-margin">[38] </div><div class="csl-right-inline">G.
Baskaran, D. Sen, and R. Shankar, <em><a
href="https://doi.org/10.1103/PhysRevB.78.115116">Spin-S Kitaev Model:
href="https://doi.org/10.1103/PhysRevB.78.115116">Spin- S Kitaev Model:
Classical Ground States, Order from Disorder, and Exact Correlation
Functions</a></em>, Phys. Rev. B <strong>78</strong>, 115116
(2008).</div>

View File

@ -1,205 +0,0 @@
---
title: A.1_Markov_Chain_Monte_Carlo
excerpt:
layout: none
image:
---
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>A.1_Markov_Chain_Monte_Carlo</title>
<!-- <style>
html {
line-height: 1.5;
font-family: Georgia, serif;
font-size: 20px;
color: #1a1a1a;
background-color: #fdfdfd;
}
body {
margin: 0 auto;
max-width: 36em;
padding-left: 50px;
padding-right: 50px;
padding-top: 50px;
padding-bottom: 50px;
hyphens: auto;
overflow-wrap: break-word;
text-rendering: optimizeLegibility;
font-kerning: normal;
}
@media (max-width: 600px) {
body {
font-size: 0.9em;
padding: 1em;
}
h1 {
font-size: 1.8em;
}
}
@media print {
body {
background-color: transparent;
color: black;
font-size: 12pt;
}
p, h2, h3 {
orphans: 3;
widows: 3;
}
h2, h3, h4 {
page-break-after: avoid;
}
}
p {
margin: 1em 0;
}
a {
color: #1a1a1a;
}
a:visited {
color: #1a1a1a;
}
img {
max-width: 100%;
}
h1, h2, h3, h4, h5, h6 {
margin-top: 1.4em;
}
h5, h6 {
font-size: 1em;
font-style: italic;
}
h6 {
font-weight: normal;
}
ol, ul {
padding-left: 1.7em;
margin-top: 1em;
}
li > ol, li > ul {
margin-top: 0;
}
blockquote {
margin: 1em 0 1em 1.7em;
padding-left: 1em;
border-left: 2px solid #e6e6e6;
color: #606060;
}
code {
font-family: Menlo, Monaco, 'Lucida Console', Consolas, monospace;
font-size: 85%;
margin: 0;
}
pre {
margin: 1em 0;
overflow: auto;
}
pre code {
padding: 0;
overflow: visible;
overflow-wrap: normal;
}
.sourceCode {
background-color: transparent;
overflow: visible;
}
hr {
background-color: #1a1a1a;
border: none;
height: 1px;
margin: 1em 0;
}
table {
margin: 1em 0;
border-collapse: collapse;
width: 100%;
overflow-x: auto;
display: block;
font-variant-numeric: lining-nums tabular-nums;
}
table caption {
margin-bottom: 0.75em;
}
tbody {
margin-top: 0.5em;
border-top: 1px solid #1a1a1a;
border-bottom: 1px solid #1a1a1a;
}
th {
border-top: 1px solid #1a1a1a;
padding: 0.25em 0.5em 0.25em 0.5em;
}
td {
padding: 0.125em 0.5em 0.25em 0.5em;
}
header {
margin-bottom: 4em;
text-align: center;
}
#TOC li {
list-style: none;
}
#TOC ul {
padding-left: 1.3em;
}
#TOC > ul {
padding-left: 0;
}
#TOC a:not(:hover) {
text-decoration: none;
}
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style> -->
<!-- -->
<!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3.0.1/es5/tex-mml-chtml.js"></script>
-->
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
<!--[if lt IE 9]>
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
<![endif]-->
<link rel="stylesheet" href="/assets/css/styles.css">
<script src="/assets/js/index.js"></script>
</head>
<body>
<!--Capture the table of contents from pandoc as a jekyll variable -->
{% capture tableOfContents %}
<br>
Contents:
<ul>
<li><a href="#markov-chain-monte-carlo"
id="toc-markov-chain-monte-carlo">Markov Chain Monte Carlo</a></li>
</ul>
{% endcapture %}
<!-- Give the table of contents to header as a variable -->
{% include header.html extra=tableOfContents %}
<main>
<!-- <nav id="TOC" role="doc-toc">
<ul>
<li><a href="#markov-chain-monte-carlo"
id="toc-markov-chain-monte-carlo">Markov Chain Monte Carlo</a></li>
</ul>
</nav>
-->
<h1 id="markov-chain-monte-carlo">Markov Chain Monte Carlo</h1>
</main>
</body>
</html>

View File

@ -1,5 +1,5 @@
---
title: A.1_Particle_Hole_Symmetry
title: Particle-Hole Symmetry
excerpt:
layout: none
image:
@ -11,7 +11,7 @@ image:
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>A.1_Particle_Hole_Symmetry</title>
<title>Particle-Hole Symmetry</title>
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>

View File

@ -1,270 +0,0 @@
---
title: A.2_Lattice_Generation
excerpt:
layout: none
image:
---
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>A.2_Lattice_Generation</title>
<!-- <style>
html {
line-height: 1.5;
font-family: Georgia, serif;
font-size: 20px;
color: #1a1a1a;
background-color: #fdfdfd;
}
body {
margin: 0 auto;
max-width: 36em;
padding-left: 50px;
padding-right: 50px;
padding-top: 50px;
padding-bottom: 50px;
hyphens: auto;
overflow-wrap: break-word;
text-rendering: optimizeLegibility;
font-kerning: normal;
}
@media (max-width: 600px) {
body {
font-size: 0.9em;
padding: 1em;
}
h1 {
font-size: 1.8em;
}
}
@media print {
body {
background-color: transparent;
color: black;
font-size: 12pt;
}
p, h2, h3 {
orphans: 3;
widows: 3;
}
h2, h3, h4 {
page-break-after: avoid;
}
}
p {
margin: 1em 0;
}
a {
color: #1a1a1a;
}
a:visited {
color: #1a1a1a;
}
img {
max-width: 100%;
}
h1, h2, h3, h4, h5, h6 {
margin-top: 1.4em;
}
h5, h6 {
font-size: 1em;
font-style: italic;
}
h6 {
font-weight: normal;
}
ol, ul {
padding-left: 1.7em;
margin-top: 1em;
}
li > ol, li > ul {
margin-top: 0;
}
blockquote {
margin: 1em 0 1em 1.7em;
padding-left: 1em;
border-left: 2px solid #e6e6e6;
color: #606060;
}
code {
font-family: Menlo, Monaco, 'Lucida Console', Consolas, monospace;
font-size: 85%;
margin: 0;
}
pre {
margin: 1em 0;
overflow: auto;
}
pre code {
padding: 0;
overflow: visible;
overflow-wrap: normal;
}
.sourceCode {
background-color: transparent;
overflow: visible;
}
hr {
background-color: #1a1a1a;
border: none;
height: 1px;
margin: 1em 0;
}
table {
margin: 1em 0;
border-collapse: collapse;
width: 100%;
overflow-x: auto;
display: block;
font-variant-numeric: lining-nums tabular-nums;
}
table caption {
margin-bottom: 0.75em;
}
tbody {
margin-top: 0.5em;
border-top: 1px solid #1a1a1a;
border-bottom: 1px solid #1a1a1a;
}
th {
border-top: 1px solid #1a1a1a;
padding: 0.25em 0.5em 0.25em 0.5em;
}
td {
padding: 0.125em 0.5em 0.25em 0.5em;
}
header {
margin-bottom: 4em;
text-align: center;
}
#TOC li {
list-style: none;
}
#TOC ul {
padding-left: 1.3em;
}
#TOC > ul {
padding-left: 0;
}
#TOC a:not(:hover) {
text-decoration: none;
}
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style> -->
<!-- -->
<!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3.0.1/es5/tex-mml-chtml.js"></script>
-->
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
<!--[if lt IE 9]>
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
<![endif]-->
<link rel="stylesheet" href="/assets/css/styles.css">
<script src="/assets/js/index.js"></script>
</head>
<body>
<!--Capture the table of contents from pandoc as a jekyll variable -->
{% capture tableOfContents %}
<br>
Contents:
<ul>
<li><a href="#lattice-generation" id="toc-lattice-generation">Lattice
Generation</a></li>
</ul>
{% endcapture %}
<!-- Give the table of contents to header as a variable -->
{% include header.html extra=tableOfContents %}
<main>
<!-- <nav id="TOC" role="doc-toc">
<ul>
<li><a href="#lattice-generation" id="toc-lattice-generation">Lattice
Generation</a></li>
</ul>
</nav>
-->
<h1 id="lattice-generation">Lattice Generation</h1>
<div class="sourceCode" id="cb1"><pre
class="sourceCode python"><code class="sourceCode python"></code></pre></div>
</main>
</body>
</html>

View File

@ -1,5 +1,5 @@
---
title: A.2_Markov_Chain_Monte_Carlo
title: Markov Chain Monte Carlo
excerpt:
layout: none
image:
@ -11,7 +11,7 @@ image:
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>A.2_Markov_Chain_Monte_Carlo</title>
<title>Markov Chain Monte Carlo</title>
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>

View File

@ -1,270 +0,0 @@
---
title: A.3_Lattice_Colouring
excerpt:
layout: none
image:
---
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>A.3_Lattice_Colouring</title>
<!-- <style>
html {
line-height: 1.5;
font-family: Georgia, serif;
font-size: 20px;
color: #1a1a1a;
background-color: #fdfdfd;
}
body {
margin: 0 auto;
max-width: 36em;
padding-left: 50px;
padding-right: 50px;
padding-top: 50px;
padding-bottom: 50px;
hyphens: auto;
overflow-wrap: break-word;
text-rendering: optimizeLegibility;
font-kerning: normal;
}
@media (max-width: 600px) {
body {
font-size: 0.9em;
padding: 1em;
}
h1 {
font-size: 1.8em;
}
}
@media print {
body {
background-color: transparent;
color: black;
font-size: 12pt;
}
p, h2, h3 {
orphans: 3;
widows: 3;
}
h2, h3, h4 {
page-break-after: avoid;
}
}
p {
margin: 1em 0;
}
a {
color: #1a1a1a;
}
a:visited {
color: #1a1a1a;
}
img {
max-width: 100%;
}
h1, h2, h3, h4, h5, h6 {
margin-top: 1.4em;
}
h5, h6 {
font-size: 1em;
font-style: italic;
}
h6 {
font-weight: normal;
}
ol, ul {
padding-left: 1.7em;
margin-top: 1em;
}
li > ol, li > ul {
margin-top: 0;
}
blockquote {
margin: 1em 0 1em 1.7em;
padding-left: 1em;
border-left: 2px solid #e6e6e6;
color: #606060;
}
code {
font-family: Menlo, Monaco, 'Lucida Console', Consolas, monospace;
font-size: 85%;
margin: 0;
}
pre {
margin: 1em 0;
overflow: auto;
}
pre code {
padding: 0;
overflow: visible;
overflow-wrap: normal;
}
.sourceCode {
background-color: transparent;
overflow: visible;
}
hr {
background-color: #1a1a1a;
border: none;
height: 1px;
margin: 1em 0;
}
table {
margin: 1em 0;
border-collapse: collapse;
width: 100%;
overflow-x: auto;
display: block;
font-variant-numeric: lining-nums tabular-nums;
}
table caption {
margin-bottom: 0.75em;
}
tbody {
margin-top: 0.5em;
border-top: 1px solid #1a1a1a;
border-bottom: 1px solid #1a1a1a;
}
th {
border-top: 1px solid #1a1a1a;
padding: 0.25em 0.5em 0.25em 0.5em;
}
td {
padding: 0.125em 0.5em 0.25em 0.5em;
}
header {
margin-bottom: 4em;
text-align: center;
}
#TOC li {
list-style: none;
}
#TOC ul {
padding-left: 1.3em;
}
#TOC > ul {
padding-left: 0;
}
#TOC a:not(:hover) {
text-decoration: none;
}
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style> -->
<!-- -->
<!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3.0.1/es5/tex-mml-chtml.js"></script>
-->
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
<!--[if lt IE 9]>
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
<![endif]-->
<link rel="stylesheet" href="/assets/css/styles.css">
<script src="/assets/js/index.js"></script>
</head>
<body>
<!--Capture the table of contents from pandoc as a jekyll variable -->
{% capture tableOfContents %}
<br>
Contents:
<ul>
<li><a href="#lattice-colouring" id="toc-lattice-colouring">Lattice
Colouring</a></li>
</ul>
{% endcapture %}
<!-- Give the table of contents to header as a variable -->
{% include header.html extra=tableOfContents %}
<main>
<!-- <nav id="TOC" role="doc-toc">
<ul>
<li><a href="#lattice-colouring" id="toc-lattice-colouring">Lattice
Colouring</a></li>
</ul>
</nav>
-->
<h1 id="lattice-colouring">Lattice Colouring</h1>
<div class="sourceCode" id="cb1"><pre
class="sourceCode python"><code class="sourceCode python"></code></pre></div>
</main>
</body>
</html>

View File

@ -1,5 +1,5 @@
---
title: A.3_Lattice_Generation
title: Lattice Generation
excerpt:
layout: none
image:
@ -11,7 +11,7 @@ image:
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>A.3_Lattice_Generation</title>
<title>Lattice Generation</title>
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>

View File

@ -1,5 +1,5 @@
---
title: A.4_Lattice_Colouring
title: Lattice Colouring
excerpt:
layout: none
image:
@ -11,7 +11,7 @@ image:
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>A.4_Lattice_Colouring</title>
<title>Lattice Colouring</title>
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>

View File

@ -1,205 +0,0 @@
---
title: A.4_The_Projector
excerpt:
layout: none
image:
---
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>A.4_The_Projector</title>
<!-- <style>
html {
line-height: 1.5;
font-family: Georgia, serif;
font-size: 20px;
color: #1a1a1a;
background-color: #fdfdfd;
}
body {
margin: 0 auto;
max-width: 36em;
padding-left: 50px;
padding-right: 50px;
padding-top: 50px;
padding-bottom: 50px;
hyphens: auto;
overflow-wrap: break-word;
text-rendering: optimizeLegibility;
font-kerning: normal;
}
@media (max-width: 600px) {
body {
font-size: 0.9em;
padding: 1em;
}
h1 {
font-size: 1.8em;
}
}
@media print {
body {
background-color: transparent;
color: black;
font-size: 12pt;
}
p, h2, h3 {
orphans: 3;
widows: 3;
}
h2, h3, h4 {
page-break-after: avoid;
}
}
p {
margin: 1em 0;
}
a {
color: #1a1a1a;
}
a:visited {
color: #1a1a1a;
}
img {
max-width: 100%;
}
h1, h2, h3, h4, h5, h6 {
margin-top: 1.4em;
}
h5, h6 {
font-size: 1em;
font-style: italic;
}
h6 {
font-weight: normal;
}
ol, ul {
padding-left: 1.7em;
margin-top: 1em;
}
li > ol, li > ul {
margin-top: 0;
}
blockquote {
margin: 1em 0 1em 1.7em;
padding-left: 1em;
border-left: 2px solid #e6e6e6;
color: #606060;
}
code {
font-family: Menlo, Monaco, 'Lucida Console', Consolas, monospace;
font-size: 85%;
margin: 0;
}
pre {
margin: 1em 0;
overflow: auto;
}
pre code {
padding: 0;
overflow: visible;
overflow-wrap: normal;
}
.sourceCode {
background-color: transparent;
overflow: visible;
}
hr {
background-color: #1a1a1a;
border: none;
height: 1px;
margin: 1em 0;
}
table {
margin: 1em 0;
border-collapse: collapse;
width: 100%;
overflow-x: auto;
display: block;
font-variant-numeric: lining-nums tabular-nums;
}
table caption {
margin-bottom: 0.75em;
}
tbody {
margin-top: 0.5em;
border-top: 1px solid #1a1a1a;
border-bottom: 1px solid #1a1a1a;
}
th {
border-top: 1px solid #1a1a1a;
padding: 0.25em 0.5em 0.25em 0.5em;
}
td {
padding: 0.125em 0.5em 0.25em 0.5em;
}
header {
margin-bottom: 4em;
text-align: center;
}
#TOC li {
list-style: none;
}
#TOC ul {
padding-left: 1.3em;
}
#TOC > ul {
padding-left: 0;
}
#TOC a:not(:hover) {
text-decoration: none;
}
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style> -->
<!-- -->
<!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3.0.1/es5/tex-mml-chtml.js"></script>
-->
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
<!--[if lt IE 9]>
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
<![endif]-->
<link rel="stylesheet" href="/assets/css/styles.css">
<script src="/assets/js/index.js"></script>
</head>
<body>
<!--Capture the table of contents from pandoc as a jekyll variable -->
{% capture tableOfContents %}
<br>
Contents:
<ul>
<li><a href="#the-projector" id="toc-the-projector">The
Projector</a></li>
</ul>
{% endcapture %}
<!-- Give the table of contents to header as a variable -->
{% include header.html extra=tableOfContents %}
<main>
<!-- <nav id="TOC" role="doc-toc">
<ul>
<li><a href="#the-projector" id="toc-the-projector">The
Projector</a></li>
</ul>
</nav>
-->
<h1 id="the-projector">The Projector</h1>
</main>
</body>
</html>

View File

@ -1,5 +1,5 @@
---
title: A.5_The_Projector
title: The Projector
excerpt:
layout: none
image:
@ -11,7 +11,7 @@ image:
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>A.5_The_Projector</title>
<title>The Projector</title>
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
@ -27,7 +27,7 @@ image:
<br>
<nav aria-label="Table of Contents" class="page-table-of-contents">
<ul>
<li><a href="#the-projector" id="toc-the-projector">The
<li><a href="#app-the-projector" id="toc-app-the-projector">The
Projector</a></li>
</ul>
</nav>
@ -41,14 +41,14 @@ Projector</a></li>
<!-- Table of Contents -->
<!-- <nav id="TOC" role="doc-toc">
<ul>
<li><a href="#the-projector" id="toc-the-projector">The
<li><a href="#app-the-projector" id="toc-app-the-projector">The
Projector</a></li>
</ul>
</nav>
-->
<!-- Main Page Body -->
<section id="the-projector" class="level1">
<section id="app-the-projector" class="level1">
<h1>The Projector</h1>
</section>

View File

@ -1,251 +0,0 @@
---
title: Introduction
excerpt: Why do we do Condensed Matter theory at all?
layout: none
image:
---
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<meta name="description" content="Why do we do Condensed Matter theory at all?" />
<title>Introduction</title>
<!-- <style>
html {
line-height: 1.5;
font-family: Georgia, serif;
font-size: 20px;
color: #1a1a1a;
background-color: #fdfdfd;
}
body {
margin: 0 auto;
max-width: 36em;
padding-left: 50px;
padding-right: 50px;
padding-top: 50px;
padding-bottom: 50px;
hyphens: auto;
overflow-wrap: break-word;
text-rendering: optimizeLegibility;
font-kerning: normal;
}
@media (max-width: 600px) {
body {
font-size: 0.9em;
padding: 1em;
}
h1 {
font-size: 1.8em;
}
}
@media print {
body {
background-color: transparent;
color: black;
font-size: 12pt;
}
p, h2, h3 {
orphans: 3;
widows: 3;
}
h2, h3, h4 {
page-break-after: avoid;
}
}
p {
margin: 1em 0;
}
a {
color: #1a1a1a;
}
a:visited {
color: #1a1a1a;
}
img {
max-width: 100%;
}
h1, h2, h3, h4, h5, h6 {
margin-top: 1.4em;
}
h5, h6 {
font-size: 1em;
font-style: italic;
}
h6 {
font-weight: normal;
}
ol, ul {
padding-left: 1.7em;
margin-top: 1em;
}
li > ol, li > ul {
margin-top: 0;
}
blockquote {
margin: 1em 0 1em 1.7em;
padding-left: 1em;
border-left: 2px solid #e6e6e6;
color: #606060;
}
code {
font-family: Menlo, Monaco, 'Lucida Console', Consolas, monospace;
font-size: 85%;
margin: 0;
}
pre {
margin: 1em 0;
overflow: auto;
}
pre code {
padding: 0;
overflow: visible;
overflow-wrap: normal;
}
.sourceCode {
background-color: transparent;
overflow: visible;
}
hr {
background-color: #1a1a1a;
border: none;
height: 1px;
margin: 1em 0;
}
table {
margin: 1em 0;
border-collapse: collapse;
width: 100%;
overflow-x: auto;
display: block;
font-variant-numeric: lining-nums tabular-nums;
}
table caption {
margin-bottom: 0.75em;
}
tbody {
margin-top: 0.5em;
border-top: 1px solid #1a1a1a;
border-bottom: 1px solid #1a1a1a;
}
th {
border-top: 1px solid #1a1a1a;
padding: 0.25em 0.5em 0.25em 0.5em;
}
td {
padding: 0.125em 0.5em 0.25em 0.5em;
}
header {
margin-bottom: 4em;
text-align: center;
}
#TOC li {
list-style: none;
}
#TOC ul {
padding-left: 1.3em;
}
#TOC > ul {
padding-left: 0;
}
#TOC a:not(:hover) {
text-decoration: none;
}
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style> -->
<!-- -->
<!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3.0.1/es5/tex-mml-chtml.js"></script>
-->
<script src="/assets/mathjax/tex-mml-svg.js" id="MathJax-script" async></script>
<!--[if lt IE 9]>
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
<![endif]-->
<link rel="stylesheet" href="/assets/css/styles.css">
<script src="/assets/js/index.js"></script>
</head>
<body>
{% include header.html %}
<main>
<div class="sourceCode" id="cb1"><pre
class="sourceCode python"><code class="sourceCode python"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="op">%%</span>html</span></code></pre></div>
</main>
</body>
</html>

View File

@ -4,7 +4,6 @@
<li><a href="./1_Introduction/1_Intro.html#interacting-quantum-many-body-systems">Interacting Quantum Many Body Systems</a></li>
<li><a href="./1_Introduction/1_Intro.html#mott-insulators">Mott Insulators</a></li>
<li><a href="./1_Introduction/1_Intro.html#quantum-spin-liquids">Quantum Spin Liquids</a></li>
<li><a href="./1_Introduction/1_Intro.html#outline">Outline</a></li>
</ul>
<li><a href="./2_Background/2.1_FK_Model.html#the-falikov-kimball-model">Background</a></li>
<ul>
@ -27,14 +26,10 @@
<li><a href="./4_Amorphous_Kitaev_Model/4.3_AMK_Results.html#discussion-and-conclusion">Discussion and Conclusion</a></li>
</ul>
<li><a href="./5_Conclusion/5_Conclusion.html#discussion">Conclusion</a></li>
<li><a href="./6_Appendices/A.1_Markov_Chain_Monte_Carlo.html#markov-chain-monte-carlo">Appendices</a></li>
<li><a href="./6_Appendices/A.1_Particle_Hole_Symmetry.html#particle-hole-symmetry">Appendices</a></li>
<ul>
<li><a href="./6_Appendices/A.1_Markov_Chain_Monte_Carlo.html#markov-chain-monte-carlo">Markov Chain Monte Carlo</a></li>
<li><a href="./6_Appendices/A.1_Particle_Hole_Symmetry.html#particle-hole-symmetry">Particle-Hole Symmetry</a></li>
<li><a href="./6_Appendices/A.2_Lattice_Generation.html#lattice-generation">Lattice Generation</a></li>
<li><a href="./6_Appendices/A.2_Markov_Chain_Monte_Carlo.html#markov-chain-monte-carlo">Markov Chain Monte Carlo</a></li>
<li><a href="./6_Appendices/A.3_Lattice_Colouring.html#lattice-colouring">Lattice Colouring</a></li>
<li><a href="./6_Appendices/A.3_Lattice_Generation.html#lattice-generation">Lattice Generation</a></li>
<li><a href="./6_Appendices/A.4_Lattice_Colouring.html#lattice-colouring">Lattice Colouring</a></li>
<li><a href="./6_Appendices/A.4_The_Projector.html#the-projector">The Projector</a></li>
<li><a href="./6_Appendices/A.5_The_Projector.html#the-projector">The Projector</a></li>