4.2 KiB
jupytext
jupytext | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
|
Quickstart
Installation
To install the latest stable release from PyPI (recommended):
pip install qubed
Or to build and install the latest version from github (requires cargo):
pip install qubed@git+https://github.com/ecmwf/qubed.git@main
Usage
Make an uncompressed qube:
from qubed import Qube
q = Qube.from_dict({
"class=od" : {
"expver=0001": {"param=1":{}, "param=2":{}},
"expver=0002": {"param=1":{}, "param=2":{}},
},
"class=rd" : {
"expver=0001": {"param=1":{}, "param=2":{}, "param=3":{}},
"expver=0002": {"param=1":{}, "param=2":{}},
},
})
print(f"{q.n_leaves = }, {q.n_nodes = }")
q
Compress it:
cq = q.compress()
assert cq.n_leaves == q.n_leaves
print(f"{cq.n_leaves = }, {cq.n_nodes = }")
cq
With the HTML representation you can click on the leaves to expand them. You can copy a path representation of a node to the clipboard by alt/option/⌥ clicking on it. You can then extract that node in code using []
:
cq["class=rd,expver=0001"]
Select a subtree:
cq["class", "od"]["expver", "0001"]
Intersect with a dense datacube:
dq = Qube.from_datacube({
"class": ["od", "rd", "cd"],
"expver": ["0001", "0002", "0003"],
"param": "2",
})
(cq & dq).print()
Tree Construction
One of the quickest ways to construct non-trivial trees is to use the Qube.from_datacube
method to construct dense trees and then use the set operations to combine or intersect them:
q = Qube.from_datacube({
"class": "d1",
"dataset": ["climate-dt", "another-value"],
'generation': ['1', "2", "3"],
})
r = Qube.from_datacube({
"class": "d1",
"dataset": ["weather-dt", "climate-dt"],
'generation': ['1', "2", "3", "4"],
})
q | r
Iteration / Flattening
Iterate over the leaves:
for i, identifier in enumerate(cq.leaves()):
print(identifier)
if i > 10:
print("...")
break
Iterate over the datacubes:
cq.datacubes()
A Real World Example
Load a larger example qube:
import requests
qube_json = requests.get("https://github.com/ecmwf/qubed/raw/refs/heads/main/tests/example_qubes/climate_dt.json").json()
climate_dt = Qube.from_json(qube_json)
# Using the html or print methods is optional but lets you specify things like the depth of the tree to display.
print(f"{climate_dt.n_leaves = }, {climate_dt.n_nodes = }")
climate_dt.html(depth=1) # Limit how much is open initially, click leave to see more.
Select a subset of the tree:
climate_dt.select({
"activity": "scenariomip"
}).html(depth=1)
Use .span("key")
to get the set of possibles values for a key, note this includes anywhere this key appears in the tree.
climate_dt.span("activity")
Use .axes()
to get the span of every key in one go.
axes = climate_dt.axes()
for key, values in axes.items():
print(f"{key} : {list(values)[:10]}")
Set Operations
The union/intersection/difference of two dense datacubes is not itself dense.
A = Qube.from_dict({"a=1/2/3" : {"b=i/j/k" : {}},})
B = Qube.from_dict({"a=2/3/4" : {"b=j/k/l" : {}},})
A.print(), B.print();
Union:
(A | B).print();
Intersection:
(A & B).print();
Difference:
(A - B).print();
Symmetric Difference:
(A ^ B).print();
Transformations
q.transform
takes a python function from one node to one or more nodes and uses this to build a new tree. This can be used for simple operations on the key or values but also to split or remove nodes. Note that you can't use it to merge nodes beause it's only allowed to see one node at a time.
def capitalize(node): return node.replace(key = node.key.capitalize())
climate_dt.transform(capitalize).html(depth=1)