qubed/docs/quickstart.md

4.0 KiB

jupytext
jupytext
text_representation
extension format_name format_version jupytext_version
.md myst 0.13 1.16.4

Quickstart

Installation

pip install qubed

Usage

Make an uncompressed qube:

from qubed import Qube

q = Qube.from_dict({
    "class=od" : {
        "expver=0001": {"param=1":{}, "param=2":{}},
        "expver=0002": {"param=1":{}, "param=2":{}},
    },
    "class=rd" : {
        "expver=0001": {"param=1":{}, "param=2":{}, "param=3":{}},
        "expver=0002": {"param=1":{}, "param=2":{}},
    },
})
print(f"{q.n_leaves = }, {q.n_nodes = }")
q

Compress it:

cq = q.compress()
assert cq.n_leaves == q.n_leaves
print(f"{cq.n_leaves = }, {cq.n_nodes = }")
cq

With the HTML representation you can click on the leaves to expand them. You can copy a path representation of a node to the clipboard by alt/option/⌥ clicking on it. You can then extract that node in code using []:

cq["class=rd,expver=0001"]

Select a subtree:

cq["class", "od"]["expver", "0001"]

Intersect with a dense datacube:

dq = Qube.from_datacube({
    "class": ["od", "rd", "cd"],
    "expver": ["0001", "0002", "0003"],
    "param": "2",
})

(cq & dq).print()

Tree Construction

One of the quickest ways to construct non-trivial trees is to use the Qube.from_datacube method to construct dense trees and then use the set operations to combine or intersect them:

q = Qube.from_datacube({
    "class": "d1",
    "dataset": ["climate-dt", "another-value"],
    'generation': ['1', "2", "3"],
})

r  = Qube.from_datacube({
    "class": "d1",
    "dataset": ["weather-dt", "climate-dt"],
    'generation': ['1', "2", "3", "4"],
})

q | r

Iteration / Flattening

Iterate over the leaves:

for i, identifier in enumerate(cq.leaves()):
    print(identifier)
    if i > 10:
        print("...")
        break

Iterate over the datacubes:

cq.datacubes()

A Real World Example

Load a larger example qube:

import requests
qube_json = requests.get("https://github.com/ecmwf/qubed/raw/refs/heads/main/tests/example_qubes/climate_dt.json").json()
climate_dt = Qube.from_json(qube_json)

# Using the html or print methods is optional but lets you specify things like the depth of the tree to display.
print(f"{climate_dt.n_leaves = }, {climate_dt.n_nodes = }")
climate_dt.html(depth=1) # Limit how much is open initially, click leave to see more.

Select a subset of the tree:

climate_dt.select({
    "activity": "scenariomip"
}).html(depth=1)

Use .span("key") to get the set of possibles values for a key, note this includes anywhere this key appears in the tree.

climate_dt.span("activity")

Use .axes() to get the span of every key in one go.

axes = climate_dt.axes()
for key, values in axes.items():
    print(f"{key} : {list(values)[:10]}")

Set Operations

The union/intersection/difference of two dense datacubes is not itself dense.

A = Qube.from_dict({"a=1/2/3" : {"b=i/j/k" : {}},})
B = Qube.from_dict({"a=2/3/4" : {"b=j/k/l" : {}},})

A.print(), B.print();

Union:

(A | B).print();

Intersection:

(A & B).print();

Difference:

(A - B).print();

Symmetric Difference:

(A ^ B).print();

Transformations

q.transform takes a python function from one node to one or more nodes and uses this to build a new tree. This can be used for simple operations on the key or values but also to split or remove nodes. Note that you can't use it to merge nodes beause it's only allowed to see one node at a time.

def capitalize(node): return node.replace(key = node.key.capitalize())
climate_dt.transform(capitalize).html(depth=1)